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ABSTRACT

Large-scale cloud computing systems rely heavily on decision-making algorithms for crit-
ical system management tasks such as resource allocation, job scheduling, and power man-
agement. Manually crafted heuristics for these algorithms become increasingly untenable
given the complexity and heterogeneity of modern cloud environments because the intricate
interactions across diverse workloads, hardware platforms, and operating conditions make it
exceedingly difficult to devise fixed heuristics that work well across all scenarios. Although
machine learning techniques have been proposed to automatically learn optimized system
management policies, existing approaches face practical limitations and lack the robustness
necessary for production-grade cloud systems.

This dissertation pioneers a novel abstraction-driven paradigm of efficient and robust on-
line learning to fundamentally transform cloud systems management at scale. We develop a
general framework that leverages deep reinforcement learning with system domain knowledge
at its core to discover optimized management policies by continuously exploring and refining
them through in situ interactions with cloud environments. To practically and robustly apply
learning in cloud systems at scale, we further design two key abstractions: (1) A virtual agent
abstraction that coordinates the distributed learned policies to resolve multi-agent interfer-
ences and stably converge on system-wide objectives, and (2) A meta learner abstraction
that extracts generalizable policy embeddings that can rapidly adapt across the breadth of
heterogeneous cloud applications and platforms. This abstraction-driven approach provides
practical and extensible support for a wide range of online learning algorithms and diverse
systems management tasks.

Instantiated in systems like FIRM [1] (for microservices), SIMPPO [2] (for serverless com-
puting), and µ-Serve [3] (for deep learning model serving), our innovative framework delivers
order-of-magnitude improvements in resource efficiency, performance isolation, power opti-
mization, and generalization compared to traditional heuristic-driven approaches. More
profoundly, it establishes the foundations for practical and robust autonomous cloud sys-
tems management. Our contributions span the full stack, from mathematical models and
optimizations to system design, implementation, and deployment.
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CHAPTER 1: INTRODUCTION

1.1 OVERVIEW

Amid the rapid growth of cloud adoption, efficiency has emerged as the paramount ob-
jective for achieving sustainable growth in cloud datacenters. The fundamental principle of
cloud computing is to virtualize applications to run on shared hardware infrastructure. How-
ever, the rapid evolution of cloud application paradigms, such as microservices and serverless
computing, coupled with the rise of machine learning workloads, has fueled increasingly het-
erogeneous and elastic resource demands. Concurrently, the hardware underpinning cloud
infrastructure is facing decelerating scaling laws, including Moore’s Law, leading to dimin-
ishing returns in performance, memory or storage costs, and power usage effectiveness.

The mounting tensions between ever-increasing application demands and the slowdown of
hardware scaling laws necessitate prioritizing efficiency as the cornerstone of next-generation
cloud computing. Efficiency is multi-faceted – it encompasses (1) performance efficiency to
maximize application performance (e.g., to minimize application runtime) on fixed hardware
resources, (2) power efficiency to minimize energy consumption through techniques like pro-
cessor frequency scaling, and (3) resource efficiency to utilize minimal cluster resources while
meeting application service-level objectives (SLOs). Optimizing for any single dimension is
insufficient; a holistic and balanced approach is imperative.

However, the path to attaining such holistic efficiency is obstructed by the growing com-
plexity and scale of cloud systems. These systems have to manage all physical and virtu-
alized hardware and software resources while orchestrating critical management functions
like scheduling, health monitoring, failure diagnosis and recovery, congestion control, and
power management, adapting to the continuous evolution of cloud application computing
paradigms. Therein lies the fundamental challenge – how can we design and operationally
manage these large-scale, heterogeneous, and complex cloud systems to continuously and
effectively balance and meet the multi-faceted efficiency requirements?

Over the years, researchers have turned to incorporating machine learning (ML) methods
in the design and management of cloud systems. Unlike conventional heuristic-based ap-
proaches or performance modeling, ML techniques can better scale and adapt to the diverse
variations across machine configurations, workloads, and deployment environments without
recurring human-expert effort. These data-driven ML approaches have shown promising
improvements across many areas of cloud systems – job scheduling, resource management,
database indexing and query optimization, network control, configuration optimization, and
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more. The abundance of training data available in cloud systems provides a valuable feed-
back loop to train and continuously refine ML models for optimizing end-to-end objectives
such as cluster resource utilization or application latency SLOs.

However, developing robust ML models that can reliably optimize cloud efficiency across
all scenarios remains an open challenge, especially in production cloud systems. Even care-
fully designed heuristics and human operators can make mistakes, leading to cluster-wide
degradations from incorrect resource scaling, power control, or misconfigurations. Our study
(through collaboration with IBM) further revealed how ML models can fail or underperform
due to violated modeling assumptions in production cloud environments.

This refines the core research problem to: “How can we achieve truly efficient and robust
learning for cloud systems? ”, which is critical for the practical adoption of ML techniques in
production cloud systems. In this dissertation, we take a step back and ask what is the most
natural way for ML to be integrated with complex cloud systems. Rather than designing and
tuning ad hoc ML models for each system management problem, we seek to design a general
framework that empowers cloud systems to automatically learn and optimize for efficiency
objectives. Our proposed approach shifts the burden away from system operators having to
design specialized heuristics or worry about adapting ML models to various corner cases to
avoid robustness failures. Instead, the system operators architect the framework with data
collection, experimentation, and learning objectives.

With the proposed approach, the ML models in the cloud system then become learn-
ing agents, continuously improving cloud efficiency by exploring the operating state space
guided by the learning framework while inheriting extensible robustness capabilities (to deal
with external disturbances like data quality issues, cloud environment heterogeneity, and
interferences from other agents). The aim is to pave the way towards an era of self-driving,
self-optimizing cloud computing infrastructure that can harmonize multi-dimensional effi-
ciency targets in a fundamentally more autonomous and robust manner.

1.2 GENERAL APPROACH: EFFICIENT AND ROBUST ONLINE LEARNING

The broad vision of this dissertation is to bridge the gap between advanced ML tech-
niques and their robust integration within cloud systems via data-driven optimizations. In
particular, we aim to build efficient and robust learning-based system policies (i.e., control
algorithms) that make decisions during the operations of a cloud datacenter. We focus on
cloud system management tasks at various system stacks where the management agents in
each task continue to learn and improve those system policies. For instance, in a work-
load autoscaling task, an autoscaler (agent) determines the CPU/memory allocation of the

2



System 
Management 

Tasks

Traditional
Agent

ML Agent

Control

ML-centric
Data collection,
model training

Human-driven
Profiling, param
tuning

…Control

Resource Allocation

Workload Autoscaling

Congestion Control

Power Management

Cloud System

Application Hardware InfraSoftware

Simplified System 
Model

Figure 1.1: An ML-centric cloud system management with a mix of non-ML- and ML-
based system management agents.

deployed containers or virtual machines, reacting to workload demand variations.
In practice, traditional system management agents in cloud datacenters are based on

handcrafted heuristics or static policies. For example, Kubernetes horizontal autoscalers
make decisions to adjust the number of container replicas for a running application job
based on fine-tuned CPU utilization thresholds. As shown in Fig. 1.1, such heuristics design
flow is human-driven and involves cloud systems modeling, profiling, and parameter tuning.
Traditional heuristics-based agents have been successful in static settings where we can
model the system quite accurately. However, variations across cloud hardware infrastructure,
application workloads, or deployment environments can make heuristic generation repetitive
and costly. In contrast, ML-based approaches propose to replace recurring human-expert-
driven engineering efforts with ML model data collection and model training (as shown at
the bottom of Fig. 1.1) with the following benefits that traditional agents struggle to offer:

(1) Learning optimal policies for a specific environment by directly optimizing for the
actual operating conditions instead of relying on inaccurate system models.

(2) Optimizing for end-to-end system objectives directly (e.g., application latency SLOs)
without prior knowledge of how low-level system metrics impact the objective.

(3) Handling hard-to-model system dynamics (e.g., performance interference through last-
level cache contention) with the use of general-purpose and powerful function approx-
imators such as deep neural networks.

Our work continues along the lines of ML-centric cloud systems management in replacing
human-driven engineering efforts with automation. While the classical paradigm of building
such ML agents has demonstrated success in limited homogeneous settings, the use of ML in
systems today still falls short (especially in production cloud systems) as we currently lack
design techniques and a systematic framework for achieving continuous cloud efficiency opti-
mization across heterogeneous cloud environments and application computing requirements.
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To bridge this gap, we augment the computer system with data-driven learning techniques
and provide a general framework with both system and algorithmic support to enable efficient
and robust online learning. This framework helps overcome three fundamental challenges in
ML-centric cloud systems management.

Complexity and Dynamics. Modern hardware and software stacks expose a diverse
array of configurable parameters whose intricate interactions can have complex and unpre-
dictable impacts on performance and reliability. Therefore, cloud systems must efficiently
adapt to constantly evolving operating conditions, fluctuating workload patterns, and shift-
ing user requirements. Given a well-defined system management task, our approach com-
bines deep learning techniques, capable of modeling such complexity, with domain-driven
architectural model decomposition designed explicitly to address this challenge and handle
system dynamics. The produced ML models (used by the agents to perform the given system
management task) are efficient in training and interpretable for debugging.

A key enabler is the reinforcement learning (RL) paradigm. The agent starts with no prior
knowledge about their assigned control tasks. They learn optimal policies by receiving reward
signals that evaluate how well they are performing on the task objective. Through repeated
interactions with the system environment, the agents accrue experience to progressively
improve their decision-making over time. Since in the cloud systems domain, management
decisions tend to be recurrent in nature, the agent can readily collect large volumes of
training data to train the models.

Cloud Multi-tenancy. With multiple agents deployed to control different systems tasks
and manage applications from different tenants with varying characteristics and require-
ments, our framework enables cross-stack policy optimization by having the agents share a
common reward signal. This joint optimization capability is a key advantage over traditional
heuristic-based approaches that operate in isolated silos. The data-driven nature allows the
system to dynamically adjust to optimal operating states by continuously ingesting and
adapting to the contextual telemetry data collected across all system layers - capturing the
precise deployment environment, workload patterns, and application requirements. However,
the multi-agent setting also introduces new challenges around conflicts between agents’ poli-
cies as well as the non-stationarity caused by agents’ simultaneous learning and interaction
in the shared cloud environment.

To address this challenge, our framework employs mean-field theory techniques to model
and coordinate the agent population at scale. This allows the agents to coexist stably, man-
age perturbations from concurrent learning, and ultimately converge to a coherent system-
wide optimum. The mean-field approach provides the crucial scalability needed to orches-
trate a large number of control agents spanning the cloud systems stack.
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Cloud Heterogeneity. Another core challenge is the heterogeneity intrinsic to cloud
environments spanning diverse applications and infrastructure. As the learned ML model
is specialized to the environment- or application-specific characteristics (because the RL
policy is trained to maximize the cumulative rewards), directly applying such ML models
as the control agents incurs uncertain performance degradation and significant adaptation
overhead. To mitigate this, our framework leverages meta-learning to produce general em-
bedding representations that help rapidly specialize to novel applications and environments
with limited fine-tuning costs.

At its core, this dissertation takes a general approach towards realizing self-driving cloud
datacenter management that combines deep learning with systems principles. The inherent
complexity and dynamics are tamed by modularizing control into distinct tasks amenable to
deep reinforcement learning so that the learning agents can continuously adapt and refine
their policies through constant environment interaction. Potential conflicts between the
distributed agent policies are resolved through mean-field population modeling, allowing
the agents to stably co-exist and converge. Furthermore, the framework leverages meta-
learning to bridge the cloud heterogeneity gap, facilitating efficient adaptation of learned
models across diverse applications and cloud environments. This general design establishes
the foundations for fundamentally autonomous cloud datacenter management.
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Figure 1.2: Overview of the proposed system architecture for efficient and robust online
learning in cloud systems.
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1.3 SUMMARY OF CONTRIBUTIONS: METHODS AND SYSTEMS DEVELOPED

This dissertation develops a set of novel, transformative methods to control, manage, and
optimize large-scale heterogeneous cloud datacenters with efficient and robust online learn-
ing. We demonstrate their uses and generalizability in several representative tasks, including
resource management, processor frequency scaling, and deep learning model serving, but the
methods are generalizable to a wider range of cloud systems management tasks. Fig. 1.2 pro-
vides an overview of the proposed methods that leverages the rich monitoring and telemetry
data available across the stack to model different aspects of the heterogeneous system behav-
ior using Markov decision process (MDP) formulations augmented with domain knowledge.
At its core, the dissertation tackles the following key research problems.

1.3.1 FIRM: Learning Cloud Microservices Resource Management Policies

We started by looking at resource management, a core task in cloud datacenter manage-
ment. As containerization transforms the datacenter from machine-oriented to application-
oriented [4], meeting strict cloud application SLOs (e.g., in throughput and, more critically,
tail latency [5, 6, 7, 8]) poses significant challenges. In addition, cloud services have recently
undergone a major shift from complex monolithic designs to microservices that execute on
shared/multi-tenant compute resources either as virtual machines (VMs) or as containers
(with containers gaining significant popularity of late). These microservices must handle
diverse load characteristics while efficiently multiplexing shared resources to maintain SLOs
on application metrics such as end-to-end latency. In this dissertation, we present FIRM
(labeled as 1 in Fig. 1.2), a multilevel ML-based resource management framework to man-
age shared resources among microservices at finer granularity to reduce resource contention
and thus increase performance isolation and resource utilization. We provide an open-source
implementation of FIRM for the Kubernetes container orchestration system. FIRM reduces
overall SLO violations by up to 16× compared with Kubernetes autoscaling while reducing
the overall requested CPU by as much as 62%.

1.3.2 SIMPPO: Dealing with Cloud Multi-tenancy

The challenge is to reconcile cloud system management decisions from multiple ML agents
in a shared cloud platform. The standard assumption for any learning-based approach is
environment stationarity [9, 10, 11], which means that the cloud environment is affected
only by the agent interacting with it. In contrast, the computing platforms (e.g., container
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orchestration platforms and serverless computing platforms) in any cloud datacenter are
multi-tenant, and application workloads from all customers sharing the compute resources
in a cluster. Multi-tenancy makes the environment non-stationary from each agent’s own
perspective when all agents are jointly being trained or used for inference. Single-agent
solutions, where one agent manages one or more applications in one specific task, paying no
attention to any other agents, fail to converge. On the other hand, centralized multi-agent
solutions [12] cannot scale beyond a few agents in practice because of their exponential
dependence on the number of agents. This dissertation presents SIMPPO (labeled as 2

in Fig. 1.2), a scalable multi-agent framework that addresses the challenge in two ways:
(1) a virtual agent abstraction that consists of the environment and all the other agents
so that the many-agent problem is converted to a two-agent problem, and (2) an auxiliary
global state modeling of the collective behavior of the other agents (i.e., the virtual agent)
with mean-field theory. SIMPPO is a general framework that can support a variety of ML
agents that employ online learning algorithms. Experiments in the task of serverless resource
management demonstrate that SIMPPO enables all agents’ policies to converge when they
are jointly trained and achieves 4.5× improvement in online policy-serving performance
compared to single-agent solutions (e.g., FIRM) in multi-tenant cases.

1.3.3 AWARE & FLASH: Dealing with Cloud Heterogeneity

The challenge is to quickly adapt the trained model to heterogeneous cloud applications
and environments that could be unseen during training, which is a critical problem in making
ML practical in production systems. For example, in resource management, a learned pol-
icy is application-specific and environment-specific. Retraining is needed to adapt to a new
workload or underlying infrastructure in heterogeneous and dynamically evolving (possibly
multi-cloud) datacenters [13, 14, 15, 16, 17]. FIRM’s trained RL policy suffers performance
degradation and requires substantial retraining (with additional data collection). In this dis-
sertation, we present AWARE (labeled as 3 in Fig. 1.2) that addresses cloud heterogeneity
in two ways: (1) a meta learner abstraction that leverages meta-learning to model the RL
agent as a base learner and learns to generalize and adapt to new applications and environ-
ment shifts with a novel embedding generation framework, and (2) continuous monitoring
for retraining detection and trigger to achieve stable online RL policy-serving performance.
AWARE adapts learned resource management policies to new workloads 5.5× faster than ex-
isting transfer-learning-based approaches. In FLASH, we extend the meta-learning approach
to support both supervised learning and RL in more system management tasks: resource
configuration search, CPU frequency scaling, and network congestion control.
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1.3.4 µ-Serve: Learning Deep Learning Model Serving Policies

Over the past few years, increasingly capable large deep learning (DL) models have been
developed for everything from recommendations to text or image generation. Pre-trained
DL models make it easy for developers to build and deploy new models with lightweight
fine-tuning, few-shot learning, or even prompting [18]. As a result, model serving (i.e., in-
ference) has become an essential workload in modern cloud systems [19]. As DL workloads
exhibit significantly different characteristics and requirements compared to traditional cloud
applications, we aim to extend the developed learning-based framework (i.e., as shown in
Fig. 1.2) to support DL model-serving workloads in cloud datacenters. The goal is to min-
imize power consumption while preserving SLO attainment. In particular, we address two
unique challenges. First, generative model (e.g., large language models like GPTs) serving
is non-deterministic because of the autoregressive nature1 of generative models. Therefore,
first-come-first-serve (FCFS) request scheduling policy suffers from head-of-line blocking is-
sues [20], leading to less power-saving headroom without SLO violations. Second, unlike
CPUs, GPUs do not support fine-grained (e.g., per-core) frequency scaling. Therefore, if
the model or multiple model partitions (from different models) are placed onto a device, the
frequency can only be reduced to the maximum frequency demand among all partitions. We
build µ-Serve, a power-aware DL model serving framework with proxy-model-based request
scheduling and fine-grained model provisioning to maximize power-saving opportunities.
Thanks to µ-Serve’s support of DL workloads, we can extend the developed learning-based
framework for GPU frequency scaling. We evaluate µ-Serve with a diverse set of open-
source DL models (including traditional non-Transformer models like CNNs, Transformers,
and Transformer-based generative models) and production workloads on an 8-node 16-GPU
cluster. Evaluation results show that, compared to existing state-of-the-art serving systems,
µ-Serve achieves a power reduction factor of 1.9–2.6× while preserving SLO attaintments.

1.4 ORGANIZATION

The remainder of the dissertation is organized as follows. First, we describe background,
challenges, and related work in this area in Chapter 2. Then, Chapter 3 describes the mod-
els, design, training, and validation of a learning-based resource management policy that
makes use of online telemetry data to multiplex shared resources among cloud microser-
vices. Chapter 4 describes methods to enable joint training to convergence, mitigate agent

1Each model-serving request is processed iteration by iteration where the output of each iteration is used
as input in the following iteration. Therefore, the total execution time is unknown before serving the request.
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interferences, and thus allow ML agents to co-exist in a shared cloud platform. Chapter 5
describes methods for fast model adaptation to novel, heterogeneous cloud applications and
environments. Chapter 6 describes how the proposed framework described in Chapters 3
to 5 can be extended to support deep learning workloads in cloud datacenters. Finally, in
Chapter 7, we will end this dissertation by summarizing our contributions and discussing
open problems and future research directions in this field.
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CHAPTER 2: BACKGROUND, MOTIVATION, AND CHALLENGES

This dissertation takes a first step towards building efficient and robust cloud datacenter
management systems with online learning. The implementation and deployment of such
learning-augmented systems have the potential to make it much easier to deploy and manage
complex cloud applications, leading to faster development, less management effort, and
higher efficiency. However, one has to overcome two major challenges:

(1) Complexity and Dynamics in Cloud Datacenters : Modern cloud datacenter hardware,
software systems, and applications exhibit heterogeneous characteristics with diverse
configurable parameters that have complex interactions with performance and reliabil-
ity. Worse, there can be unpredictable changes and dynamics in cloud environments,
including system operating conditions and application workloads.

(2) Robust and Practical Machine Learning in Systems : Developing ML models that are
practical for complex systems like cloud datacenters poses significant challenges. These
models need to continuously deliver robust policy-serving performance in case of unex-
pected scenarios that can be common in cloud environments. We summarize two major
sources of robustness challenges: (1) dealing with ML agent interferences due to cloud
multi-tenancy, and (2) fast model adaptation to heterogeneous cloud applications and
compute infrastructures.

In this chapter, we will discuss the complexity and dynamics in cloud datacenter manage-
ment (Section 2.1) through a characterization study on microservices resource management
(Section 2.2), motivating the use of machine learning (ML) in systems. Then we will describe
the related work on ML for various system tasks (Section 2.3) and discuss the research gap
addressed in this dissertation towards practical and robust learning in cloud systems man-
agement (Section 2.4).

2.1 COMPLEXITY AND DYNAMICS IN CLOUD DATACENTER MANAGEMENT

Cloud datacenters are undergoing an unprecedented evolution. On the demand side,
emerging applications such as microservices [21, 22, 23, 24] and large deep learning (DL)
model (e.g., large language models like GPTs [25]) training and inference require increased
efficiency and scalability. In dynamically evolving (and possibly multi-cloud [17, 26]) data-
centers, the underlying cloud infrastructure is becoming significantly more complex, hetero-
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geneous, and distributed [13, 14, 15, 16]. Cloud datacenter management plays a critical role
in managing and running applications on shared cloud infrastructure.

However, cloud systems have become tremendously complex during the past decade of evo-
lution. They have to manage all the physical and virtual resources running in datacenters
and take care of other management tasks such as job scheduling, server health monitoring
and repairing, managing power and energy usage, and capacity planning. To continuously
meet application and system service-level objectives (SLOs), one has to deal with the com-
plexities originating from both application (e.g., computing paradigms like complex inter-
dependencies of microservices) and cloud infrastructure (e.g., diversity of hardware/software
profiles and configurations). Interactions between changes in application profiles and such
hardware/software configuration parameters have become incredibly complex, and modeling
those interactions with high fidelity is increasingly hard and costly. Even a modest number
of distinct configuration parameters can lead to an immense search space that is impractical
to exhaustively traverse during runtime execution.

In addition, dynamic cloud environments require the management system and policies
to reliably adapt to unpredictable changes in the operating environment, network condi-
tions, application workloads, and user preferences. For instance, critical execution paths in
microservices do not remain static over the execution of requests but rather change dynam-
ically based on the performance of individual service instances because of underlying shared
resource contention and their sensitivity to this interference.

In the next section, we present a characterization study of cloud microservices to demon-
strate the complexity and dynamics of cloud systems and to motivate the use of machine
learning in resource management.

2.2 A CHARACTERIZATION STUDY ON MICROSERVICES

The advent of microservices has led to the development and deployment of many cloud
services that are composed of “micro,” loosely coupled, intercommunicating services, in-
stead of large, monolithic designs. This increased popularity of service-oriented architectures
(SOA) of web services has been made possible by the rise of containerization [27, 28, 29, 30]
and container-orchestration frameworks [31, 32, 33, 34] that enable modular, low-overhead,
low-cost, elastic, and high-efficiency development and production deployment of SOA mi-
croservices [21, 22, 23, 24, 35, 36, 37, 38, 39]. A deployment of such microservices can be
visualized as a service dependency graph or an execution history graph. The performance of
a user request, i.e., its end-to-end latency, is determined by the critical path of its execution
history graph. See below for the formal definitions of the terms used in this section.
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Definition 2.1. A service dependency graph captures communication-based dependencies
(the edges of the graph) between microservice instances (the vertices of the graph), such as
remote procedure calls (RPCs). It tells how requests are flowing among microservices by
following parent-child relationship chains. Fig. 2.1(a) shows the service dependency graph
of the Social Network microservice benchmark [39]. Each user request traverses a subset
of vertices in the graph. For example, in Fig. 2.1(a), post-compose requests traverse only
those microservices highlighted in darker yellow.

Definition 2.2. An execution history graph is the space-time diagram of the distributed
execution of a user request, where a vertex is one of send_req, recv_req, and compute,
and edges represent the RPC invocations corresponding to send_req and recv_req. The
graph is constructed using the global view of execution provided by distributed tracing of
all involved microservices. For example, Fig. 2.1(b) shows the execution history graph for
the user request in Fig. 2.1(a).

Definition 2.3. The critical path (CP) to a microservice m in the execution history graph
of a request is the path of maximal duration that starts with the client request and ends
with m [40, 41]. When we mention CP alone without the target microservice m, it means
the critical path of the “Service Response” to the client (see Fig. 2.1(b)), i.e., end-to-end
latency.
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Figure 2.1: Microservices overview: (a) Service dependency graph of Social Network from
the DeathStarBench [39] benchmark; (b) Execution history graph of a post-compose request
in the same microservice.

To understand SLO violation characteristics and study the relationship between runtime
performance and the underlying resource contention, we have run extensive performance
anomaly injection experiments on widely used microservice benchmarks (i.e. DeathStar-
Bench [39] and Train-Ticket [42]) and collected around 2 TB of raw tracing data (over
4.1× 107 traces). Our key insights are as follows.
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Table 2.1: CP changes in Fig. 2.1(b) under performance anomaly injection.

Case Average Individual Latency (ms) Total (ms)
N V U I T C

<V,CP1> 13 603 166 33 71 68 614 ± 106
<U,CP2> 14 237 537 39 62 89 580 ± 113
<T,CP3> 13 243 180 35 414 80 507 ± 75

Insight 2.1: Dynamic Behavior of CPs. In microservices, the latency of the CP limits
the overall latency of a user request in a microservice. However, CPs do not remain static
over the execution of requests in microservices, but rather change dynamically based on the
performance of individual service instances because of underlying shared-resource contention
and their sensitivity to this interference. Though other causes may also lead to CP evolution
in real-time (e.g., distributed rate limiting [43], and cacheability of requested data [44]), it
can still be used as an efficient manifestation of resource interference.

For example, in Fig. 2.1(b), we show the existence of three different CPs (i.e., CP1–
CP3) depending on which microservice (i.e., V , U , T ) encounters resource contention. We
artificially create resource contention by using performance anomaly injections.2 Table 2.1
lists the changes observed in the latencies of individual microservices, as well as end-to-
end latency. We observe as much as 1.2–2× variation in end-to-end latency across the
three CPs. Such dynamic behavior exists across all our benchmark microservices. Fig. 2.2
illustrates the latency distributions of CPs with minimum and maximum latency in each
microservice benchmark, where we observe as much as 1.6× difference in median latency
and 2.5× difference in 99th percentile tail latency across these CPs.
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Figure 2.2: Distributions of end-to-end latencies of different microservices in the Death-
StarBench [39] and Train-Ticket [42] benchmarks. Dashed and solid lines correspond to the
minimum and maximum critical path latencies on serving a request.

Recent approaches (e.g., [45, 46]) have explored static identification of CPs based on
historic data (profiling) and have built heuristics (e.g., application placement, level of paral-
lelism) to enable autoscaling to minimize CP latency. However, our experiment shows that

2Performance anomaly injections (Section 3.2.6) are used to trigger SLO violations by generating fine-
grained resource contention with configurable resource types, intensity, duration, timing, and patterns, which
helps with both our characterization and ML model training (Section 3.2.4).
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this by itself is not sufficient. The requirement is to adaptively capture changes in the CPs,
in addition to changing resource allocations to microservice instances on the identified CPs
to mitigate tail latency spikes.

Insight 2.2: Microservices with Larger Latency Are Not Necessarily Root
Causes of SLO Violations. It is important to find the microservices responsible for SLO
violations to mitigate them. While it is clear that such microservices will always lie on the
CP, it is less clear which individual service on the CP is the culprit. A common heuristic is to
pick the one with the highest latency. However, we find that that rarely leads to the optimal
solution. Consider Fig. 2.3. The left side shows the CDF of the latencies of two services
(i.e., composePost and text) on the CP of the post-compose request in the Social Network
benchmark. The composePost service has a higher median/mean latency while the text

service has a higher variance. Now, although the composePost service contributes a larger
portion of the total latency, it does not benefit from scaling (i.e., getting more resources),
as it does not have resource contention. That phenomenon is shown on the right side of
Fig. 2.3, which shows the end-to-end latency for the original configuration (labeled “Before”)
and after the two microservices were scaled from a single to two containers each (labeled
“Text” and “Compose”). Hence, scaling microservices with higher variances provides better
performance gain.
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Figure 2.3: End-to-end latency improvement by scaling “highest-variance” and “highest-
median” microservices.

Insight 2.3: Mitigation Policies Vary with User Load and Resource in Con-
tention. The only way to mitigate the effects of dynamically changing CPs, which in turn
cause dynamically changing latencies and tail behaviors, is to efficiently identify microservice
instances on the CP that are resource-starved or contending for resources and then provide
them with more of the resources. Two common ways of doing so are (1) to scale out by
spinning up a new instance of the container on another node of the compute cluster, or
(2) to scale up by providing more resources to the container via either explicitly partition-
ing resources (e.g., in the case of memory bandwidth or last-level cache) or granting more
resources to an already deployed container of the microservice (e.g., in the case of CPU
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Figure 2.4: Dynamic behavior of mitigation strategies: Social Network (top); Train-Ticket
Booking (bottom). Error bars show 95% confidence intervals on median latencies.

cores).
As described before, recent approaches [47, 48, 49, 50, 51, 52, 53, 54, 55]) address the

problem by building static policies (e.g., AIMD for controlling resource limits [52, 53], and
rule/heuristics-based scaling relying on profiling of historic data about a workload [54, 55]), or
modeling performance [50, 51]. However, we found in our experiments with the four microser-
vice benchmarks that such static policies are not well-suited for dealing with latency-critical
workloads because the optimal policy must incorporate dynamic contextual information.
That is, information about the type of user requests, and load (in requests per second), as
well as the critical resource bottlenecks (i.e., the resource being contended for), must be
jointly analyzed to make optimal decisions. For example, in Fig. 2.4 (top, for the social
network application), we observe that the trade-off between scale-up and scale-out changes
based not only on the user load but also on the resource type. At 500 req/s, scale-out
has a better payoff (i.e., lower latency) than scale-up for both memory- and CPU-bound
workloads. However, at 1500 req/s, scale-up dominates for CPU, and scale-out dominates
for memory. This behavior is also application-dependent because the trade-off curve inflec-
tion points change across applications, as illustrated in Fig. 2.4 (bottom, for the train-ticket
booking application).

2.3 MACHINE LEARNING FOR CLOUD SYSTEMS

Recent advances in machine learning have driven a shift in cloud system design and man-
agement. Public cloud providers have strong incentives to replace traditional system man-
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agement agents with ML agents and to build ML-centric cloud platforms [56]. The need
for learning-augmented management stems from the fact that heterogeneous and complex
decision-making spans across modern system lifecycles as cloud platforms become tremen-
dously complex [56, 57, 58]. These decisions govern how systems handle applications to
satisfy user requirements in a particular runtime environment or cloud infrastructure. Vari-
ous efforts have shown significant benefits in formulating production cloud system manage-
ment into ML/RL-based tasks (e.g., Markov decision-making problems) including resource
management [1, 59, 60, 61, 62, 63, 64], job scheduling [65, 66, 67, 68, 69], congestion con-
trol [70, 71, 72, 73, 74], and power management [16, 75, 76, 77].

Below are three examples that we use in Section 2.4 to illustrate the gap between ML
advances and its practical adoption in production cloud systems.

• Resource configuration search (RCS) is usually modeled as a regression task [60,
61, 62, 64]. A supervised-learning-based predictor is trained to predict the application
performance given the resource configurations, resource utilization, and other metrics.
For example, Sizeless [64] leverages a fully connected neural network to predict the
average execution times of a serverless function given a target function memory size
based on the monitoring data when running the function with a base memory size3.
PARIS [61] applies random forests to predict the 90th percentile performance metrics
(e.g., latency or throughput) based on resource utilization and system-level metrics.

• Workload autoscaling (WA) is modeled as a sequential decision-making problem
to scale horizontally and/or vertically the controlled workload (e.g., the number of
replicas and the size of each replica/pod for a Kubernetes Deployment) [1, 59]. RL is
well suited for learning such policies, as it provides a tight feedback loop to explore
the state action space and generate optimal policies without relying on inaccurate
assumptions (i.e., heuristics or rules) [65, 78]. For example, FIRM [1] leverages an
RL model DDPG to adjust resources vertically (e.g., CPU/memory allocation) and
scale horizontally (i.e., number of replicas). RL agents’ goal is to maximize resource
utilization while maintaining application SLOs.

• CPU frequency scaling (CFS) requires the agent to balance the workload perfor-
mance improvements with the extra power cost when increasing the core frequency [77].
SmartOverclock [16] leverages an RL model, Q-Learning, to decide when and how much
to scale the CPU core frequency.

3In Sizeless, only the memory size is used because the CPU allocation defaults to be proportional to
memory allocation on AWS Lambda.
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2.4 THE LEAP FORWARD: PRACTICAL LEARNED SYSTEMS

While there have been successes in using ML/RL for systems management tasks as de-
scribed in Section 2.3, there is still a large gap in directly applying ML/RL advances to
real-world production systems due to a series of assumptions that are rarely satisfied in
practice. Such a gap often prevents off-the-shelf ML/RL methods from achieving strong
performance in different cloud system tasks. Here, we primarily focus on the common chal-
lenges that arise in different stages of the ML agent design pipeline across many system
tasks. In this section, we look at the example of learning-based resource management as a
representative system management task for concrete discussion.

Learned Resource Management Policies. RL is well-suited for learning resource
re-provisioning policies, as it provides a tight feedback loop for exploring the action space
and generating optimal policies without relying on inaccurate assumptions (i.e., heuristics or
rules). RL automates the repetitive process of heuristics tuning and testing by enabling an
agent to learn the optimal policy directly from interaction with the environment. It allows
direct learning from the actual workload and operating conditions to understand how adjust-
ing low-level resources affects application performance. RL consists of a policy-training stage
and a policy-serving stage [79]. At the policy-training stage, the agent (using an initialized
policy) starts with no knowledge about the environment and learns by reinforcement and
directly interacting with the environment. At the policy-serving stage, the trained policy
is used to generate an action based on the current state of the environment, and model
parameters are no longer being updated.
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Figure 2.5: Single-agent RL solutions (each agent independently trained and unaware of
each other) in single- or multi-tenant serverless environments.

Challenge of Multi-tenancy. Despite recent successes, existing RL-based solutions
are all single-agent RL solutions in which one agent manages one or more applications or
functions4 (as shown in Fig. 2.5), paying no attention to any other agents. The standard

4RL-based approaches are all application-specific or function-specific (in the context of serverless function-
as-a-service or FaaS) where one RL agent controls an application and learns to adapt to specific workloads.
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olation of the stationarity assumption. The RL environment models a systems task of
multidimensional autoscaling of serverless functions. Each agent manages one application
function.

assumption for an RL algorithm is environment stationarity [9, 10, 11], which means that
the environment is affected only by the agent interacting with it. Therefore, existing single-
agent RL solutions assume that the agent is in an isolated single-tenant environment (for
both training and inference) that contains only the application that the agent manages.
In contrast, the computing platforms (e.g., container orchestration platforms and serverless
FaaS platforms) in any cloud datacenter are multi-tenant, and application workloads from all
customers compete for shared resources in a cluster. Multi-tenancy makes the environment
non-stationary from each agent’s own perspective when all agents are jointly being trained.
At the training stage, since the state transitions and rewards each agent gets depend on
the joint actions of all agents whose policies keep changing in the learning process, each
agent enters an endless cycle of adapting to other agents. At the policy-serving stage, an
action might be suboptimal when applied, because the underlying environment is no longer
the same as the one previously perceived for generating the action. Two examples below
demonstrate such undesirable behaviors caused by environment non-stationarity.

Motivating Examples of Agent Interference. We draw two examples (as shown in
Fig. 2.6) from RL episodes in our experiments where environment non-stationarity causes
suboptimal agent behaviors. In both examples, each agent controls the resource management
for a serverless function and is independently trained to convergence. In the first example,
suppose that agent-1 makes the decision to scale up cpu.shares in the single-tenant case
(upper left). When both agent-1 and agent-2 are present (upper right), the action from
agent-2 (i.e., scaling up cpu.shares by 512) affects the final CPU share ratio for both
agents. Our evaluation shows that the suboptimal policy results in up to 14× performance
degradation compared to the single-tenant case in terms of the end-to-end p99 latency. In
the second example, agent-1 wants to scale out by adding a 256-MB container, but it ends
by placing the container on a new server, since the available memory capacity is only 128
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MB (bottom left). Consequently, function performance will be significantly affected by the
launch of a new VM and cold starts [80]. When both agents are present (bottom right), the
scale-in action from agent-2 avoids involving another server. Since agents are unaware of each
other, the optimal solution is missed, leading to SLO violations and inefficient utilization of
resources.

We implemented a state-of-the-art single-agent RL solution, conducted training conver-
gence analysis, and evaluated the function performance and resource utilization. We found
that the single-agent RL solution converges in isolated environments and provides a sufficient
baseline compared with heuristics. However, system support for many-agent RL-based re-
source management that provides both training convergence and comparable policy-serving
performance is needed to deal with environment non-stationarity.

Challenge of Dynamic and Uncertain Environment. Serving an RL agent in a
production cloud system also involves challenges in both policy training and serving. First,
a learned RL policy is workload-specific and infrastructure-specific. Retraining is needed
to adapt to a new workload or underlying infrastructure in heterogeneous and dynamically
evolving (possibly multi-cloud) datacenters [13, 14, 15, 16, 17]:

• Environment diversity and infrastructure dynamics. Heterogeneity exists in various
types of datacenter infrastructure [13, 14]. Compute or storage hardware upgrades can
potentially alter the behavior of the existing system [57, 81]. Network updates affect
many factors, such as available link capacities, packet loss rates, and delay [82, 83].

• Application diversity and workload dynamics. Prior work has shown that there can
be non-trivial differences among cloud applications [15, 59, 84]. In addition, cloud
applications have increasingly adopted tighter and more frequent software update cy-
cles [6, 85], including changes in architectures, bug fixes or patches, and even payloads.

For instance: (a) In SLO-driven resource management, application performance and uti-
lization differ significantly among heterogeneous workloads [1]. (b) In power management,
diverse power consumption and workload sensitivity to core/uncore frequency require sep-
arate training of RL policies [16]. (c) In video streaming and network congestion control,
different sets of traces have diverse payload characteristics and network environments [70]
(e.g., dynamic link bandwidth, delay, and loss rate). Even with transfer learning (TL) [1],
nontrivial retraining is needed to adapt to new workloads and environment shifts in each
problem domain, which is a critical problem in making RL practical in production. Further,
TL requires fine-grained environment clustering to identify the most appropriate model to
transfer from, and requires saving one model per cluster.

Second, for the same application and environment, there could be slight changes (e.g.,
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Figure 2.7: Testing trained Sizeless model on datasets collected from unseen cloud plat-
forms or new applications.
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Figure 2.8: Testing trained FIRM model on unseen applications or application updates.

patches and rolling updates), unusual workload patterns not seen before (e.g., due to migra-
tion rollout), or traffic jitters. Without timely retraining, the online policy-serving perfor-
mance of the RL agent fluctuates and leads to undesired degradation (e.g., SLO violations,
low resource utilization, and network congestion). It is crucial to ensure robust online per-
formance in case of environment or model uncertainty [86, 87].

Third, RL training is through trial and error [1, 65, 69], so worse-than-baseline or subop-
timal decisions can be generated, especially at an early stage of training. Direct training in
the production system leads to suboptimal performance and undesired SLO violations, while
training in a simulator and then transitioning to the production system face the problem of
poor generalization [88].

Characterization of Model Adaptation Requirements. Such application/environ-
ment heterogeneity or dynamics could invalidate model assumptions (e.g., the optimal au-
toscaling policy changes with resource sensitivity) and cause the trained model to be subop-
timal. Re-training models can be costly and require a large amount of training data [57, 67].
To characterize such adaptation requirements, we take the open-source implementation of
Sizeless (for RCS ) and FIRM (for WA) models, train them in the original setup described in
their papers, and study the model performance degradation in new setups. Detailed descrip-
tions of the model architecture, training, and datasets in the two case studies are deferred
to Appendices A.2 and A.3.

In RCS, we quantify the model performance degradation and show in Fig. 2.7(a) and
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(b) the CDFs of the absolute percentage error (APE). The baseline (labeled as “Sizeless”)
is the CDF of the Sizeless model tested using the original Sizeless dataset, which has an
average APE of 0.04 (consistent with the original paper [64]). When testing the trained
model on unseen applications, the CDF (labeled as “New App”) shows a 7.2× increase in
the median APE. When testing the trained model (using data from cloud vendor A, identity
hidden) on the same applications but running on vendor B/C, the CDFs show a 1.9–2.1×
increase in median APE. Fig. 2.7(c) shows an example of testing on an unseen application
(i.e., Airline Booking). With different base memory configurations, the prediction can be
under-/over-estimated, leading to either application performance degradation or unnecessar-
ily higher deployment costs.

In this dissertation, we aim to bridge the gap and build a framework that can bring ML
advances to production systems so that:

(1) The learned policy can handle complexity and dynamics with online telemetry data and
reinforcement learning (addressed with a multi-level ML/RL framework in Chapter 3);

(2) The ML agents (which learn and operate the policies, controlling each system task)
can co-exist on the same shared, multi-tenant cloud platform and reach convergence
without interference (addressed with a virtual agent abstraction based on mean-field
theory in Chapter 4); and

(3) The policy (ML model) can be trained or retrained safely and robustly while adapting
to new applications and cloud environments seamlessly without significant retraining
(addressed by leveraging meta-learning in Chapter 5);
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CHAPTER 3: LEARNING CLOUD RESOURCE MANAGEMENT
POLICIES

3.1 INTRODUCTION

User-facing latency-sensitive web services, like those at Netflix [24], Google [22], and Ama-
zon [21], are increasingly built as microservices that execute on shared/multi-tenant compute
resources either as virtual machines (VMs) or as containers (with containers gaining signifi-
cant popularity of late). These microservices must handle diverse load characteristics while
efficiently multiplexing shared resources in order to maintain service-level objectives (SLOs)
like end-to-end latency. SLO violations occur when one or more “critical” microservice in-
stances (defined in Section 2.2) experience load spikes (due to diurnal or unpredictable
workload patterns) or shared-resource contention, both of which lead to longer than ex-
pected times to process requests, i.e., latency spikes [5, 6, 7, 89, 90, 91, 92, 93, 94, 95]. Thus,
it is critical to efficiently multiplex shared resources among microservices to reduce SLO
violations.

Traditional approaches (e.g., overprovisioning [96, 97], recurrent provisioning [98, 99], and
autoscaling [47, 48, 49, 50, 51, 100, 101]) reduce SLO violations by allocating more CPUs
and memory to microservice instances by using performance models, handcrafted heuristics
(i.e., static policies), or machine-learning algorithms.

Unfortunately, these approaches suffer from two main problems. First, they fail to effi-
ciently multiplex resources, such as caches, memory, I/O channels, and network links, at
fine granularity, and thus may not reduce SLO violations. For example, in Fig. 3.1, the
Kubernetes container-orchestration system [32] is unable to reduce the tail latency spikes
arising from contention for a shared resource like memory bandwidth, as its autoscaling algo-
rithms were built using heuristics that only monitor CPU utilization, which does not change
much during the latency spike. Second, significant human effort and training are needed to
build high-fidelity performance models (and related scheduling heuristics) of large-scale mi-
croservice deployments (e.g., queuing systems [50, 102]) that can capture low-level resource
contention. Further, frequent microservice updates and migrations can lead to recurring
human-expert-driven engineering efforts for model reconstruction.

FIRM Framework. This chapter addresses the above problems by presenting FIRM, a
multilevel machine learning (ML) based resource management (RM) framework to manage
shared resources among microservices at finer granularity to reduce resource contention and
thus increase performance isolation and resource utilization. As shown in Fig. 3.1, FIRM
performs better than a default Kubernetes autoscaler because FIRM adaptively scales up the
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Figure 3.1: Latency spikes on microservices due to low-level resource contention.

microservice (by adding local cores) to increase the aggregate memory bandwidth allocation,
thereby effectively maintaining the per-core allocation. FIRM leverages online telemetry
data (such as request-tracing data and hardware counters) to capture the system state, and
ML models for resource contention estimation and mitigation. Online telemetry data and
ML models enable FIRM to adapt to workload changes and alleviate the need for brittle,
handcrafted heuristics. In particular, FIRM uses the following ML models:

• Support vector machine (SVM) driven detection and localization of SLO violations to
individual microservice instances. FIRM first identifies the “critical paths,” and then
uses per-critical-path and per-microservice-instance performance variability metrics
(e.g., sojourn time [103]) to output a binary decision on whether or not a microservice
instance is responsible for SLO violations.

• Reinforcement learning (RL) driven mitigation of SLO violations that reduces con-
tention on shared resources. FIRM then uses resource utilization, workload charac-
teristics, and performance metrics to make dynamic reprovisioning decisions, which
include (1) increasing or reducing the partition portion or limit for a resource type,
(2) scaling up/down, i.e., adding or reducing the amount of resources attached to a
container, and (3) scaling out/in, i.e., scaling the number of replicas for services. By
continuing to learn mitigation policies through reinforcement, FIRM can optimize for
dynamic workload-specific characteristics.

Online Training for FIRM. We developed a performance anomaly injection framework
that can artificially create resource scarcity situations in order to both train and assess the
proposed framework. The injector is capable of injecting resource contention problems at a
fine granularity (such as last-level cache and network devices) to trigger SLO violations. To
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enable rapid (re)training of the proposed system as the underlying systems [104] and work-
loads [90, 105, 106, 107] change in datacenter environments, FIRM uses transfer learning.
That is, FIRM leverages transfer learning to train microservice-specific RL agents based on
previous RL experience.

Contributions. To the best of our knowledge, this is the first work to provide an SLO
violation mitigation framework for microservices by using fine-grained resource management
in an application-architecture-agnostic way with multilevel ML models. Our main contribu-
tions are:

• SVM-based SLO Violation Localization: We present (in Section 3.2.2 and Section 3.2.3)
an efficient way of localizing the microservice instances responsible for SLO violations
by extracting critical paths and detecting anomaly instances in near-real time using
telemetry data.

• RL-based SLO Violation Mitigation: We present (in Section 3.2.4) an RL-based re-
source contention mitigation mechanism that (a) addresses the large state space prob-
lem and (b) is capable of tuning tailored RL agents for individual microservice instances
by using transfer learning.

• Online Training & Performance Anomaly Injection: We propose (in Section 3.2.6) a
comprehensive performance anomaly injection framework to artificially create resource
contention situations, thereby generating the ground-truth data required for training
the aforementioned ML models.

• Implementation & Evaluation: We provide an open-source implementation of FIRM
for the Kubernetes container-orchestration system [32]. We demonstrate and validate
this implementation on four real-world microservice benchmarks [39, 42] (in Section
3.3).

Results. FIRM significantly outperforms state-of-the-art RM frameworks like Kuber-
netes autoscaling [32, 108] and additive increase multiplicative decrease (AIMD) based meth-
ods [52, 53].

• It reduces overall SLO violations by up to 16× compared with Kubernetes autoscaling,
and 9× compared with the AIMD-based method, while reducing the overall requested
CPU by as much as 62%.

• It outperforms the AIMD-based method by up to 9× and Kubernetes autoscaling by
up to 30× in terms of the time to mitigate SLO violations.
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• It improves overall performance predictability by reducing the average tail latencies
up to 11×.

• It successfully localizes SLO violation root-cause microservice instances with 93% ac-
curacy on average.

FIRM mitigates SLO violations without overprovisioning because of two main features.
First, it models the dependency between low-level resources and application performance in
an RL-based feedback loop to deal with uncertainty and noisy measurements. Second, it
takes a two-level approach in which the online critical path analysis and the SVM model
filter only those microservices that need to be considered to mitigate SLO violations, thus
making the framework application-architecture-agnostic as well as enabling the RL agent to
be trained faster.

3.2 FIRM FRAMEWORK DESIGN AND IMPLEMENTATION

In this section, we describe the overall architecture of the FIRM framework and its im-
plementation.

(1) Based on the insight that resource contention manifests as dynamically evolving CPs,
FIRM first detects CP changes and extracts critical microservice instances from them.
It does so using the Tracing Coordinator, which is marked as 1 in Fig. 1.2.5 The
tracing coordinator collects tracing and telemetry data from every microservice in-
stance and stores them in a centralized graph database for processing. It is described
in Section 3.2.1.

(2) The Extractor detects SLO violations and queries the Tracing Coordinator with col-
lected real-time data (i) to extract CPs (marked as 2 and described in Section 3.2.2)
and (ii) to localize critical microservice instances that are likely causes of SLO viola-
tions (marked as 3 and described in Section 3.2.3).

(3) Using the telemetry data collected in 1 and the critical instances identified in 3 ,
FIRM makes mitigation decisions to scale and reprovision resources for the critical
instances (marked as 4 ). The policy used to make such decisions is automatically
generated using RL. The RL agent jointly analyzes contextual information about re-
source utilization (i.e., low-level performance counter data collected from the CPU,
LLC, memory, I/O, and network), performance metrics (i.e., per-microservice and

5Unless otherwise specified, * refers to annotations in Fig. 1.2.
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Figure 3.2: FIRM architecture overview.

end-to-end latency distributions), and workload characteristics (i.e., request arrival
rate and composition) and makes mitigation decisions. The RL model and setup are
described in Section 3.2.4.

(4) Finally, actions are validated and executed on the underlying Kubernetes cluster
through the deployment module (marked as 5 and described in Section 3.2.5).

(5) In order to train the ML models in the Extractor as well as the RL agent (i.e., to span
the exploration-exploitation trade-off space), FIRM includes a performance anomaly
injection framework that triggers SLO violations by generating resource contention
with configurable intensity and timing. The anomaly injector is marked as 6 and
described in Section 3.2.6.

3.2.1 Tracing Coordinator

Distributed tracing is a method used to profile and monitor microservice-based applica-
tions to pinpoint causes of poor performance [109, 110, 111, 112, 113]. A trace captures the
work done by each service along request execution paths, i.e., it follows the execution “route”
of a request across microservice instances and records time, local profiling information, and
RPC calls (e.g., source and destination services). The execution paths are combined to
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Table 3.1: Collected telemetry data and sources.
cAdvisor [118] & Prometheus [119]

cpu_usage_seconds_total, memory_usage_bytes, fs_write/read_seconds,
fs_usage_bytes, network_transmit/receive_bytes_total, processes

Linux perf Subsystem [120]
offcore_response.*.{llc_hit.local_DRAM, llc_miss.local_DRAM}
offcore_response.*.{llc_hit.remote_DRAM, llc_miss.remote_DRAM}

form the execution history graph (see Section 2.2). The time spent by a single request in a
microservice instance is called its span. The span is calculated based on the time when a
request arrives at a microservice and when its response is sent back to the caller. Each span
is the most basic single unit of work done by a microservice.

The FIRM tracing module’s design is heavily inspired by Dapper [114] and its open-
source implementations, e.g., Jaeger [110] and Zipkin [113]. Each microservice instance
is coupled with an OpenTracing-compliant [115] tracing agent that measures spans. As a
result, any new OpenTracing-compliant microservice can be integrated naturally into the
FIRM tracing architecture. The Tracing Coordinator, i.e., 1 , is a stateless, replicable
data-processing component that collects the spans of different requests from each tracing
agent, combines them, and stores them in a graph database [116] as the execution history
graph. The graph database allows us to easily store complex caller-callee relationships among
microservices depending on request types, as well as to efficiently query the graph for critical
path/component extraction (see Section 3.2.2 and Section 3.2.3). Distributed clock drift and
time shifting are handled using the Jaeger framework. In addition, the Tracing Coordinator
collects telemetry data from the systems running the microservices. The data collected in our
experiments is listed in Table 3.1. The distributed tracing and telemetry collection overhead
is indiscernible, i.e., we observed a <0.4% loss in throughput and a <0.15% loss in latency.
FIRM had a maximum CPU overhead of 4.6% for all loads running in our experiments on the
four benchmarks [39, 42]. With FIRM, the network in/out traffic without sampling traces
increased by 3.4%/10.9% (in bytes); the increase could be less in production environments
with larger message sizes [117].

3.2.2 Critical Path Extractor

The first goal of the FIRM framework is to quickly and accurately identify the CP based
on the tracing and telemetry data described in the previous section. Recall from Def. 2.3 in
Section 2.2 that a CP is the longest path in the request’s execution history graph. Hence,
changes in the end-to-end latency of an application are often determined by the slowest
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execution of one or more microservices on its CP.
We identify the CP in an execution history graph by using Alg. 3.1, which is a weighted

longest path algorithm proposed to retrieve CPs in the microservices context. The algo-
rithm needs to take into account the major communication and computation patterns in
microservice architectures: (i) parallel, (ii) sequential, and (iii) background workflows.

• Parallel workflows are the most common way of processing requests in microservices.
They are characterized by child spans of the same parent span that overlap with each
other in the execution history graph, e.g., U , V , and T in Fig. 2.1(b). Formally, for
two child spans i with start time sti and end time eti, and j with stj, etj of the same
parent span p, they are called parallel if (stj < sti < etj) ∨ (sti < stj < eti).

• Sequential workflows are characterized by one or more child spans of a parent span that
are processed in a serialized manner, e.g., U and I in Fig. 2.1(b). For two of p’s child-
spans i and j to be in a sequential workflow, the time ti→p ≤ tp→j, i.e., i completes and
sends its result to p before j does. Such sequential relationships are usually indicative
of a happens-before relationship. However, it is impossible to ascertain the relationships
merely by observing traces from the system. If, across a sufficient number of request
executions, there is a violation of that inequality, then the services are not sequential.

• Background workflows are those that do not return values to their parent spans, e.g.,
W in Fig. 2.1(b). Background workflows are not part of CPs since no other span
depends on their execution, but they may be considered responsible for SLO violations
when FIRM’s Extractor is localizing critical components (see Section 3.2.3). That is
because background workflows may also contribute to the contention of underlying
shared resources.

3.2.3 Critical Component Extractor

In each extracted CP, FIRM then uses an adaptive, data-driven approach to determine
critical components (i.e., microservice instances). The overall procedure is shown in Alg. 3.2.
The extraction algorithm first calculates per-CP and per-instance “features,” which represent
the performance variability and level of request congestion. Variability represents the single
largest opportunity to reduce tail latency. The two features are then fed into an incremental
SVM classifier to get binary decisions, i.e., on whether that instance should have its resources
re-provisioned or not. The approach is a dynamic selection policy that is in contrast to
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Algorithm 3.1 Critical Path Extraction
Require: Microservice execution history graph G

Attributes: childNodes, lastReturnedChild
1: procedure LongestPath(G, currentNode)
2: path← ∅
3: path.add(currentNode)
4: if currentNode.childNodes == None then
5: Return path
6: end if
7: lrc← currentNode.lastReturnedChild
8: path.extend(LongestPath(G, lrc))
9: for each cn in currentNode.childNodes do

10: if cn.happensBefore(lrc) then
11: path.extend(LongestPath(G, cn))
12: end if
13: end for
14: Return path
15: end procedure

Algorithm 3.2 Critical Component Extraction
Require: Critical Path CP , Request Latencies T
1: procedure CriticalComponent(G, T )
2: candidates← ∅
3: TCP ← T.getTotalLatency() ▷ Vector of CP latencies
4: for i ∈ CP do
5: Ti ← T.getLatency(i)
6: T99 ← Ti.percentile(99)
7: T50 ← Ti.percentile(50)
8: RI ← PCC(Ti, TCP ) ▷ Relative Importance
9: CI ← T99/T50 ▷ Congestion Intensity

10: if SVM.classify(RI,CI) == True then
11: candidates.append(i)
12: end if
13: end for
14: Return candidates
15: end procedure

static policies, as it can classify critical and noncritical components adapting to dynamically
changing workloads and variation patterns.

In order to extract those microservice instances that are potential candidates for SLO
violations, we argue that it is critical to know both the variability of the end-to-end latency
(i.e., per-CP variability) and the variability caused by congestion in the service queues of
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each individual microservice instances (i.e., per-instance variability).
Per-CP Variability: Relative Importance. Relative importance [121, 122, 123] is a

metric that quantifies the strength of the relationship between two variables. For each critical
path CP , its end-to-end latency is given by TCP =

∑
i∈CP Ti, where Ti is the latency of

microservice i. Our goal is to determine the contribution that the variance of each variable Ti

makes toward explaining the total variance of TCP . To do so, we use the Pearson correlation
coefficient [124] (also called zero-order correlation), i.e., PCC(Ti, TCP ), as the measurement,
and hence the resulting statistic is known as the variance explained [125]. The sum of
PCC(Ti, TCP ) over all microservice instances along the CP is 1, and the relative importance
values of microservices can be ordered by PCC(Ti, TCP ). The larger the value is, the more
variability it contributes to the end-to-end CP variability.

Per-Instance Variability: Congestion Intensity. For each microservice instance in a
CP, congestion intensity is defined as the ratio of the 99th percentile latency to the median
latency. Here, we chose the 99th percentile instead of the 70th or 80th percentile to target
the tail latency behavior. The chosen ratio explains per-instance variability by capturing
the congestion level of the request queue so that it can be used to determine whether it is
necessary to scale. For example, a higher ratio means that the microservice could handle only
a subset of the requests, but the requests at the tail are suffering from congestion issues in the
queue. On the other hand, microservices with lower ratios handle most requests normally,
so scaling does not help with performance gain. Consequently, microservice instances with
higher ratios have a greater opportunity to achieve performance gains in terms of tail latency
by taking scale-out or reprovisioning actions.

Implementation. The logic of critical path extraction is incorporated into the construc-
tion of spans, i.e., as the algorithm proceeds (Alg. 3.1), the order of tracing construction
is also from the root node to child nodes recursively along paths in the execution history
graph. Sequential, parallel, and background workflows are inferred from the parent-child
relationships of spans. Then, for each CP, we calculate feature statistics and feed them
into an incremental SVM classifier [126, 127] implemented using stochastic gradient descent
optimization and RBF kernel approximation by scikit-learn libraries [128]. Triggered
by detected SLO violations, both critical path extraction and critical component extraction
are stateless and multithreaded; thus, the workload scales with the size of the microser-
vice application and the cluster. They together constitute FIRM’s extractor (i.e., 2 and
3 ). Experiments (Section 3.3.2) show that it reports SLO violation candidates with feasi-

ble accuracy and achieves completeness with Section 3.2.4 by choosing a threshold with a
reasonable false-positive rate.
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Figure 3.3: Model-free actor-critic RL framework for estimating resources in a microservice
instance.

3.2.4 SLO Violation Mitigation Using RL

Given the list of critical service instances, FIRM’s Resource Estimator, i.e., 4 , is designed
to analyze resource contention and provide reprovisioning actions for the cluster manager
to take. FIRM estimates and controls a fine-grained set of resources, including CPU time,
memory bandwidth, LLC capacity, disk I/O bandwidth, and network bandwidth. It makes
decisions on scaling each type of resource or the number of containers by using measure-
ments of tracing and telemetry data (see Table 3.1) collected from the Tracing Coordinator.
When jointly analyzed, such data provides information about (i) shared-resource interfer-
ence, (ii) workload rate variation, and (iii) request type composition.

FIRM leverages reinforcement learning (RL) to optimize resource management policies for
long-term reward in dynamic microservice environments. We next give a brief RL primer
before presenting FIRM’s RL model.

RL Primer. An RL agent solves a sequential decision-making problem (modeled as a
Markov decision process) by interacting with an environment. At each discrete time step t,
the agent observes a state of the environment st ∈ S, and performs an action at ∈ A based
on its policy πθ(s) (parameterized by θ), which maps state space S to action space A. At the
following time step t+ 1, the agent observes an immediate reward rt ∈ R given by a reward
function r(st, at); the immediate reward represents the loss/gain in transitioning from st to
st+1 because of action at. The tuple (st,at,rt,st+1) is called one transition. The agent’s goal is
to optimize the policy πθ so as to maximize the expected cumulative discounted reward (also
called the value function) from the start distribution J = E[G1], where the return from a
state Gt is defined to be

∑T
k=0 γ

krt+k. The discount factor γ ∈ (0, 1] penalizes the predicted
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future rewards.
Two main categories of approaches are proposed for policy learning: value-based methods

and policy-based methods [129]. In value-based methods, the agent learns an estimate of the
optimal value function and approaches the optimal policy by maximizing it. In policy-based
methods, the agent directly tries to approximate the optimal policy.

Why RL? Existing performance-modeling-based [49, 50, 51, 52, 53, 54, 55] or heuristic-
based approaches [47, 48, 130, 131, 132] suffer from model reconstruction and retraining
problems because they do not address dynamic system status. Moreover, they require ex-
pert knowledge, and it takes significant effort to devise, implement, and validate their un-
derstanding of the microservice workloads as well as the underlying infrastructure. RL, on
the other hand, is well-suited for learning resource reprovisioning policies, as it provides a
tight feedback loop for exploring the action space and generating optimal policies without
relying on inaccurate assumptions (i.e., heuristics or rules). It allows direct learning from the
actual workload and operating conditions to understand how adjusting low-level resources
affects application performance. In particular, FIRM utilizes the deep deterministic policy
gradient (DDPG) algorithm [133], which is a model-free, actor-critic RL framework (shown
in Fig. 3.3). Further, FIRM’s RL formulation provides two distinct advantages:

(1) Model-free RL does not need the ergodic distribution of states or the environment
dynamics (i.e., transitions between states), which are difficult to model precisely. When
microservices are updated, the simulations of state transitions used in model-based RL
are no longer valid.

(2) The Actor-critic framework combines policy-based and value-based methods (i.e., con-
sisting of an actor-net and a critic-net as shown in Fig. 3.4), and that is suitable for
continuous stochastic environments, converges faster, and has lower variance [134].

Learning the Optimal Policy. DDPG’s policy learning is an actor-critic approach.
Here, the “critic” estimates the value function (i.e., the expected value of cumulative dis-
counted reward under a given policy), and the “actor” updates the policy in the direction
suggested by the critic. The critic’s estimation of the expected return allows the actor to
update with gradients that have lower variance, thus speeding up the learning process (i.e.,
achieving convergence). We further assume that the actor and critic are represented as deep
neural networks. DDPG also solves the issue of dependency between samples and makes
use of hardware optimizations by introducing a replay buffer, which is a finite-sized cache D
that stores transitions (st,at,rt,st+1). Parameter updates are based on a mini-batch of size
N sampled from the reply buffer. The pseudocode of the training algorithm is shown in
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Algorithm 3.3 DDPG Training
1: Randomly init Qw(s, a) and πθ(a|s) with weights w & θ.
2: Init target network Q′ and π′ with w′ ← w & θ′ ← θ
3: Init replay buffer D ← ∅
4: for episode = 1, M do
5: Initialize a random process N for action exploration
6: Receive initial observation state s1
7: for t = 1, T do
8: Select and execute action at = πθ(st) +Nt

9: Observe reward rt and new state st+1

10: Store transition (st, at, rt, st+1) in D
11: Sample N transitions (si, ai, ri, si+1) from D
12: Update critic by minimizing the loss L(w)
13: Update actor by sampled policy gradient ∇θJ
14: w′ ← γw + (1− γ)w′

15: θ′ ← γθ + (1− γ)θ′

16: end for
17: end for

Algorithm 3.3. RL training proceeds in episodes and each episode consists of T time steps.
At each time step, both actor and critic neural nets are updated once.

In the critic, the value function Qw(st, at) with parameter w and its corresponding loss
function are defined as:

Qw(st, at) = E[r(st, at) + γQw(st+1, π(st+1))] (3.1)

L(w) = 1

N

∑
i

(ri + γQ′
w′(si+1, π

′
θ′(si+1))−Qw(si, ai))

2 (3.2)

The target networks Q′
w′(s, a) and π′

θ′(s) are introduced in DDPG to mitigate the problem
of instability and divergence when one is directly implementing deep RL agents. In the
actor component, DDPG maintains a parametrized actor function πθ(s), which specifies the
current policy by deterministically mapping states to a specific action. The actor is updated
as follows:

∇θJ =
1

N

∑
i

∇aQw(s = si, a = π(si))∇θπθ(s = si) (3.3)

Problem Formulation. To estimate resources for a microservice instance, we formu-
late a sequential decision-making problem that can be solved by the above RL framework.
Each microservice instance is deployed in a separate container with a tuple of resource limits
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RLT = (RLTcpu, RLTmem, RLTllc, RLTio, RLTnet), since we are considering CPU utilization,
memory bandwidth, LLC capacity, disk I/O bandwidth, and network bandwidth as our
resource model.6 This limit for each type of resource is predetermined (usually overprovi-
sioned) before the microservices are deployed in the cluster and later controlled by FIRM.

At each time step t, utilization RUt for each type of resource is retrieved using performance
counters as telemetry data in 1 . In addition, FIRM’s Extractor also collects current latency,
request arrival rate, and request type composition (i.e., percentages of each type of request).
Based on these measurements, the RL agent calculates the states listed in Table 3.2 and
described below.

• SLO maintenance ratio (SMt) is defined as SLO_latency/ current_latency if the
microservice instance is determined to be the culprit. If no message arrives, it is
assumed that there is no SLO violation (SMt = 1).

• Workload changes (WCt) is defined as the ratio of the arrival rates at the current and
previous time steps.

• Request composition (RCt) is defined as a unique value encoded from an array of
request percentages by using numpy.ravel_multi_index() [135].

For each type of resource i, there is a predefined resource upper limit R̂i and a lower limit

ˇ
Ri (e.g., the CPU time limit cannot be set to 0). The actions available to the RL-agent are
to set RLTi ∈ [R̂i,

ˇ
Ri]. If the amount of resources reaches the total available amount, then

a scale-out operation is needed. Similarly, if the resource limit is below the lower bound,
a scale-in operation is needed. The CPU resources serve as one exception to the above
procedure: it would not improve the performance if the CPU utilization limit were higher
than the number of threads created for the service.

The goal of the RL agent is, given a time duration t, to determine an optimal policy πt

that results in as few SLO violations as possible (i.e., minπt SMt) while keeping the resource
utilization/limit as high as possible (i.e., maxπt RUt/RLTt). Based on both objectives, the
reward function is then defined as rt = α · SMt · |R|+ (1− α) ·∑|R|

i RUi/RLTi, where R is
the set of resources.

Transfer Learning. Using a tailored RL agent for every microservice instead of using
the shared RL agent should improve resource reprovisioning efficiency, as the model would
be more sensitive to application characteristics and features. However, such an approach is
hard to justify in practice (i.e., for deployment) because of the time required to train such

6The resource limit for the CPU utilization of a container is the smaller value between R̂i and the number
of threads × 100 (i.e., based on the multi-threading implementation).
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Figure 3.4: Architecture of actor-critic nets.

tailored models for user workloads, which might have significant churn. FIRM addresses
the problem of rapid model training by using transfer learning in the domain of RL [136,
137, 138], whereby agents for SLO violation mitigation can be trained for either the general
case (i.e., any microservices) or the specialized case (i.e., “transferred” to the behavior of
individualized microservices). The pre-trained model used in the specialized case is called
the base model or the source model. That approach is possible because prior understanding
of a problem structure helps one solve similar problems quickly, with the remaining task being
to understand the behavior of updated microservice instances. Related work on base model
selection and task similarity can be found in [136, 137], but the base model that FIRM uses
for transfer learning is always the RL model learned in the general case because it has been
shown in evaluation to be comparable with specialized models. We demonstrate the efficacy
of transfer learning in our evaluation described in Section 3.3. The RL model that FIRM
uses is designed to scale since both the state space and the action space are independent of
the size of the application or the cluster. In addition to having the general case RL agent, the
FIRM framework also allows for the deployment of specialized per-microservice RL agents.

Table 3.2: State-action space of the RL agent.
State Space (st)

SLO Maintenance Ratio (SMt), Workload Changes (WCt),
Request Composition (RCt), Resource Utilization (RUt)

Action Space (at)
Resource Limits RLTi(t), i ∈ {CPU, Mem, LLC, IO, Net}

Implementation Details. We implemented the DDPG training algorithm and the actor-
critic networks using PyTorch [139]. The critic net contains two fully connected hidden layers
with 40 hidden units, all using the ReLU activation function. The first two hidden layers
of the actor net are fully connected and both use ReLU as the activation function while
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Table 3.3: RL training parameters.

Parameter Value

# Time Steps × # Minibatch 300 × 64
Size of Replay Buffer 105

Learning Rate Actor (3× 10−4), Critic (3× 10−3)
Discount Factor 0.9
Soft Update Coefficient 2× 10−3

Random Noise µ (0), σ (0.2)
Exploration Factor ϵ (1.0), ϵ-decay (10−6)

the last layer uses Tanh as the activation function. The actor network has 8 inputs and 5
outputs, while the critic network has 23 inputs and 1 output. The actor and critic networks
are shown in Fig. 3.4, and their inputs and outputs are listed in Table 3.2. We chose that
setup because adding more layers and hidden units does not increase performance in our
experiments with selected microservice benchmarks; instead, it slows down training speed
significantly. Hyperparameters of the RL model are listed in Table 3.3. We set the time step
for training the model to be 1 second, which is sufficient for action execution (see Table 3.5).
The latencies of each RL training update and inference step are 73 ± 10.9 ms and 1.2 ± 0.4
ms, respectively. The average CPU and memory usages of the Kubernetes pod during the
training stage are 210 millicores and 192 Mi, respectively.

3.2.5 Action Execution

FIRM’s Deployment Module, i.e., 5 , verifies the actions generated by the RL agent and
executes them accordingly. Each action on scaling a specific type of resource is limited by
the total amount of the resource available on that physical machine. FIRM assumes that
machine resources are unlimited and thus does not have admission control or throttling. If
an action leads to oversubscribing of a resource, then it is replaced by a scale-out operation.

• CPU Actions: Actions on scaling CPU utilization are executed through modification
of cpu.cfs_period_us and cpu.cfs_quota_us in the cgroups CPU subsystem.

• Memory Actions: We use Intel MBA [140] and Intel CAT [141] technologies to control
the memory bandwidth and LLC capacity of containers, respectively.7

• I/O Actions: For I/O bandwidth, we use the blkio subsystem in cgroups to control
input/output access to disks.

7Our evaluation on IBM Power systems (see Section 3.3) did not use these actions because of a lack of
hardware support. OS support or software partitioning mechanisms [142, 143] can be applied; we leave that
to future work.
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Table 3.4: Types of performance anomalies injected causing SLO violations.

Performance Anomaly Types Tools/Benchmarks

Workload Variation wrk2 [145]
Network Delay tc [146]
CPU Utilization iBench [147], stress-ng [148]
LLC Bandwidth & Capacity iBench, pmbw [149]
Memory Bandwidth iBench [147], pmbw [149]
I/O Bandwidth Sysbench [150]
Network Bandwidth tc [146], Trickle [151]

• Network Actions: For network bandwidth, we use the Hierarchical Token Bucket
(HTB) [144] queueing discipline in Linux Traffic Control. Egress qdiscs can be di-
rectly shaped by using HTB. Ingress qdiscs are redirected to the virtual device ifb

interface and then shaped through the application of egress rules.

3.2.6 Performance Anomaly Injector

We accelerate the training of the machine learning models in FIRM’s Extractor and the
RL agent through performance anomaly injections. The injection provides the ground truth
data for the SVM model, as the injection targets are controlled and known from the campaign
files. It also allows the RL agent to quickly span the space of adverse resource contention
behavior (i.e., the exploration-exploitation trade-off in RL). That is important, as real-world
workloads might not experience all adverse situations within a short training time. We
implemented a performance anomaly injector, i.e., 6 , in which the injection targets, type
of anomaly, injection time, duration, patterns, and intensity are configurable. The injector
is designed to be bundled into the microservice containers as a file-system layer; the binaries
incorporated into the container can then be triggered remotely during the training process.
The injection campaigns (i.e., how the injector is configured and used) for the injector will
be discussed in Section 3.3. The injector comprises seven types of performance anomalies
that can cause SLO violations. They are listed in Table 3.4 and described below.

Workload Variation. We use an HTTP benchmarking tool wrk2 as the workload gen-
erator. It performs multithreaded, multiconnection HTTP request generation to simulate
client-microservice interaction. The request arrival rate and distribution can be adjusted to
break the predefined SLOs.

Network Delay. We use Linux traffic control (tc) to add simulated delay to network
packets. Given the mean and standard deviation of the network delay latency, each network
packet is delayed following a normal distribution.
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CPU Utilization. We implement the CPU stressor based on iBench and stree-ng to
exhaust a specified level of CPU utilization on a set of cores by exercising floating point,
integer, bit manipulation, and control flows.

LLC Bandwidth & Capacity. We use iBench and pmbw to inject interference on the
Last Level Cache (LLC). For bandwidth, the injector performs streaming accesses in which
the size of the accessed data is tuned to the parameters of the LLC. For capacity, it adjusts
intensity based on the size and associativity of the LLC to issue random accesses that cover
the LLC capacity.

Memory Bandwidth. We use iBench and pmbw to generate memory bandwidth con-
tention. It performs serial memory accesses (of configurable intensity) to a small fraction
of the address space. Accesses occur in a relatively small fraction of memory in order to
decouple the effects of contention in memory bandwidth from contention in memory capacity.

I/O Bandwidth. We use Sysbench to implement the file I/O workload generator. First,
it creates test files that are larger than the size of the system RAM. Then, it adjusts the num-
ber of threads, read/write ratio, and sleeping/working ratio to meet a specified level of I/O
bandwidth. We also use Tricle to limit the upload/download rate of a specific microservice
instance.

Network Bandwidth. We use Linux traffic control (tc) to limit egress network band-
width. For ingress network bandwidth, an intermediate function block (ifb) pseudo interface
is set up, and inbound traffic is directed through that. In that way, the inbound traffic then
becomes schedulable by the egress qdisc on the ifb interface, so the same rules for egress
can be applied directly to ingress.

3.3 EVALUATION

This section discusses our experimental evaluation of the FIRM system and is organized as
follows. In Section 3.3.1, we describe the experimental setup and the comparison baselines.
Then, in Section 3.3.2, we evaluate the critical component localization capabilities of FIRM
in analyzing SLO violations, and in Section 3.3.3, we evaluate the RL training and SLO viola-
tion mitigation performance. Finally, we demonstrate the end-to-end performance of FIRM
on Kubernetes regarding the cluster utilization and microservices application performance.

3.3.1 Experimental Setup

Benchmark Applications. We evaluated FIRM on a set of end-to-end interactive
and responsive real-world microservice benchmarks: (i) DeathStarBench [39], consisting
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of Social Network, Media Service, and Hotel Reservation microservice applications, and
(ii) Train-Ticket [152], consisting of the Train-Ticket Booking Service. Social Network im-
plements a broadcast-style social network with unidirectional follow relationships whereby
users can publish, read, and react to social media posts. Media Service provides functionali-
ties such as reviewing, rating, renting, and streaming movies. Hotel Reservation is an online
hotel reservation site for browsing hotel information and making reservations. Train-Ticket
Booking Service provides typical train-ticket booking functionalities, such as ticket inquiry,
reservation, payment, change, and user notification. These benchmarks contain 36, 38, 15,
and 41 unique microservices, respectively; cover all workflow patterns (see Section 3.2.2); and
use various programming languages including Java, Python, Node.js, Go, C/C++, Scala,
PHP, and Ruby. All microservices are deployed in separate Docker containers.

System Setup. We validated our design by implementing a prototype of FIRM that used
Kubernetes [32] as the underlying container orchestration framework. We deployed the four
microservice benchmarks with FIRM separately on a Kubernetes cluster of 15 two-socket
physical nodes without specifying any anti-colocation rules. Each server consists of 56–192
CPU cores and RAM that varies from 500 GB to 1000 GB. Nine of the servers use Intel x86
Xeon E5s and E7s processors, while the remaining ones use IBM ppc64 Power8 and Power9
processors. All machines run Ubuntu 18.04.3 LTS with Linux kernel version 4.15.

Load Generation. We drove the services with various open-loop asynchronous workload
generators [145] to represent an active production environment [153, 154, 155]. We uniformly
generated workloads for every request type across all microservice benchmarks. The param-
eters for the workload generators were the same as those for DeathStarBench (which we
applied to Train-Ticket as well), and varied from predictable constant, diurnal, distributions
such as Poisson, to unpredictable loads with spikes in user demand. The workload generators
and the microservice benchmark applications were never co-located (i.e., they executed on
different nodes in the cluster). To control the variability in our experiments, we disabled all
other user workloads on the cluster.

Injection and Comparison Baselines. We used our performance anomaly injector (see
Section 3.2.6) to inject various types of performance anomalies into containers uniformly at
random with configurable injection timing and intensity. Following the common way to study
resource interference, our experiments on SLO violation mitigation with anomalies were de-
signed to be comprehensive by covering the worst-case scenarios, given the random and
nondeterministic nature of shared-resource interference in production environments [7, 156].
Unless otherwise specified, (i) the anomaly injection time interval was in an exponential dis-
tribution with λ = 0.33s−1, and (ii) the anomaly type and intensity were selected uniformly
at random. We implemented two baseline approaches: (a) the Kubernetes autoscaling mech-
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Figure 3.5: Critical Component Localization Performance: (a) ROC curves for detec-
tion accuracy; (b) Variation of localization accuracies across processor architectures; (c)
Anomaly-injection intensity, types, and timing.

anism [108] and (b) an AIMD-based method [52, 53] to manage resources for each container.
Both approaches are rule-based autoscaling techniques.

3.3.2 Critical Component Localization

Here, we use the techniques presented in Section 3.2.2 and Section 3.2.3 to study the ef-
fectiveness of FIRM in identifying the microservices that are most likely to cause application
performance SLO violations.

Single anomaly localization. We first evaluated how well FIRM localizes the microser-
vice instances that are responsible for SLO violations under different types of single-anomaly
injections. For each type of performance anomaly and each type of request, we gradually
increased the intensity of injected resource interference and recorded end-to-end latencies.
The intensity parameter was chosen uniformly at random between [start-point, end-point],
where the start-point is the intensity that starts to trigger SLO violations, and the end-point
is the intensity when either the anomaly injector has consumed all possible resources or over
80% of user requests have been dropped or returned time. Fig. 3.5(a) shows the receiver
operating characteristic (ROC) curve of root cause localization. The ROC curve captures
the relationship between the false-positive rate (x-axis) and the true-positive rate (y-axis).
The closer to the upper-left corner the curve is, the better the performance. We observe that
the localization accuracy of FIRM, when subject to different types of anomalies, does not
vary significantly. In particular, FIRM’s Extractor module achieved near 100% true-positive
rate, when the false-positive rate was between [0.12, 0.16].

Multi-anomaly localization. There is no guarantee that only one resource contention
will happen at a time under dynamic datacenter workloads [90, 105, 106, 107] and therefore,
we also studied the container localization performance under multi-anomaly injections and
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Figure 3.6: Learning curve showing total reward during training and SLO mitigation
performance.

compared machines with two different processor ISAs (x86 and ppc64). An example of the
intensity distributions of all the anomaly types used in this experiment is shown in Fig. 3.5(c).
The experiment was divided into time windows of 10 s, i.e., Ti from Fig. 3.5(c)). At each
time window, we picked the injection intensity of each anomaly type uniformly at random
with a range [0,1]. Our observations are reported in Fig. 3.5(b). The average accuracy for
localizing critical components in each application ranged from 92% to 94%. The overall
average localization accuracy was 93% across four microservice benchmarks. Overall, we
observe that the accuracy of the Extractor did not differ between the two sets of processors.

3.3.3 RL Training & SLO Violation Mitigation

To understand the convergence behavior of FIRM’s RL agent, we trained three RL models
that were subjected to the same sequence of performance anomaly injections (described in
Section 3.3.1). The three RL models are: (i) a common RL agent for all microservices
(one-for-all), (ii) a tailored RL agent for a particular microservice (one-for-each), and (iii) a
transfer-learning-based RL agent. RL training proceeds in episodes (iterations). We set the
number of time steps in a training episode to be 300 (see Table 3.3), but for the initial stages,
we terminate the RL exploration early so that the agent could reset and try again from the
initial state. We did so because the initial policies of the RL agent are unable to mitigate SLO
violations. Continuously injecting performance anomalies causes user requests to drop, and
thus, only a few request traces were generated to feed the agent. As the training progressed,
the agent improved its resource estimation policy and could mitigate SLO violations in less
time. At that point (around 1000 episodes), we linearly increased the number of time steps to
let the RL agent interact with the environment longer before terminating the RL exploration
and entering the next iteration.

We trained the abovementioned three RL models on the Train-Ticket benchmark. We
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studied the generalization of the RL model by evaluating the end-to-end performance of
FIRM on the DeathStarBench benchmarks. Thus, we used DeathStarBench as a validation
set in our experiments. Fig. 3.6(a) shows that as the training proceeded, the agent was
getting better at mitigation, and thus the moving average of episode rewards was increasing.
The initial steep increase benefits from early termination of episodes and parameter explo-
ration. Transfer-learning-based RL converged even faster (around 2000 iterations8) because
of parameter sharing. The one-for-all RL required more iterations to converge (around 15000
iterations) and had a slightly lower total reward (6% lower compared with one-for-each RL)
during training.

In addition, higher rewards, for which the learning algorithm explicitly optimizes, corre-
late with improvements in SLO violation mitigation (see Fig. 3.6(b)). For models trained
in every 200 episodes, we saved the checkpoint of parameters in the RL model. Using the
parameter, we evaluated the model snapshot by injecting performance anomalies (described
in Section 3.3.1) continuously for one minute and observed when SLO violations were miti-
gated. Fig. 3.6(b) shows that FIRM with either a single-RL agent (one-for-all) or a multi-RL
agent (one-for-each) improved with each episode in terms of the SLO violation mitigation
time. The starting policy at iteration 0–900 was no better than the Kubernetes autoscaling
approach, but after around 2500 iterations, both agents were better than either Kubernetes
autoscaling or the AIMD-based method. Upon convergence, FIRM with a single-RL agent
achieved a mitigation time of 1.7 s on average, which outperformed the AIMD-based method
by up to 9× and Kubernetes autoscaling by up to 30× in terms of the time to mitigate SLO
violations.

3.3.4 End-to-End Performance

Here, we show the end-to-end performance of FIRM and its generalization by further
evaluating it on DeathStarBench benchmarks based on the hyperparameter tuned during
training with the Train-Ticket benchmark. To understand the 10–30× improvement demon-
strated above, we measured the 99th percentile end-to-end latency when the microservices
were being managed by the two baseline approaches and by FIRM. Fig. 3.7(a) shows the cu-
mulative distribution of the end-to-end latency. We observed that the AIMD-based method,
albeit simple, outperforms the Kubernetes autoscaling approach by 1.7× on average and by
1.6× in the worst case. In contrast, FIRM:

(1) Outperformed both baselines by up to 6× and 11×, which leads to 9× and 16× fewer
81000 iterations correspond to roughly 30 minutes with each iteration consisting of 300 timesteps.
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Figure 3.7: Performance comparisons (CDFs) of end-to-end latency, requested CPU limit,
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SLO violations;

(2) Lowered the overall requested CPU limit by 29–62%, as shown in Fig. 3.7(b), and
increased the average cluster-level CPU utilization by up to 33%; and

(3) Reduced the number of dropped or timed out user requests by up to 8× as shown in
Fig. 3.7(c).

FIRM can provide these benefits because it detects SLO violations accurately and addresses
resource contention before SLO violations can propagate. By interacting with dynamic mi-
croservice environments under complicated loads and resource allocation scenarios, FIRM’s
RL agent dynamically learns the policy, and hence outperforms heuristics-based approaches.

3.4 DISCUSSION

Necessity and Challenges of Modeling Low-level Resources. Recall from Section
2.2 that modeling of resources at a fine granularity is necessary, as it allows for better
performance without overprovisioning. It is difficult to model the dependence between low-
level resource requirements and quantifiable performance gain while dealing with uncertain
and noisy measurements [157, 158]. FIRM addresses the issue by modeling that dependency
in an RL-based feedback loop, which automatically explores the action space to generate
optimal policies without human intervention.

Why a Multilevel ML Framework? A model of the states of all microservices that is
fed as the input to a single large ML model [100, 159] leads to (i) state-action space explosion
issues that grow with the number of microservices, thus increasing the training time; and
(ii) dependence between the microservice architecture and the ML model, which sacrifices
the generality. FIRM addresses those problems by incorporating a two-level ML framework.
The first-level ML model uses SVM to filter the microservice instances responsible for SLO
violations, thereby reducing the number of microservices that need to be considered in
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Table 3.5: Average latency for resource management operations.

Operation Partition (Scale Up/Down) Container Start

CPU Mem LLC I/O Net Warm Cold

Mean (ms) 2.1 42.4 39.8 2.3 12.3 45.7 2050.8
Std Dev (ms) 0.3 11.0 9.2 0.4 1.1 6.9 291.4

mitigating SLO violations. That enables the second-level ML model, the RL agent, to be
trained faster and removes dependence on the application architecture. That, in turn, helps
avoid RL model reconstruction/retraining.

Lower Bounds on Manageable SLO Violation Duration for FIRM. As shown
in Table 3.5, the operations to scale resources for microservice instances take 2.1–45.7 ms.
Thus, that is the minimum duration of latency spikes that any RM approach can handle.
For transient SLO violations, which last shorter than the minimum duration, the action gen-
erated by FIRM will always miss the mitigation deadline and can potentially harm overall
system performance. Worse, it may lead to oscillations between scaling operations. Pre-
dicting the spikes before they happen, and proactively taking mitigation actions can be a
solution. However, it is a generally-acknowledged difficult problem, as microservices are dy-
namically evolving, in terms of both load and architectural design, which is subject to our
future work.

Limitations. FIRM has several limitations that can be addressed in future work. First,
FIRM currently focuses on resource interference caused by real workload demands. However,
FIRM lacks the ability to detect application bugs or misconfigurations, which may lead to
failures such as memory leaks. Allocating more resources to such microservice instances
may harm the overall resource efficiency. Other sources of SLO violations, including global
resource sharing (e.g., network switches or global file systems) and hardware causes (e.g.,
power-saving energy management), are also beyond FIRM’s scope. Second, the scalability
of FIRM is limited by the maximum scalability of the centralized graph database, and the
boundary caused by the network traffic telemetry overhead. (Recall the lower bound on
the SLO violation duration.) Third, implementing FIRM’s tracing module based on side-
car proxies (i.e., service meshes) [160] can help minimize application instrumentation and
has wider support of programming languages. Lastly, FIRM is limited by the number of
partitions that Intel CAT/MBA provides, and we address this limitation in [161].
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3.5 RELATED WORK

SLO violations in cloud applications and microservices are a popular and well-researched
topic. We categorize prior work into two buckets: root cause analyzers and autoscalers.
Both rely heavily on the collection of tracing and telemetry data.

Tracing and Probing for Microservices. Tracing for large-scale microservices (essen-
tially distributed systems) helps understand the path of a request as it propagates through
the components of a distributed system. Tracing requires either application-level instru-
mentation [109, 110, 111, 112, 113, 114, 162, 163, 164] or middleware/OS-level instrumenta-
tion [117, 165, 166, 167] (e.g., Sieve [167] utilizes a kernel module sysdig [168] which provides
system calls as an event stream containing tracing information about the monitored process
to a user application).

Root Cause Analysis. A large body of work [6, 117, 166, 167, 169, 170, 171, 172,
173, 174] provides promising evidence that data-driven diagnostics help detect performance
anomalies and analyze root causes. For example, Sieve [167] leverages Granger causal-
ity to correlate performance anomaly data series with particular metrics as potential root
causes. Pinpoint [166] runs clustering analysis on the Jaccard similarity coefficient to de-
termine the components that are mostly correlated with the failure. Microscope [171] and
MicroRCA [173] are both designed to identify abnormal services by constructing service
causal graphs that model anomaly propagation and by inferring causes using graph traver-
sal or ranking algorithms [175]. Seer [6] uses deep learning to learn spatial and temporal
patterns that translate to SLO violations. However, none of these approaches addresses
the dynamic nature of microservice environments (i.e., frequent microservice updates and
deployment changes), which require costly model reconstruction or retraining.

Autoscaling Cloud Applications. Current techniques for autoscaling cloud applica-
tions can be categorized into four groups [47, 48]: (1) rule-based (commonly offered by
cloud providers [130, 131, 132]), (2) time series analysis (regression on resource utilization,
performance, and workloads) [101], (3) model-based (e.g., queueing networks) [49, 50, 159,
176, 177], or (4) RL-based. Some approaches combine several techniques. For instance,
Auto-pilot [101] combines time series analysis and RL algorithms to scale the number of
containers and associated CPU/RAM. Unfortunately, when applied to microservices with
large-scale and complex dependencies, independent scaling of each microservice instance re-
sults in suboptimal solutions (because of critical path intersection and Insight 2.2 in Section
2.2), and it is difficult to define sub-SLOs for individual instances. Approaches for autoscal-
ing microservices or distributed dataflows [49, 50, 51, 100, 159] make scaling decisions on the
number of replicas and/or container size without considering low-level shared-resource inter-
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ference. ATOM [50] and Microscaler [49] do so by using a combination of queueing network-
and heuristic-based approximations. Performance modeling has been proposed for manag-
ing scientific workflows [176, 178] but suffers from increasing model complexity, parameter
estimation, and inaccurate system assumptions for bursty or dynamic evolving cloud envi-
ronments and heterogeneous cloud applications. ASFM [100] uses recurrent neural network
activity to predict workloads and translates application performance to resources by using
linear regression. Streaming and data-processing scalers like DS2 [51] and MIRAS [159] lever-
age explicit application-level modeling and apply RL to represent the resource-performance
mapping of operators and their dependencies.

Cluster Management. The emergence of cloud computing motivates the prevalence of
cloud management platforms that provide services such as monitoring, security, fault toler-
ance, and performance predictability. Examples include Borg [34], Mesos [179], Tarcil [180],
Paragon [181], Quasar [182], Morpheus [98], DeepDive [183], and Q-clouds [184]. In FIRM,
we do not address the problem of cluster orchestration but focus solely on the resource
management task. FIRM can work in conjunction with those cluster management tools to
reduce application performance SLO violations.

3.6 SUMMARY

In this chapter, we have described FIRM, an ML-based, fine-grained resource management
framework that addresses SLO violations and resource underutilization in microservices.
FIRM uses a two-level ML model, one for identifying microservices responsible for SLO
violations, and the other for mitigation. The combined ML model reduces SLO violations
up to 16× while reducing the overall CPU limit by up to 62%. Overall, FIRM enables
fast mitigation of SLOs by using efficient resource provisioning, which benefits both cloud
service providers and microservice owners. FIRM is open-sourced at https://gitlab.engr.
illinois.edu/DEPEND/firm.
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CHAPTER 4: DEALING WITH CLOUD MULTI-TENANCY

4.1 INTRODUCTION

In serverless Function-as-a-Service (FaaS) [80, 185, 186], cloud providers handle resource
management for each function (e.g., scaling the number of function containers or their re-
source limits, and scheduling containers to servers) but existing commercial cloud providers
provide no performance guarantees such as service-level objectives (SLOs) [187]. Provid-
ing performance SLOs has been studied in various aspects and is critical to run latency-
critical services on serverless platforms [187, 188, 189, 190, 191, 192]. The problem of
managing resources to achieve performance SLOs while maintaining high resource utiliza-
tion is at its core an intractable NP-hard problem [193, 194]. While the majority of the
associated problems are approached using meticulously designed heuristics with extensive
application- and system-specific domain-expert-driven tuning, a substantial line of work
has recently been focused on learning-based approaches such as reinforcement learning
(RL) [1, 16, 63, 65, 66, 159, 194, 195, 196, 197, 198, 199, 200, 201, 202].

As a viable alternative to human-generated heuristics, RL enables an artificial agent to
learn the optimal policy directly from interaction with the environment by observing its
state and selecting an action from the policy. As a result, the environment transitions
to the next state, and the agent receives feedback in the form of rewards. The goal is to
take a sequence of actions that maximizes the expected cumulative rewards in the future.
As learning continues, the agent can optimize for a specific workload and adapt to varying
conditions (i.e., the policy-training stage). After convergence, the learned policy will continue
being used by the agent to interact with the environment (i.e., the policy-serving stage) [203].

Motivation. Despite recent successes, existing RL-based solutions are all single-agent
RL (S-RL) in which one agent manages one or more applications or functions9 (as shown
in Fig. 4.1), paying no attention to any other agents. The standard assumption for an
S-RL algorithm is environment stationarity [9, 10, 11], which means that the environment
is affected only by the agent interacting with it. Therefore, existing S-RL solutions assume
that the agent is in an isolated single-tenant environment that contains only the application
that the agent manages. In contrast, a serverless FaaS platform in any cloud data center
is multi-tenant, and functions from all customers compete for shared resources in a cluster.
Multi-tenancy makes the environment non-stationary from each agent’s own perspective
when all agents are jointly being trained. At the training stage, since the state transitions

9S-RL-based approaches are application-specific or function-specific.
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Figure 4.1: Single-agent RL solutions (each agent independently trained and unaware of
each other) in single- or multi-tenant serverless environments. scalable and incremental
multi-agent RL framework based on Proximal Policy Optimization (SIMPPO) is a multi-
agent framework managing all RL agents.

and rewards each agent gets depend on the joint actions of all agents whose policies keep
changing in the learning process, each agent enters an endless cycle of adapting to other
agents. At the policy-serving stage, an action might be suboptimal when applied, because the
underlying environment is no longer the same as the one previously perceived for generating
the action. Two examples in Section 2.4 demonstrate such undesirable behaviors caused by
environment non-stationarity.

Challenges. We propose a multi-agent RL (MARL) solution that allows multiple agents
to coexist in a shared environment. However, solving the training non-convergence problem
and achieving policy-serving performance comparable to the performance obtained in single-
tenant scenarios further present two main challenges.

(1) Scalability : The solution should scale to a large number of functions in a multi-tenant
serverless platform. Existing MARL approaches, such as centralized MARL [12, 204] or
decentralized MARL with networked agents [205, 206], all suffer scalability issues as the
computation complexity of searching in the joint state-action space grows exponentially
with the number of agents.

(2) Adaptive and incremental training : The proposed solution should adapt to dynamic
changes in the environment due to function churns (i.e., add, remove, or update func-
tions) or variations in the number of agents [207, 208]. Existing MARL approaches
model agents jointly by optimizing over the Cartesian product of all the agents’ action
spaces. Consequently, they are computationally inefficient (with exponential complex-
ity), and the whole MARL algorithm must be repeatedly retrained when the number
of agents in the environment changes.

Our Work. We design and implement SIMPPO, a Scalable and Incremental Multi-agent
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RL framework based on an RL algorithm, Proximal Policy Optimization (PPO) [209]. As
illustrated in Fig. 4.1, each agent in SIMPPO still has its own policy trained using PPO
and manages an individual function. We use PPO because it provides more stable policy
learning, shorter training times, and higher rewards after convergence compared to other RL
algorithms (e.g., DDPG [210], DQN [211]). SIMPPO manages all agents to dynamically and
continuously maintain the SLO of each function while keeping high utilization efficiency.
Each SLO is associated with a function instance specifying a latency threshold for users
sending requests to the function instance. In contrast to S-RL, in which each agent is
unaware of the other agents and trained in isolation, all agents in SIMPPO are jointly
trained to reach convergence. Each agent is allowed to peek into the behavior of the other
agents, and changes in other agents’ behavior (policy) are handled during training.

To address the incremental training challenge, we designed the MARL model and the
neural network architecture of each agent such that all other agents are treated as part of
the environment; thus, the model is agnostic to agent sequence order or the number of agents.
From each agent’s perspective, we created a virtual agent that consists of the environment
and all the other agents. The many-agent problem is converted to a two-agent problem, so
there is no need to reconstruct the neural network, whose structure remains unchanged. In
contrast, retraining from scratch for each agent would have been prohibitively costly in both
time and resources. Finally, to further shorten the incremental training time, we leveraged
neural network parameter sharing [212, 213] between new agents and existing agents that
manage the same type of functions.

To address the scalability challenge, we modeled and approximated the collective behavior
of the other agents (i.e., the virtual agent) via an auxiliary global state distribution. We con-
structed auxiliary global states by selecting each agent’s relevant state and action variables
based on domain knowledge and feature engineering to help learn an accurate estimation
of the virtual agent. We took the aggregated actions and resource limits from all the other
agents to represent the collective resource allocation since we viewed them as part of the
environment. We also took the average function performance and resource utilization to
indicate how the virtual agent behaves, as the goal is to achieve function SLO performance
while maintaining high resource utilization. We removed redundant features that negatively
affected RL training because it is hard for the neural network to learn from its unnecessarily
large set of inputs. Auxiliary global states are provided to each agent to help it adapt to
varying agents in the environment by learning the collective and average behavior of the
virtual agent instead of all the other individual agents. Reducing the interaction between
one agent and all others to the interaction between one agent and the virtual agent greatly
alleviates the scalability issue.
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We design SIMPPO as a general framework to support a variety of RL agents that em-
ploy online learning algorithms. Although we use serverless resource management as an
example for demonstration, SIMPPO can be potentially applied in other RL for systems ar-
eas [66] such as load balancing and congestion control. Our approach for using virtual agents
draws inspiration from the mean-field theory, which has been successful in economics and
physics [214, 215]. Existing theory [216, 217, 218] shows that approximating the collective
behavior of all the agents using a single population distribution term such as the average
does not lose much optimality in finite multi-agent scenarios, and the approximation error
decreases when the number of agents increases.

Contributions. In summary, our main contributions are:

• Single-agent RL formulation and design using the state-of-the-art RL algorithm PPO
for serverless resource management (Section 4.3).

• The first quantitative characterization study, to the best of our knowledge, demon-
strating that single-agent RL is unable to converge and the policy-serving performance
is severely degraded in multi-tenant serverless environments (Section 4.5.2).

• The design of a scalable and incremental MARL framework named SIMPPO that (i)
enables multiple RL agents to be trained jointly to convergence and coexist in a multi-
tenant serverless environment, and (ii) allows the agents to adapt to dynamic changes
in the system, e.g., adding or updating of functions (Section 4.7).

• The implementation and comprehensive evaluation of SIMPPO with real-world work-
loads that demonstrate scalable and incremental policy training and substantial policy-
serving improvements relative to single-agent RL solutions (Section 4.8).

Results. We conducted experiments in which we deployed an open-source serverless
FaaS platform, OpenWhisk [219], on our dedicated local cluster and a larger cluster on IBM
Cloud. We ran widely used serverless benchmarks [220, 221, 222] driven by arrival rate
patterns sampled from both synthetic datasets and public production traces from Azure
Functions [186]. We show in our characterization study (Section 4.5) that S-RL trained in
isolation (which we use as the baseline to assess MARL solutions) (i) improves p99 func-
tion latency by at least 1.6× without over-provisioning over a heuristics-based solution in
single-tenant cases, and (ii) suffers from 2.2–4.8× higher p99 function latency degradation
in multi-tenant cases. An evaluation of SIMPPO shows that it enables all agents’ policies to
converge when they are jointly trained and that it supports incremental training (in Section
4.8.1). The online policy-serving performance of SIMPPO (in terms of p99 function latency)
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Figure 4.2: Resource management in OpenWhisk [219] with reinforcement learning (RL).
At each step, the RL agent perceives system and application conditions from the environ-
ment. The measurements are then translated to state and reward signals that are mapped
by the agent to an action.

in multi-tenant cases is comparable to the baseline, with <9.2% degradation (in Section
4.8.2); SIMPPO achieves 4.5× improvement compared to S-RL in multi-tenant cases with
reasonable resource overhead (in Section 4.8.3). SIMPPO is also scalable to larger numbers
of functions and cluster size (in Section 4.8.4).

4.2 BACKGROUND AND MOTIVATION

4.2.1 Serverless Function-as-a-Service

Serverless FaaS is a cloud programming model and architecture wherein customers execute
function code snippets without any control over the resources on which the code runs [185].
A serverless FaaS platform runs functions in response to invocations (i.e., requests) from
end-users or clients. It consists of a central controller and a group of invokers. In our
study, we chose OpenWhisk [219], a production-grade open-source serverless platform based
on Docker containers. Fig. 4.2 shows the architecture of a distributed OpenWhisk platform.
The controller (i.e., 5 ) creates function containers, allocates CPU (cpu.shares is used in
OpenWhisk [192, 223]) and RAM for each function container, and assigns the containers to
invokers (i.e., 6 ). When requests arrive via the API gateway, the controller distributes the
requests to invokers. An invoker executes the function after it receives a request, and the
execution results are written to a data store (i.e., 2 ), which completes an activation.

Serverless FaaS workloads, like most cloud data-center services, have service-level objec-
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tives (SLOs) defined by each tenant that codify the expected performance [1, 6, 63, 224,
225, 226, 227, 228]. The most common type is a latency SLO, which specifies the accept-
able latencies for function requests in the serverless computing context. For example, a
latency SLO might specify that 99% of requests have latencies smaller than 100 ms. If
a service fails to meet its SLOs, the service provider may risk severe penalties or finan-
cial loss. We focus on resource management to meet per-function SLOs while keeping re-
source utilization at a high level, since low utilization efficiency is undesirable for the cloud
provider [179, 182, 228, 229, 230]. The mechanism to convey SLO preferences is also nec-
essary and Henge [231] allows SLOs to be specified by incorporating latency or throughput
goals and workload priorities into a user-specifiable utility function.

4.2.2 RL Primer

An RL agent solves a sequential decision-making problem (modeled as a Markov decision
process or MDP) by interacting with an unknown environment. At each discrete time step
t, the agent observes the current state of the environment st ∈ S, and performs an action
at ∈ A based on its policy πθ(s) (parameterized by θ), which maps the state space S to the
action space A. The agent then observes an immediate reward rt ∈ R given by a reward
function r(st, at); the immediate reward represents the loss/gain in transitioning from st to
st+1 because of action at (via step() function [203]). The whole sequence of transitions
{(st, at, rt, st+1)}t≥0 is called an episode (or iteration). During policy training, the agent’s
goal is to optimize its policy πθ so as to maximize the expected cumulative discounted reward
E[
∑T

t=0 γ
trt] (i.e., the value function) during one episode, starting from a certain initial

state s0, where the expectation is taken over the randomness of state transitions and the
agent’s policy. The discount factor γ ∈ (0, 1) penalizes the rewards far in the future. After
convergence, the learned policy will continue to be used (but not updated) by the agent to
interact with the environment during the policy-serving stage.

Two main categories of approaches have been proposed for RL training: value-based meth-
ods and policy-based methods [129]. In value-based methods, the agent first learns an esti-
mate of the optimal value function and then approaches the optimal policy by maximizing
the estimated value function. In policy-based methods, the agent tries to directly approxi-
mate the optimal policy. Both the policy and the value function in RL algorithms are usually
implemented using neural networks. We refer readers to [9, 129, 205, 206] for detailed surveys
and rigorous derivations of value-based and policy-based RL algorithms.
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4.2.3 Related Work

Heuristics-based Resource Management. Various approaches have recently been
proposed to address some of the existing challenges in serverless platforms, such as function
request scheduling and resource allocation, using carefully designed heuristics [188, 189, 190,
192, 232, 233, 234]. Sequoia [232] is a drop-in front-end for serverless platforms that allows
policies to dictate how or where functions should be prioritized, scheduled, and queued. The
ideal performance for a specific workload is achieved by carefully designing and evaluating
several scheduling algorithms, such as resource-aware scheduling and explicit priority-based
scheduling. Atoll [190] is a delay-sensitive serverless framework that exploits a shortest-
remaining-slack-first algorithm for scheduling serverless functions. Atoll uses a threshold-
based resource scaling method based on queuing delays. ENSURE [192] is another rule-based
function resource manager. It allocates R+c

√
R containers to a function with load R, scales

the resources within an invoker based on a latency degradation threshold, and scales the
number of invokers based on a memory capacity threshold, tuned per function and per
workload.

However, these approaches require recurring human efforts to tune the parameters or
choose the appropriate thresholds for each function to achieve optimal performance. For ex-
ample, threshold-based autoscaling that relies on CPU/memory utilization or latency degra-
dation would be simplistic and inefficient. The parameters need to be reconstructed, tuned,
and tested for varying application workloads and infrastructures. Therefore, we focus on RL-
based solutions to automatically learn the optimal resource management policies and adapt
to frequent changes in serverless function workloads and dynamic cloud environments.

RL-based Resource Management. Lately, RL-based approaches have gained signifi-
cant momentum toward achieving application SLOs [1, 65, 66, 159, 194, 195, 196, 197, 198,
199, 200, 201, 202]. RL is well-suited for learning resource management policies, as it provides
a tight feedback loop for exploring the action space and generating optimal policies without
relying on inaccurate assumptions (i.e., heuristics or rules). Since resource management de-
cisions made for each function are highly repetitive, an abundance of data is generated for
training such RL algorithms. RL allows direct learning from the actual workload and operat-
ing conditions to understand how the allocation of resources affects application performance.
It has been shown that RL with neural networks can express complex system-application
environment dynamics and decision-making policies. For instance, FIRM [1] is an RL-based
resource management framework for microservices, designed to tackle the under-utilization
issue and SLO violations. FIRM uses a two-tier RL model to first identify the microservices
that cause SLO violations and then mitigate those violations via dynamic resource repro-
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visioning. Schuler et al. [195] propose a Q-Learning-based autoscaler that decides on the
horizontal concurrency for a serverless function, with the only objective being to minimize
the function latency. Zafeiropoulos et al. [196] also apply Q-Learning to threshold-based
autoscaling to determine the CPU and memory usage threshold. Both SLO violation and
resource utilization are considered in the reward function of each RL agent for a function.
FaaSRank [197] is an RL-based serverless function request scheduler that uses PPO to min-
imize function completion time. However, these works are all S-RL and fail to address
non-stationarity in multi-tenant environments (as shown in Section 4.5.2).

Multi-armed bandits such as CloudBandits [235], as a variant of RL (i.e., one-state RL),
do not apply in sequential decision problems with state transitions because they require
static context with a single decision and reward. Multi-objective Bayesian optimization
(BO) [236], on the other hand, is hard to scale to large state space (the known dimension-
explosion problem). BO also has a higher latency to find optimal solutions in the search
space compared to RL inference.

4.3 SINGLE-AGENT RL FORMULATION

In this section, we present the design for serverless resource management with RL. We call
this approach single-agent RL or S-RL since each RL agent manages one or more specific
functions and is unaware of other agents in a shared environment. We first describe the
problem formulation as an RL task (Section 4.3.1). We then outline a solution (Section
4.3.2) using a policy-based RL algorithm, Proximal Policy Optimization (PPO) [209].

4.3.1 S-RL Problem Formulation

We model the resource management for each serverless function (by reacting to autoscale
after observing a bulk of function executions) as a sequential decision-making problem that
can be formulated by the RL framework (illustrated in Fig. 4.2). Since all serverless FaaS
platforms have similar controller-worker architectures [186, 190] and function request-serving
workflows, for modeling purposes, we chose to use an open-source serverless platform called
OpenWhisk [219]. At each step in the sequence, the RL agent (i.e., 1 ) monitors system and
application conditions from both the OpenWhisk data store (i.e., 2 ) and the Linux control
groups or cgroups (i.e., 3 ). Measurements include function-level performance statistics
(i.e., tail latencies on execution time, waiting time, and cold-start time for serving function
requests) and system-level resource utilization statistics (e.g., CPU and memory utilization

54



Table 4.1: State-action space of the RL formulation.

State Space St (for single-agent) Lt (for multi-agent)
Function SLO Preservation Ratio (SP (t)), Resource Utilization (RUcpu(t),
RUmem(t)), Function Request Arrival Rate Changes (AC(t)), Resource Limits
(RLTcpu(t), RLTmem(t)), Horizontal Concurrency (NC(t))

Action Space At (for both single- and multi-agent)
Vertical Scaling: Resource Limits (RLTcpu(t), RLTmem(t)). Horizontal Scaling:
Number of Containers (NC(t))

Auxiliary Global State Space Gt (for multi-agent)
Aggregated Resource Limits (ARLTcpu(t), ARLTmem(t)), Aggregated Vertical
Actions (AV (t)) and Horizontal Actions (AH(t)), Average SLO Preservation
Ratio (MSP (t)), Average Resource Utilization (MRU(t))

of function containers). These measured telemetry data are used to define an RL state,
which is then mapped to a resource management decision by the RL agent.

Action Space. We consider both vertical and horizontal resource-scaling actions. A
vertical-scaling action corresponds to scaling either up or down the cpu.shares [223] or the
memory limit of a function container, since OpenWhisk’s default resource model includes
cpu.shares and memory limits; both are configurable parameters in all commercial server-
less platforms. A horizontal-scaling action in OpenWhisk corresponds to scaling either out
or in the function containers, i.e., changing the number of created containers for a function
(denoted by NC). The resource limit of each type for a function is initially over-provisioned
and later managed by the RL agent. The decision made by the RL agent is then verified
and passed by the horizontal and vertical scaler (i.e., 4 ) to the FaaS controller (i.e., 5 )
and finally changes the resource allocation of the function that the agent manages, and
consequently the function performance. As a result, each function instance is deployed in
a container with resource limits RLTcpu and RLTmem. The initial limit for each type of re-
source is over-provisioned before containers are created for a function, and the limit is later
controlled by the RL agent. Table 4.1 (the second row) defines the action space which in-
cludes available vertical-scaling actions that change RLTcpu, RLTmem, and horizontal-scaling
actions that change NC.

State Space. We define the state space based on the five features listed in Table 4.1 (the
first row). At each time step t, the average resource utilization RU(t) of a function for each
type of resource is retrieved from cgroups (i.e., 3 ) as telemetry data. The current resource
allocations RLTcpu(t), RLTmem(t), and NC(t) are kept as part of the state. In addition,
the data store (i.e., 2 ) also collects function latency composition and request arrival rate.
Based on these measurements, the RL agent calculates the remaining two state variables as
described below:
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(1) SLO preservation ratio (SP (t)) is defined as latency_SLO / latency_measured if
there is an SLO violation. The ratio is smaller for more critical SLO violations. Oth-
erwise, SP (t) is set to 1, meaning that there is no SLO violation or no function request.

(2) Arrival rate change (AC(t)) is defined as (AR(t)−AR(t−1)) / max{AR(t), AR(t−1)},
where AR(t) and AR(t − 1) denote the function request arrival rates at the current
and previous time steps, respectively. A positive value indicates an increasing request
arrival rate and vice versa.

All variables in the state vector are of range [−1, 1] except RLT (t) and NC(t). To facili-
tate RL training and convergence, we normalized the two variables by setting a predefined
resource upper limit R̂i and a lower limit

ˇ
Ri. For instance, the cpu.shares for a con-

tainer cannot be smaller than 128 or larger than 2048, and the number of containers cannot
be smaller than 0 or larger than 1000 (the default maximum concurrency setting in AWS
Lambda [237]). If the amount of resources to be vertically scaled reaches the total available
amount, then a horizontal-scaling operation is needed.

Reward Function. The goal of the RL agent is, given a time duration T , to learn
an optimal policy πθ that results in fewer SLO violations (i.e., maxπθ

∑T
t=0 SP (t)) while

keeping the resource utilization as high as possible (i.e., maxπθ

∑T
t=0 RU(t)). Based on both

objectives, the reward function is then defined as rt = α · SP (t) + (1 − α)/2 · (RUcpu(t) +

RUmem(t)) + penalty, where penalty is set to -1 in the following cases (and 0 otherwise):
(1) Illegal actions such as scaling in/up/down when the number of function containers is zero
or scaling beyond the resource limits. Since illegal actions are not executable, an illegal action
leads to a self-loop transition from a state to itself with a negative reward. (2) Undesired
actions such as frequent oscillating decisions (e.g., scale down and up in two consecutive
time steps), which are detected by comparing the actions of the current and last time step.
Compared to masking the actions, i.e., excluding the undesired actions from the action space
instead of giving negative rewards, our approach leads to faster convergence and is extensible
(without modifying the action space).

4.3.2 S-RL Learning Framework

We use a policy-based method, PPO [209], to learn the optimal resource management
policy under the RL problem formulation described above. We use PPO because it pro-
vides shorter training times and higher rewards after convergence in our setting, compared
to other state-of-the-art RL algorithms (e.g., DDPG [210], DQN [211]), while being much
simpler to tune. To stabilize the training process, clipping is used to prevent the policy and
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Table 4.2: RL training hyperparameters in PPO [209]
Parameter Value

Learning Rate Actor (3× 10−4), Critic (3× 10−4)
Discount Factor (γ) 0.99
Number of Hidden Layers × Units Actor (2×64), Critic (2×64)
Mini-batch Size 10 (single-agent), 5 (multi-agent)
Number of SGD Epochs 5
Clip Value (ϵ) 0.2
Entropy Coefficient (β) 0.01
Critic Loss Discount (δ) 0.05
Number of Time Steps (T ) 50 (per Episode)
Reward Coefficient (α) 0.3

value functions from changing drastically between training iterations. It has been hypothe-
sized [238] that the smooth policy updates (due to clipping) in PPO can help mitigate the
non-stationarity issue in multi-agent RL. Compared to the vanilla policy gradient [239], PPO
guarantees an improved policy by specialized clipping in the objective function to prevent
the new policy from getting far from the old policy. We implement both the policy πθ and
value function Vϕ (parameterized by θ and ϕ) of PPO using neural networks. The value
function evaluates the expected return of a given state [209]. The policy network maps the
state to an action and its parameter θ is updated in the direction suggested by the value
function. The hyperparameters used in our PPO implementation are listed in Table 4.2. We
set those hyperparameters based on a grid search for the best results. We refer readers to
[209] for detailed algorithms of PPO and rigorous derivations and [78] for the pseudo-code.
The described S-RL solution is used in our characterization study (Section 4.5) and its per-
formance in single-tenant scenarios is used as the baseline for assessing proposed solutions
(as shown in Section 4.6, Section 4.7) in multi-tenant scenarios.

4.4 EXPERIMENTAL METHODOLOGY

OpenWhisk Cluster Setup. We deployed OpenWhisk [219] on five physical nodes in
our local cluster, with one master node (which runs the FaaS Controller) and four worker
nodes (each of which runs an Invoker), as shown in Fig. 4.2. Each node has a dual-socket
Intel Xeon E5-2683 v3 processor with 14 cores per socket and 500 GB memory. All nodes run
Ubuntu 18.04 with Linux kernel version 4.15. We also deployed a larger OpenWhisk cluster
(20 worker nodes) on IBM Cloud with 22 VMs in us-south-2 to study SIMPPO’s scalability.
Each node has 8 cores and 16–32 GB RAM, running Ubuntu 20.04. There is no interference
from external or background jobs. Docker containers were created on physical nodes in the
local cluster and VMs in the IBM Cloud cluster. We disabled memory swapping for the
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Table 4.3: Serverless benchmarks [220, 221, 222].
Benchmark Description

Base64 Encode and decode a string with the Base64 algorithm.
Primes Find the list of prime numbers less than 107.
Markdown2HTML Render a Base64 uploaded text string as HTML.
Sentiment-Anlys Generate a sentiment analysis score for the input text.
Image-Resize Resize the Base64-coded image with new sizes.
HTML-Gen Generate HTML files from templates.
Uploader Upload a file from a given URL to Cloud storage.
Compression Compress given images and upload to Cloud storage.
Image-Inference Image recognition with a pre-trained ResNet-50 model.
Page-Rank Calculates the Google PageRank for a specified graph.
Graph-BFT Traverse the given graph with breadth-first search.
Graph-MST Generate the minimum spanning tree given a graph.

Docker service. We ran the workload generator [220] and the RL module (either single- or
multi-agent) from two separate nodes in the same cluster and used FaaSProfiler [220] to
trace requests.

Serverless Benchmarks. We selected benchmarks from widely used open-source FaaS
benchmark suites [220, 221, 222] (listed in Table 4.3). These benchmarks include web ap-
plications (HTML-Gen, Uploader), ML-model serving (Sentiment-Anlys,Image-Inference),
multimedia (Image-Resize, Compression), scientific functions (Primes, PageRank, Graph-BFT,
Graph-MST), and utilities (Base64, Markdown2HTML). These function benchmarks have differ-
ent runtime behaviors and resource demands in terms of CPU, memory, and I/O utilization.
For example, Image-Resize and Image-Inference are compute-intensive functions; Base64
and Markdown2HTML are memory-intensive functions; Uploader and Compression are I/O-
bound functions; and Page-Rank and Graph-BFT/MST are data-intensive functions. The
functions are written in either Python or Java. SLOs were defined on a per-function basis.
In our experiments, we followed the common practice [225] and used the 99th-percentile
latency as the SLO latency when running in isolation on the serverless platform. We added
a 15% relaxation to the SLO latency to allow fluctuations and measurement errors.

Workloads. In the evaluation, we used both real-world and synthetic function invoca-
tion patterns. For real-world workloads, the function invocation patterns are from Azure
Functions traces [186] collected over two weeks in 2019. We first constructed a dataset of
invocation rates (i.e., RPS) based on the per-minute function invocation count in the traces
(the intervals with no invocation will be treated as zero invocation rate). We then uniformly
and randomly sampled the invocation rate at each RL step from the constructed dataset.
Since our setup of 22 VMs is minimal compared to Azure Functions production setup and
to allow the RL agent to explore as many invocation patterns as possible, the invocation
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environments).

pattern of a function in our experiment setup did not follow through with only one function
trace but changed to multiple function traces during RL training. For synthetic workloads,
we used common patterns [182] indicating flat and fluctuating loads, with a Poisson inter-
arrival pattern whose parameter ranges from zero to the maximum value observed in the
sampled Azure function traces. The change in request arrival rates was intended to evaluate
whether RL agents could adapt to such workload changes.

4.5 SINGLE-AGENT RL CHARACTERIZATION STUDY

4.5.1 S-RL in Single-tenant Cases

We implemented the single-agent RL (S-RL) solution described in Section 4.3, conducted
training convergence analysis, and evaluated the function performance and resource utiliza-
tion compared with those of a state-of-the-art heuristics-based approach, ENSURE [192].

S-RL Policy-training Convergence. To understand the convergence behavior of the
S-RL agent in single-tenant environments, we used the workload described in Section 4.4 to
train an agent for one function, with no other functions running on the platform. Since RL
training proceeds in episodes (iterations), we then analyzed the per-episode reward evolution;
Fig. 4.3 (the red curve above) shows the results for the Primes function and we found that
the agent-training progress is similar across different function benchmarks. We fixed the
number of time steps per episode to 50 (i.e., T in Table 4.2). In the initial training stage,
the agent policy was unable to mitigate SLO violations. Hence, we terminated the RL
exploration early to reset the agent to the initial state and enter the next episode. As the
training progressed, the agent improved its resource allocation policy and could mitigate
SLO violations in less time. At that point (after around 70 episodes), we linearly increased
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the number of time steps to let the agent interact with the environment for more time before
terminating the exploration and entering the next iteration. The agent’s behavior was able
to converge after around 300 episodes (ranging from 280 to 350 across all benchmarks).

S-RL Policy-serving Performance. After convergence, we leveraged the trained agent
(by using the saved checkpoints at the 1000th episode), and compared it with ENSURE [192],
which is a state-of-the-art threshold-based autoscaler implemented on OpenWhisk. We set
the parameters and thresholds according to author recommendations [192]. In this com-
parison, each function controlled by an agent is tested independently. Fig. 4.4 shows the
online performance comparison. The S-RL agent is able to keep the CPU utilization at a
higher level (around 24% higher than ENSURE, not shown in the figure) and achieves similar
end-to-end latency. We found that the reason is that ENSURE over-provisions containers
and resources when the workload changes. After increasing the function latency threshold
to a higher value (from 15% to 25%), we observed that the performance of the S-RL agent
improved over that of ENSURE (labeled “ENSURE-Util”) by at least 1.6× with respect to
tail latencies at similar CPU utilizations. However, ENSURE does not require any training.

By interacting with dynamic serverless environments under diverse loads and resource
allocation scenarios, S-RL agents gradually learn the policy that maximizes the expected
rewards and hence outperform heuristics-based approaches. We regard S-RL in single-tenant
cases as the baseline for assessing solutions in multi-tenant cases.

4.5.2 S-RL in Multi-tenant Cases

Serverless FaaS platforms are, in essence, multi-tenant, running different functions with
various function characteristics, SLOs, and workload patterns from multiple customers [80,
185, 187, 240]. Each function managed by an RL agent competes with other functions on the
same platform for limited resources. Function container co-location for higher utilization has
made resource contention worse on a cloud serverless platform [80, 187, 220]. The transition
from single-tenant to multi-tenant settings introduces new challenges that require a funda-
mentally different RL algorithm design. Before presenting our multi-agent solution, we first
explore the environment non-stationarity issue, and conduct training convergence analysis
and policy-serving performance assessment of S-RL agents in multi-tenant environments.

Environment Non-stationarity. The shared environment in a many-agent setting is
affected by the actions of all agents; thus, from a single agent’s perspective, the environment
becomes non-stationary, which breaks the critical stationarity assumption [9, 10, 11] made by
S-RL algorithms. In policy training or serving, S-RL requires that the isolated environment
is affected only by the agent interacting with it. Under non-stationarity, an agent needs to
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explore the unknown environment efficiently while keeping in mind that the information it
gathers now will soon become outdated, because the other agents are also updating their
policies. From a system’s perspective, the RL step() function (i.e., take an action and
receive the next state and reward) can be viewed as a “transaction.” An agent interacts
with the environment at each time step and commits a transaction that may conflict with
other transactions from different agents because of request-response function dependencies
or shared-resource contention. The stationarity assumption means that an agent needs
to obtain the “lock” to avoid race conditions where the environment (“critical section”) is
updated by two or more transactions. S-RL fails to provide any synchronization mechanism
to address non-stationarity issues.

S-RL Policy-serving Performance Degradation. We assessed the policy-serving
performance of the S-RL agent in multi-tenant cases in which each function is in control of
an independent S-RL agent trained in isolation (oblivious of the other agents). Fig. 4.4 shows
the performance degradation after multiple functions are introduced on the same platform
(green bars compared to red bars). In this experiment, we created one function for each
benchmark from Table 4.3 and trained one S-RL agent for each function in isolation until
convergence. Then, we ran all 12 functions concurrently on OpenWhisk, with each function
being managed by its trained S-RL agent. The evaluation results show that the degradation
is up to 4.8× (for Graph-BFS) and as low as 2.2× (for Compression). The reason is that
when the agent makes a decision, it is based on the states measured at the current time step;
but at the same time, all other agents are also making their resource allocation decisions,
which could affect the shared environment. Therefore, the state could have been changed
and the estimated value function for an action by the S-RL model is no longer accurate.

S-RL Policy-training Convergence Failure. Multi-tenancy not only affects the on-
line performance during policy serving for S-RL agents trained in isolation, but also leads
to problems during training. We trained 12 S-RL agents together; each of them managed
one function from the benchmarks listed in Table 4.3. Each S-RL agent was trained in-
dependently and did not consider the other agents in the same environment. Everything
else was kept the same as before, with the S-RL agent trained in isolation. Fig. 4.3 (the
green curve below) shows the per-episode reward evolution for the agent managing function
Primes. Compared to the training curve of the S-RL agent trained in isolation (in red), the
S-RL agent trained in a multi-tenant environment achieved a lower performance (a 55.9%
drop in terms of per-episode reward) with higher variance and did not converge in a stable
manner within the same training budget. We observed that other function benchmarks also
failed to converge within the same training budget (not shown due to page limit).

While S-RL converges in isolated environments and provides a sufficient baseline compared
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with heuristics, system support for many-agent RL-based resource management that provides
both training convergence and comparable policy-serving performance is needed to deal with
environment non-stationarity.

4.6 ATTEMPTS TO DEAL WITH NON-STATIONARITY

To deal with non-stationarity in multi-tenant environments, we first designed and imple-
mented two multi-agent RL solutions wherein all agents are jointly trained using independent
learning (Section 4.6.1) and a global priority queue (Section 4.6.2). The insights drawn from
both solutions lead to our final solution SIMPPO as presented in Section 4.7.

4.6.1 Independent Learning

Our first attempt to deal with non-stationarity is to apply the idea of independent learn-
ing [238] to S-RL. In independent learning, each agent learns independently and, by consid-
ering only the rewards from all the other agents, perceives the other agents as part of the
environment. Despite the loss of theoretical support, independent learners are occasionally
shown to achieve desirable results [238]. Therefore we replace the reward function of each
RL agent in S-RL with rt =

∑N
i=1 r

i
t/N , where rit is defined in Section 4.3. We call this the

independent learning-based MARL solution IL-RL.
Fig. 4.5(a) shows the RL pipeline for the IL-RL training and policy serving. Just as in

the S-RL approach, each agent receives the states and rewards from the environment at each
step. However, each agent uses the average reward to update its policy network.
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IL-RL Policy-training Convergence. To study the training convergence, we created
12 functions (one from each benchmark in Table 4.3), each of which is managed by an IL-
RL agent. Fig. 4.6 shows the training curve in this multi-tenant environment. Since all
IL-RL agents use the team reward that is the average reward across all agents, Fig. 4.6 (the
curve below) shows the evolution of the total reward per episode. Compared to the training
curve of S-RL in single-tenant environments (i.e., the baseline, the red curve in Fig. 4.3),
the highest reward gained by IL-RL is 38.2% lower than the converged reward achieved
in S-RL. However, IL-RL varies less and achieves 1.4× higher reward compared to S-RL
trained in multi-tenant environments (the green curve in Fig. 4.3). We conclude that IL-RL
fails to provide a convergence guarantee within the same training budget for RL agents in
multi-tenant environments.

Insight 4.1: Simply considering each agent’s local observation could work in cases where
no extensive coordination with other agents is necessary [238]. However, whenever more
complicated coordination is required, such as simultaneously scaling one function out and
another function in (as shown in Fig. 2.6), it becomes difficult to explore and learn those
joint actions. Without synchronizing the RL state transitions of all agents, one cannot solve
the environment non-stationarity issue by considering only the performance of all the other
agents.

4.6.2 Heuristics-based Priority Queue

Since it is hard for agents to independently reason about one another to act intelligently,
our second attempt is to use a central coordinator that synchronizes the RL step() functions
of all agents during both training and policy serving. Fig. 4.5(b) shows an overview of
the framework. The coordinator uses a heuristics-based priority queue to determine the
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execution order of each agent’s step() function using SLO preservation ratios. Functions
with lower ratios (i.e., higher chances of having SLO violations) are served first. We call this
central priority queue-based MARL approach CPQ-RL.

During CPQ-RL training, the policy executions of the agents are performed one at a
time. At the time an RL step() function is being executed, no other agent is making any
movement. This workflow allows each agent to incrementally improve its policy over time.
Intuitively, CPQ-RL provides a training framework wherein each agent gets an isolated sub-
environment to make state transitions in the shared multi-tenant environment. The local
policy updates of the agents are still distributed and independent from each other.

CPQ-RL Policy-training Convergence. We used the same environment setup de-
scribed in Section 4.6.1 to train a set of 12 CPQ-RL agents. Fig. 4.6 (the curve above)
shows the training curve of the agent that managed function Primes. We observed that
the training curves of all 12 agents were able to converge. In addition, the total reward
per episode of CPQ-RL agents was comparable to the converged values of S-RL agents in
single-tenant cases (with <3% difference).

CPQ-RL Policy-serving Performance. We then evaluated the online performance
during policy serving by taking the checkpoints of the CPQ-RL agents after the convergence
(i.e., at the 1000th episode). Fig. 4.7 shows the end-to-end latency comparison between
the baseline (i.e., S-RL in single-tenant environments) and CPQ-RL in multi-tenant envi-
ronments. Although CPQ-RL provides a training framework that allows each RL agent
to learn an optimal policy in an articulated “isolated” environment, there is still 21.8%
(Sentiment-Anlys) to 67.7% (Image-Inference) performance degradation. We found that
it was mostly due to the synchronization overhead, since all agents need to communicate
with the central coordinator to take the state measurements and make decisions in a se-
quential manner according to priority. By increasing the priority (setting a tighter SLO),
we found that the degradation dropped to less than 35%. Each RL step() function (i.e.,
policy execution) takes around one second. When the number of agents is large (i.e., more
than 10), agents with lower priority may suffer from long waiting times (i.e., starvation),
which can be unacceptable and lead to cascading SLO violations [6]. Fig. 4.7 also includes
the online performance of IL-RL agents, although they fail to converge during policy train-
ing. We found that CPQ-RL achieves up to 67.1% performance improvement over IL-RL
in terms of p99 function latency, while IL-RL agents perform no better than S-RL agents
in multi-tenant environments (which has been shown in Fig. 4.4) with <5% performance
difference.

Insight 4.2: RL agents with lower priorities suffer from starvation problems in CPQ-RL.
A scalable solution relies on simultaneous action generation instead of sequential generation.

64



Centralized MARL (such as JAL [12]) could be a potential solution, but it is not scalable and
fails to support incremental training (as we describe in Section 4.7.1).

4.7 SIMPPO DESIGN AND IMPLEMENTATION

We describe the design and implementation of SIMPPO in this section, which includes
a remodeled resource management problem formulation (in Section 4.7.1) as a multi-agent
extension of the Markov decision process (MDP), and a MARL learning framework based
on PPO (in Section 4.7.2) under the problem formulation. All agents are jointly trained
in SIMPPO by allowing each agent to peek into the behavior of the other agents, which
potentially violates the end-to-end arguments [241]. However, the violation is necessary for
performance gain [242] as we show in Section 4.5 and Section 4.6 that obeying the end-
to-end arguments by handling non-stationarity at each agent’s end sacrifices policy-serving
performance. Our design choices for the multi-agent model were made to favor scalability
and adaptability to agent churn caused by added/removed functions. SIMPPO enables
the convergence behavior of all agents during training and provides online policy-serving
performance comparable to that of the baseline, i.e., S-RL in single-tenant cases (as shown
in Section 4.8).

4.7.1 SIMPPO’s MARL Formulation

We extend the MDP formulation for single-agent RL (described in Section 4.3) to a Markov
game (also known as a stochastic game [243]) for N agents, each of which controls the resource
management for one particular function on the serverless platform. In our formulated Markov
game, the state space is defined as the Cartesian product of the state spaces of all S-RL agents
(as defined in Section 4.3). After observing the environment state st at time t, each agent
i takes an action ait based on its policy πθi (parameterized by θi) and receives a reward rit.
The action and reward of each agent are the same as defined in S-RL. The environment
state then transitions to a new state that depends on the joint action of all the agents.

A Naive Approach. One can overcome the non-stationarity issue introduced by other
agents in the shared environment by using centralized learning (e.g., joint action learners or
JAL [12]). In such a centralized approach, the agents are jointly modeled, and a centralized
policy for all the agents is trained. The input to this algorithm is the concatenation of the
observations of all the agents, and the output is the actions specified to the agents. This
approach entirely eliminates the problem of non-stationarity; however, it is computationally
inefficient (with exponential complexity). The centralized learner needs to search in the

65



Multi-tenant Environment

		𝜋!
Agent 1

		𝐴! 		𝑆!

		𝑉!

𝑅, 𝑂!		𝐴!

		𝜋"
Agent 2

		𝐴" 		𝑆"

		𝑉"

𝑅, 𝑂"		𝐴"

		𝜋#
Agent N

		𝐴# 		𝑆#

		𝑉#

𝑅, 𝑂#		𝐴#

…	…		𝐺!
Auxiliary 

Global States 
for Agent 1
𝑆! = 𝑂! ∪ 𝐺!

Note:𝐺", … , 𝐺#
are not shown.

SIMPPO Coordinator
Heartbeats HB HB
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joint action space of the size
∏N

i=1 |Ai| in order to enumerate all possible action combinations,
where N is the number of agents and Ai is the individual action space of agent i for 1 ≤ i ≤ N .
The exponential dependence on N makes the centralized learning approach difficult to scale
up beyond a few agents [12]. Therefore, given that there could be tens or even hundreds of
function instances on a server [244], we do not proceed further with this centralized approach.

Virtual Agent. The non-stationarity problem leads to significant scalability challenges,
since each agent must reason about every other agent’s internal state of information. In addi-
tion, existing MARL approaches explicitly model each function or agent (e.g., the JAL [12])
and thus the whole MARL algorithm needs to be retrained when there are any changes
to the agent group, because the input to the algorithm has been changed. In the typical
case where the policy or value functions are parameterized by neural networks, the network
structure would also need to be reconstructed. In SIMPPO, from the point of view of an
agent i, the main idea is to treat all the other agents as part of the environment by creat-
ing a “virtual” agent that represents the environment and all the other agents. Introducing
the virtual agent allows SIMPPO to be agnostic to the number of agents and the order of
the agent sequence, which enables incremental training. We created auxiliary global states
(which we will discuss in the next paragraph) by learning the collective and average behavior
of the virtual agent instead of each of the other individual agents. Auxiliary global states
are provided to each agent to help it adapt to varying agents in the environment. Reducing
the interaction between an agent and the others to the interaction between the agent and
the virtual agent greatly simplifies the scalability issue.

Value Function Inputs. In SIMPPO’s MARL formulation, we resort to using the aver-
age to represent the behavior of the other agents (i.e., the virtual agent), and to providing
each agent with an auxiliary global state in addition to its individual state. Each agent
extracts its local state lit and auxiliary global state git from the environment state st. The
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local state lit of agent i is from the same state space as in S-RL (Table 4.1 the first row).
Both local and auxiliary global states are used as the inputs to the value function, and we
find that omitting any local state can be highly detrimental to learning of an optimal re-
source management policy. In addition, we select a subset of five state-action variables from
all variables that can be used to represent the auxiliary global state git based on domain
knowledge. First, aggregated actions and resource limits from all the other agents represent
the collective action, since we view them as part of the environment. Second, as the goal is
to achieve function SLO performance while maintaining high resource utilization, we select
the mean SLO preservation ratio and resource utilization to represent how the other agents
behave. Third, we observe that reducing the dimensionality of the value function inputs by
removing redundant or repeated features further improves the RL agent performance and
reduces training time. For example, a higher arrival rate or a lower horizontal concurrency
could have been manifested by a lower SLO preservation ratio. Since each agent only cares
about and optimizes its policy based on the reward function, redundant features can neg-
atively affect RL training and make it hard for the neural network to learn to extract the
real, useful features. Specifically, git consists of the following (as listed in the third row in
Table 4.1):

(1) Aggregated CPU limits : ARLT i
cpu(t) =

∑N
j ̸=i RLT j

cpu(t)

(2) Aggregated memory limits : ARLT i
mem(t) =

∑N
j ̸=iRLT j

mem(t)

(3) Aggregated vertical actions : AV i(t) =
∑N

j ̸=i∆RLT (t)

(4) Aggregated horizontal actions : AH i(t) =
∑N

j ̸=i∆NCj(t)

(5) Mean SLO preservation: MSP i(t) =
∑N

j ̸=i SP
j(t)/(N − 1)

(6) Mean resource utilization: MRU i(t) =
∑N

j ̸=i RU j(t)/(N − 1)

In addition, to measure the volatility of agent performance and behavior, we also include
the standard deviation of the selected variables across all the other agents.

Our design draws inspiration from the mean-field theory [216, 217], which has proved to
be successful in fields like economics [214] and physics [215]. The underlying principle is to
approximate the finite-agent system by summarizing the collective behavior of all agents as a
population distribution, which is usually specified as the empirical distribution of the agents’
states. Existing theory [216, 217] and our own work [218] show that the approximation error
goes down as the number of agents increases because there is less influence from each agent
on the overall system.
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Rewards. The goal in the MARL setting is (see [205, 206]), given a time duration T , to
determine an optimal collection of policies π = {πθ1 , πθ2 , ..., πθN} that result in fewer SLO
violations across all functions (i.e., maxθ1,θ2,...,θN

∑N
i=1

∑T
t=0 SP

i(t)) while keeping the average
resource utilization of each type as high as possible (i.e., maxθ1,θ2,...,θN

∑N
i=1

∑T
t=0RU i(t)).

The team-averaged reward function for the MARL setting is then defined as rt =
∑N

i=1 r
i
t/N ,

where rit is the reward for agent i as defined in Section 4.3. Our objective is to maximize
the expected cumulative discounted reward E[

∑T
t=0 γ

trt] = E[
∑T

t=0 γ
t ·∑N

i=1 r
i
t/N ].

4.7.2 SIMPPO’s Learning Framework

Based on SIMPPO’s scalable and incremental MARL formulation in Section 4.7.1, we
introduce the learning framework of SIMPPO based on the PPO algorithm that we designed
for S-RL (in Section 4.3.2). SIMPPO follows the same algorithmic structure of the PPO
algorithm by learning a policy πθi and a value network Vϕi (parameterized by ϕi) for each
agent i. Fig. 4.8 shows an overview of the SIMPPO algorithm. We concatenate the auxiliary
global state gi (described in Section 4.7.1) with each agent’s local state li and feed them as
the inputs to the value network Vϕi . The auxiliary global state gi is collected and calculated
by the SIMPPO coordinator and sent to each SIMPPO agent. For example in Fig. 4.8, G1

is sent to Agent 1. The policy network πθi is the same as the policy network in S-RL, which
maps the states to an action from the same action space. The other extension from S-RL is
that the reward for each agent at time t is changed to the average reward across all agents:
rt =

∑N
i=1 r

i
t/N . The RL policy update step of each SIMPPO agent is done in parallel.

Training Data Reuse. PPO uses mini-batch gradient descent to perform several epochs
of updates on a batch of training data. We find that the agent achieves optimal perfor-
mance when the mini-batch size is set to 10 in the single-agent setting. However, in the
multi-agent setting, we find that a smaller mini-batch size (i.e., 5) results in a better perfor-
mance. We attribute this to the negative effect that high data reuse brings in multi-agent
settings [245]. The number of epochs implicitly determines the non-stationarity in MARL,
as more training epochs will cause larger changes to the agents’ policies, which exacerbates
the non-stationarity issue. The other hyperparameters are kept the same as in Table 4.2
which are used by the S-RL agents.

Adding and Removing Agents. The SIMPPO coordinator and all SIMPPO agents
follow the server-client communication model, and the coordinator is responsible for adding
and removing an agent upon request (i.e., when registering or deleting a function). We use
a heartbeat-based membership protocol between the SIMPPO coordinator and all SIMPPO
agents. When a new function is being added to the serverless platform, a new SIMPPO
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agent will be initialized to control the resource management of the function. After a new
SIMPPO agent is added or an existing function is removed, the auxiliary global state is
updated by including or excluding the individual observations from that agent.

Network Parameter Sharing. We leverage neural network parameter sharing [212, 213]
between SIMPPO agents that manage the same type of functions to shorten the incremental
training time. Based on their sensitivity [147] to the allocation of each type of resource, we
categorize the function benchmarks into three coarse-grained categories10: CPU-intensive,
memory-intensive, and I/O-intensive. One trained RL model is used as the base model for
each category of functions. The base model is obtained by training the RL agents that
manage all functions that belong to the corresponding category. When a new function is
added to the serverless platform, we first categorize the function and initialize the newly
created SIMPPO agent with the network parameters from the base model of the same
category. The base model can be slowly updated in the background by replacing its network
parameters with the existing SIMPPO agents that manage the same type of functions.

4.8 EVALUATION

We evaluated SIMPPO on OpenWhisk driven by widely used serverless benchmarks [220,
221, 222] with both synthetic and real-world workloads from production traces [186], as
specified in Section 4.4. Our experiments addressed the following research questions:

§4.8.1 Does SIMPPO converge and support incremental training? What is the value of
auxiliary global states?

§4.8.2 How does SIMPPO perform in multi-tenant environments compared to single-agent
RL in single-tenant environments?

§4.8.3 What is the resource overhead of SIMPPO?

§4.8.4 Is SIMPPO scalable with respect to converged rewards, online policy-serving per-
formance, and retraining time?

4.8.1 Incremental Training

During the policy-training stage, we intentionally added and removed a few agents at
random from the environment to evaluate the adaptability of the SIMPPO model to agent

10We leave fine-grained function classification for better performance to future work.
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Figure 4.9: Incremental training of the
SIMPPO agents.
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Figure 4.10: Incremental training (no pa-
rameter sharing).

updates. Fig. 4.9 shows the training curves of SIMPPO in multi-tenant environments. To
start with, we created 12 functions (one from each benchmark in Table 4.3); each function was
then managed by an initialized SIMPPO agent. Since all agents used the team reward (i.e.,
the average reward across all agents), Fig. 4.9 shows the evolution of the average total reward
per episode. All agents were able to reach a stable converged policy after around 500 episodes
(around 2 hours). Then, at episode 800, we updated the multi-tenant environment by adding
five functions (randomly selected from the benchmarks), each of which was managed by a
separate SIMPPO agent. As shown in the figure, the total reward per episode dropped by
16.6%; that happened mainly because the five new SIMPPO agents started to learn the
optimal policy, which initially leads to low reward values. After around 300 more episodes
(around 1.2 hours), the learning curve of the SIMPPO agents was able to converge again.
We updated the environment three more times (with one update after every 800 episodes)
by either adding five (randomly chosen) new functions or removing five (randomly chosen)
existing functions. We observed a similar reward drop and later convergence to about the
same level after several hundred training episodes. When we removed five existing functions
from the environment, the reward drop (i.e., 11.3%) was not as large as in the previous cases.
We attribute the smaller reward drop to the fact that there was no added agent whose reward
could start to become randomly lower than that of a trained agent. The team reward still
dropped because of the fluctuation of the environment as five functions were removed.

Ablation Study. To study the benefit of neural network parameter sharing brought to
incremental training, we implemented a variant of SIMPPO without parameter sharing be-
tween any two SIMPPO agents; Fig. 4.10 shows its training curves in the same experimental
setup used for the vanilla version of SIMPPO. The benefit of network parameter sharing
is manifested in the retraining phase when there is a significant change to the agent group.
Compared to SIMPPO without network parameter sharing, the vanilla version has a 20–
54.8% smaller reward drop each time functions are added to or removed from the platform.
Consequently, the retraining time is reduced by about half (from around 600 episodes) using
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the learned base model of each type of function.

4.8.2 Online Policy-serving Performance

We saved the checkpoints at the 3200th episode for all agents in Section 4.8.1 and used
those checkpoints to evaluate the online performance during policy serving for all functions
together on the serverless platform. We observed that the function performance was similar
at different episodes when the agents’ behavior converged. At the 3200th episode, there were
27 functions in total (all function benchmarks were used). Fig. 4.11 shows a function per-
formance comparison between SIMPPO in the multi-tenant environment and S-RL trained
in a single-tenant environment, i.e., the baseline. We average over all function instances of
the same function benchmark. As shown in the figure, SIMPPO is able to provide online
performance comparable to that of the baseline, with the performance degradation ranging
from 1.8% (for Sentiment-Anlys, 1190.2 ms to 1211.5 ms) to 9.2% (for Markdown2HTML,
178.8 ms to 196.8 ms). In contrast, the performance degradation for ENSURE in multi-
tenant environments ranged from 26.9% to 32.5%, up to 21.4× higher than for SIMPPO
(for Uploader, SIMPPO improves the degradation from 31.6% to 1.5%). Compared to
the single-agent RL trained in multi-tenant environments (as shown in Section 4.5.2 and
Fig. 4.4), SIMPPO achieved from 2× (for Uploader, 283.4 ms to 576.3 ms) to 4.5× (for
Graph-MST, 651.8 ms to 2902.6 ms) improvement in terms of the 99th-percentile function
latency. In terms of different application categories, we found that SIMPPO performs better
for I/O-intensive (1.5–3.6%), then CPU-intensive (3.9–4.2%), and memory-intensive (7.9–
9.2%) workloads. We attribute this to better performance predictability of I/O-intensive
functions [187], which are less sensitive to memory-bandwidth/CPU contention compared to
memory or CPU-intensive workloads.

Ablation Study. To study the importance of feature selection with domain knowledge
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when constructing the auxiliary global states, we implemented a variant of SIMPPO by re-
placing the selected auxiliary global states with the average of all individual states from each
agent, as suggested in mean-field theory. Fig. 4.11 (in the yellow bars denoting SIMPPO-All)
shows its online performance in the same experimental setup used for the vanilla version of
SIMPPO. We found that the performance degradation from the single-agent RL baseline
in single-tenant settings increased by 2.6× (HTML-Gen) to 9.7× (Graph-MST) compared to
the vanilla version of SIMPPO. The results indicate that our selection of auxiliary global
states based on domain knowledge avoids redundant features that increase training time (not
shown in this chapter) and negatively affect policy-serving performance because it is hard
for the neural network to learn to extract the real, useful features.

4.8.3 Policy Training and Serving Overhead

RL Model Overhead. The actor and critic networks for each SIMPPO agent consist
of 4993 parameters (i.e., 28 KB) that are mostly from two neural-network layers with 64
hidden units per layer. Since SIMPPO is implemented in Python with several machine
learning libraries such as PyTorch, the imported libraries account for about 166 MB of
memory that is shared across all SIMPPO agents. The last part of memory consumption
comes from the intermediate data (such as RL state-action transitions and reward vectors)
used during training; the size of this memory is proportional to the number of agents and is
about 2 MB per agent on average (as shown in Fig. 4.12).

RL Policy-training Overhead. To measure the overhead of RL training for learning an
optimal resource management policy, we profile SIMPPO’s training process, which proceeds
in iterations. The agents all update their model parameters in parallel (using the training
approach described in Section 4.7.2). The RL step() function takes 240 ± 13 ms, and
the actor-critic network parameter update takes an average of 1.34 ± 0.21 s (i.e., five SGD
epochs). Thus, in total, training from scratch takes up to around 2 hours, and incremental
retraining takes around 0.2–1.8 hours (on Intel Xeon E5-2683). Retraining can be performed
infrequently depending on environment stability. We note that since function execution and
policy training are asynchronous, the training cost does not directly affect the execution time.
However, agents during training are not able to produce optimal decisions although functions
can still execute to completion. Most CPU time is spent on network parameter updating,
and the overall CPU utilization during training is negligible (i.e., 0.6% per SIMPPO agent,
as shown in Fig. 4.12), since the parameter update is performed only once per iteration.

RL Policy-serving Overhead. Mapping of a current state to derive an action requires
about 240 ms on average (the same as the RL step() function during policy training).
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Table 4.4: Scalability analysis of SIMPPO in terms of retraining time in episodes (RT) and
reward drop percentage (RDP) after a function churn (i.e., addition or removal of functions).

From FN Churn Add New Functions Remove Functions

+2 FNs +5 FNs + 10 FNs -2 FNs -5 FNs -10 FNs

5 FNs RDP (%)† 17.9% 20.2% 38.6% 9.1% — —
RT (# Eps)‡ 288.5 ± 22 369.9 ± 18 435.6 ± 24 129.6 ± 19 — —

20 FNs RDP (%) 13.3% 16.6% 42.7% 9.3% 10.3% 16.2%
RT (# Eps) 234.4 ± 21 325.6 ± 20 455.1 ± 20 133.4 ± 18 190.5 ± 17 309.1 ± 20

35 FNs RDP (%) 13.0% 15.4% 31.4% 7.1% 8.8% 14.4%
RT (# Eps) 216.4 ± 20 284.8 ± 18 315.4 ± 19 120.7 ± 17 167.6 ± 18 268.7 ± 20

50 FNs RDP (%) 9.3% 12.8% 24.2% 5.8% 6.6% 11.0%
RT (# Eps) 145.8 ± 17 243 ± 16 289.7 ± 21 105.1 ± 14 149.3 ± 16 248.5 ± 18

65 FNs RDP (%) 8.7% 10.3% 21.5% 4.9% 5.9% 11.3%
RT (# Eps) 150.2 ± 15 208.6 ± 14 247.2 ± 17 82.6 ± 15 126.5 ± 15 208.3 ± 17

80 FNs RDP (%) 6.9% 9.8% 18.5% 3.8% 5.1% 7.8%
RT (# Eps) 140.0 ± 15 204.4 ± 13 241.8 ± 16 66.4 ± 17 117.5 ± 14 228.6 ± 21

95 FNs RDP (%) 6.0% 8.5% 17.0% 3.2% 4.7% 7.4%
RT (# Eps) 135.8 ± 13 193.0 ± 12 215.3 ± 15 54.0 ± 15 100.6 ± 12 141.3 ± 17

110 FNs RDP (%) 5.9% 7.7% 14.9% 3.0% 4.8% 6.5%
RT (# Eps) 136.1 ± 11 185.8 ± 13 196.2 ± 15 47.2 ± 11 97.9 ± 13 132.0 ± 17

†RDP = (Rbefore −Rafter)/Rbefore
‡RT: Num. of RL training episodes for SIMPPO to converge

As the function container resource management is on an independent control plane and
asynchronous with the function request scheduling or serving, the RL decision latency does
not directly impose any overhead on function execution. The CPU utilization during policy
serving is negligible (i.e., 0.3% per SIMPPO agent). With reasonable resource overhead,
SIMPPO still improves utilization efficiency.

4.8.4 Scalability Analysis

Finally, we deployed an OpenWhisk cluster with SIMPPO on 22 VMs on IBM Cloud. One
VM with 8 cores and 32 GB of memory hosted containers for the controller and other main
components, including Nginx and Kafka. One VM with 16 cores and 16 GB of memory hosted
all RL agents. Each of the remaining 20 VMs had 8 cores and 16 GB of memory, and hosted
an invoker to run the functions in Docker containers. We first confirmed that SIMPPO’s
training convergence and online policy-serving performance were unchanged compared to
those for the local cluster for settings specified in Section 4.8.1 and Section 4.8.2. We then
further increased the number of registered functions from 20 to 130 (with the total available
memory capacity and cores scaled linearly with the number of functions). We swept over
the number of functions to add or remove functions (i.e., 2, 5, or 10 functions) each time
function churn happened.

Incremental Training. At each function churn, we recorded the per-episode reward
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drop from the previously converged reward to the reward received at the first episode after
the churn. To evaluate the effect of agent group size on SIMPPO’s incremental training, we
also recorded the retraining time required to reach convergence. Table 4.4 shows the reward
drop percentage and the retraining time (in terms of the number of training episodes). We
observe that as the number of functions increases from 5 to 110, the reward drop percentage
first increases and then decreases after the number of functions is greater than 35. When
we added 2 or 5 functions at a time, SIMPPO had the highest reward drop (i.e., 17.9%
and 20.2%) if there were 5 existing functions; when we added 10 functions, SIMPPO had
the highest drop (i.e., 42.7%) if starting at 20 functions. Accordingly, the retraining time
has similar trends, as retraining is done until the per-episode reward converges to a stable
value (not changing by more than 2%). The most expensive training cost ranged from 196.2
to 455.1 training episodes, on average, for each starting number of functions (about 0.8 to
1.8 hours). Removal of functions results in less reward drop and thus less retraining time
for each setup, the same as what we describe in Section 4.8.1. As the number of functions
increases to 110, the reward drop percentage and the retraining cost decrease to as little as
3.0% and 47.2 training episodes. We attribute this to the formulation of auxiliary global
states for each agent that is used to model and approximate the collective behavior of all the
other agents. As the number of agents in the system increases, the disturbance introduced
at each function churn gets smaller and the approximation error goes down [216, 217, 218].

Policy-serving Performance. We evaluated the online performance of the learned
SIMPPO model when the number of agents was 20 and 110 by taking the model checkpoints
after convergence. Fig. 4.13 shows that the distributions of both function end-to-end latency
and CPU utilization for the model-serving benchmark Sentiment-Anlys are almost the
same whether the number of agents is 20 or 110. (Similar trends were observed for other
function benchmarks but are not shown in the figure.) The percentage difference of the
p99 latency for each function between the 20- and 110-agent settings is smaller than 1.9%.
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More rigorously, we ran statistical testing to determine whether the two empirical data
distributions are the same (i.e., the null hypothesis). The results show that the two-sided
p-values for function latency and CPU utilization are 0.56 and 0.67 (> 0.05) so we cannot
reject the null hypothesis. Therefore, we conclude that SIMPPO’s online policy-serving
performance is scalable in the number of agents.

Throughput. As the number of SIMPPO agents increases, the generated resource-scaling
actions per time step grows almost linearly (as shown in Fig. 4.14), with the overhead mainly
coming from the calculation of the auxiliary global states. Compared to the throughput that
the OpenWhisk controller is able to handle, SIMPPO’s throughput demand becomes smaller,
but the difference shrinks as the number of invokers increases. In Section 4.9, we discuss a
potential solution for scaling beyond the controller’s limit.

4.9 DISCUSSION

Performance SLOs. No commercial cloud provider offers SLOs on performance (only
availability), which hinders the adoption of latency-critical services on serverless platforms.
Though we infer SLOs by profiling applications, a mechanism to convey any SLO preference
is needed. We also assume that all user requests sent to the same function correspond
to the same SLO. However, the RL policy may not converge when an unachievable SLO
is specified. SLO-aware serverless resource management could potentially (1) enable the
serverless provider to offer SLO guarantees and change pricing models to be SLO-aware;
(2) enable the adoption of latency-sensitive applications from traditional cloud computing
to serverless computing.

Scalability Bottleneck. To scale scheduling and resource management, the most widely
used approach [33, 34, 190, 246, 247] is to partition the cluster into several system pools
and have one controller per system pool. This ensures that a controller does not become a
scalability bottleneck. In that scenario, SIMPPO can be applied to make optimal decisions
within each system pool.

Compatibility with Non-RL-based Approaches. SIMPPO can be applied to non-
RL-based approaches by replacing RL’s policy network with their static resource man-
agement policy. For example, the most common scaling approach in Kubernetes [248] is
threshold-based scaling [249]. For a deployment with a target CPU utilization of 50%, if five
pods are currently running and the mean CPU utilization is 75% (i.e., state), the controller
will add 3 replicas (i.e., action) to move the pod average closer to the target. High-stakes
applications or those with high function churn rates could use non-RL-based approaches and
train the RL model in an offline manner [210, 211].
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Function Churn Rate. High function update frequency could lead to repeated retrain-
ing of the RL model whenever there is a significant change to the environment, although
the retraining is less necessary for larger agent group sizes (as shown in Section 4.8.4). The
retraining overhead could outweigh the benefits of the learning-based approaches if the churn
rate is too high. SIMPPO leverages network parameter sharing to facilitate fast incremen-
tal training. In addition, the retraining problem could be alleviated in a private cloud or
dedicated clusters for enterprise customers, since the applications evolve more slowly than
individual customers [250].

Function Payloads. SIMPPO assumes that the payloads to a function are fixed or
result in deterministic execution times (e.g., ML model serving). However, as the payload
size increases, execution time might increase, and the function SLO should be redefined.

Function Chains. SIMPPO does not explicitly consider function dependencies. Since
our approach is reactive (auto-scaling based on observation), dependencies are indirectly ad-
dressed through performance or utilization measurements. To explicitly model dependencies,
critical service localization in FIRM [1] could be potentially applied.

Extensibility. SIMPPO could be potentially applied to generic multi-dimensional au-
toscaling or resource management problems but not in the IaaS domain because each tenant
manages resources, and maintains performance-SLOs, but cannot peek into others. To allow
more than one objective among a wide range of users, a function with different objectives
needs to be turned into different instances each of which is then managed by an agent. The
RL reward function also needs to be updated if the objective is not about latency.

Multi-type Virtual Agents. Agents managing functions that have different behaviors
(e.g., compute- or memory-intensive) can be represented using separate virtual agents. In
addition, different percentile statistics, such as median or P99, can be used to help estimate
the collective behavior more accurately. We leave the exploration of multi-type fine-grained
virtual agents to future work.

4.10 SUMMARY

This chapter has presented the issues involved in infusing multiple learning-based resource
management agents in multi-tenant serverless platforms through a quantitative character-
ization study. We then propose SIMPPO, a scalable and incremental MARL framework
that (i) resolves the many-agent training non-convergence problem while providing online
policy-serving performance comparable to that of the baseline (i.e., S-RL in isolation), and
(ii) is scalable and adaptive to varying agent groups with reasonable resource overhead.
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CHAPTER 5: DEALING WITH CLOUD HETEROGENEITY

5.1 INTRODUCTION

Motivation. Reinforcement learning (RL) has become an active area in machine learning
research and is widely used in various systems tasks (e.g., resource scaling [1, 2, 59, 159,
199, 251], power management [16, 75, 252], job scheduling [65, 66, 67, 68, 69, 197], video
streaming [70, 253], and congestion control [70, 71, 72, 73, 254]). As a viable alternative to
human-generated heuristics, RL automates the repetitive process of heuristics tuning and
testing by enabling an agent to learn the optimal policy directly from interaction with the
environment.

One example is workload resource autoscaling for meeting application service-level objec-
tives (SLOs) while achieving high resource utilization efficiency [1, 59, 198, 251, 255, 256].
Traditional rule-based approaches [257, 258, 259, 260] configure static upper and lower
thresholds offline for certain system metrics (e.g., CPU or memory utilization) or application
metrics (e.g., request arrival rate, throughput, or end-to-end latency) so that resources can
be scaled accordingly when the measured metrics go above or below the thresholds. Tuning
and testing of fine-grained thresholds require significant application/system-specific domain
knowledge from experts to achieve optimal resource allocation. Further, repeated parameter
tuning for each workload can be labor-intensive, especially for microservice-like applications
in large-scale production systems. As different types of services may use different amounts
of resources (e.g., CPU and memory) and are sensitive to different kinds of interference and
workload spikes, a customized threshold has to be set for a service differently.

RL, on the other hand, is well-suited for learning optimal policies, as it models a systems
task (e.g., workload autoscaling) as a sequential decision-making problem and provides a
tight feedback loop for exploring the state-action space and generating optimal policies
without relying on inaccurate assumptions (i.e., heuristics or rules) [2, 65]. Integrating RL
with those complex systems management tasks in production systems can (1) make full use of
the abundant monitoring data on applications and the infrastructure, and (2) automate the
process of developing optimal policies while freeing operators from manual workload profiling
and parameter tuning/testing. For example, FIRM [1]’s RL agent learns an optimal workload
autoscaling policy that adapts to specific application workloads with online telemetry data
that alleviates the need for handcrafted heuristics (see Section 5.2.2 for details).

Challenges. However, even as RL is starting to show its strength in the systems and net-
working domains [1, 2, 16, 59, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 159, 197, 199, 251, 253, 254],
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Figure 5.1: RL agent performance when managed by AWARE compared to the baseline
(FIRM [1]). Stages 1 , 2 , and 3 demonstrate the benefit of RL bootstrapping, incremental
retraining, and fast adaptation, respectively.

there is still a large gap in directly applying RL advances to real-world production systems
due to a series of assumptions that are rarely satisfied in practice. First, a learned RL pol-
icy is workload-specific and infrastructure-specific. Retraining is needed to adapt to a new
workload or underlying infrastructure in heterogeneous and dynamically evolving (possibly
multi-cloud) datacenters [13, 14, 15, 16, 17]. For instance: (1) In SLO-driven resource man-
agement, application performance and utilization differ significantly among heterogeneous
workloads [1]. Fig. 5.1 stage 3 shows that FIRM’s trained RL policy suffers performance
degradation and requires substantial retraining. (2) In power management, diverse power
consumption and workload sensitivity to core/uncore frequency require separate training
of RL policies [16]. (3) In video streaming and network congestion control, different sets of
traces have diverse payload characteristics and network environments [70] (e.g., dynamic link
bandwidth, delay, and loss rate). Even with transfer learning (TL) [1], nontrivial retraining
is needed to adapt to new workloads and environment shifts in each problem domain, which
is a critical problem in making RL practical in production. Further, TL requires fine-grained
environment clustering to identify the most appropriate model to transfer from, and requires
saving one model per cluster.

Second, for the same application and environment, there could be slight changes (e.g.,
patches and rolling updates), unusual workload patterns not seen before (e.g., due to migra-
tion rollout), or traffic jitters. Without timely retraining, the online policy-serving perfor-
mance of the RL agent fluctuates and leads to undesired degradation (as shown in Fig. 5.1
Stage 2 ). It is crucial to ensure robust online performance in case of environment or model
uncertainty [86, 87].

Third, RL training is through trial and error [1, 65, 69], so worse-than-baseline or sub-
optimal decisions can be generated, especially at an early stage of training (as shown in
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Fig. 5.1 Stage 1 ). Direct training in the production system leads to suboptimal perfor-
mance and undesired SLO violations, while training in a simulator and then transitioning
to the production system face the problem of poor generalization [88].

A framework that can bring the RL advances to production systems is needed so that
(1) the RL model can be trained in a safe and robust manner, (2) the learned RL policy
can be adapted to new workloads and altered environments seamlessly without significant
retraining, and (3) the online RL model policy-serving performance can be kept stable.

Our Work. We first performed a characterization study of RL in production systems
in the task of workload autoscaling. The study focused on the impact of workload change
and environment shift regarding (a) RL agent performance degradation or variation and (b)
retraining cost. To facilitate the deployment and operation of RL agents in the systems
management tasks of a production cloud environment, we introduce an RL model-serving
and management framework. As a general framework to support a variety of RL agents for
systems management tasks, it can be used by system operators to develop RL-based agents
that can be quickly adapted to new environments and achieve stable online policy-serving
performance with continuous monitoring and safe bootstrapping (as shown in Fig. 5.1). In
the end, system operators can benefit from RL automation of systems management tasks.

• To achieve fast model adaptation in each domain or systems task, we leverage
meta-learning [261] to model the RL agent as a base learner and create a meta learner
for learning to generalize and adapt to new applications and environment shifts. The
base learner discovers policies that generalize across workload variations and intra-
environment dynamicity for a pair of application Ai and environment Ej, while the
meta learner generalizes across (Ai, Ej) pairs to address inter-environment dynamicity
and application heterogeneity. We designed a novel framework that allows the meta
learner to learn to generate an embedding [261, 262, 263] that projects the application-
and system-specific data to a vector space. On this projected vector space, workloads
with similar characteristics are projected to closer locations, while those with quite
different characteristics are projected to locations far from each other. The embedding
is generated by encoding a set of episodes from the RL agent’s exploration of the en-
vironment. Since each episode records a step-by-step interaction of the RL agent with
the environment, the time-series episodes naturally encode spatial and temporal char-
acteristics. In the task of workload autoscaling, spatial characteristics correspond to
the workload’s performance sensitivity to different resource allocations, and temporal
characteristics correspond to the time-varying load patterns. The generated embedding
is then fed as input to the base learner to adapt to the application and environment
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shift (from the environments with similar characteristics). With the embedding, fewer
retraining iterations are needed for new, previously unseen workloads.

• To achieve stable online RL policy-serving performance, we leverage continuous
monitoring, and designed a retraining detection and trigger mechanism. An RL agent
observes a state, performs an action, and gets a reward at every step in an episode.
The time series of states, actions, and rewards in an episode form a trajectory. RL
trajectories are collected and stored in a time-series database. The most recent re-
wards are used to calculate the average reward and variation for comparison against
user-specified targets. Continuous monitoring ensures that RL model retraining can
be triggered or stopped timely so that the RL policy can seamlessly adapt to any envi-
ronment jitters. We intercept the RL model update logic to enable the switch between
RL policy serving and retraining.

• To achieve safe RL exploration in the early training stages, we designed an RL
bootstrapping module that combines offline and online training. The agent starts
with offline training, and a traditional heuristics-based controller (e.g., the Kubernetes
Horizontal Pod Autoscaler (HPA) [257] and the Vertical Pod Autoscaler (VPA) [264]
in the case of workload autoscaling), is used as the navigator for (online) exploration
of the state and action space in the environment. After the RL model is trained to the
same level as the heuristics-based controller by comparing rewards, the agent continues
to be trained online.

We demonstrate the proposed framework in the task of workload autoscaling on Kuber-
netes by implementing AWARE (i.e., Automate Workload Autoscaling with REinforcement
learning). Each RL agent manages a Kubernetes Deployment and configures resources auto-
matically, adjusting both the number of replicas (horizontal scaling) and the CPU/memory
limits (vertical scaling) to maintain workload service-level objectives (SLOs) and achieve
high resource utilization. To integrate RL agents with Kubernetes, we designed and imple-
mented a multidimensional Pod autoscaler (MPA) system. MPA provides system support
for RL-based controllers and translates RL outputs into multidimensional autoscaling ac-
tions in a holistic manner by (1) providing an API for RL agents to execute horizontal and
vertical scaling decisions on Pod CPU and memory limits, (2) combining vertical and hor-
izontal scaling actions in a single CRD object [265], and (3) providing a user interface for
user-defined objective functions for multidimensional autoscaling.

Results. We present a detailed experimental evaluation of AWARE, demonstrating that
AWARE significantly improves the practicality of applying RL in production cloud systems

80



ServingTraining
Policy 

Evaluation
Policy 

Improvement

Policy

Trajectory (𝑠! , 𝑎! , 𝑟!) !"#

RL Agent

Actions 𝑎!

State 𝑠!&
Reward 𝑟!

Environment
(System task modeled as a 
Markov Decision Process)

Figure 5.2: An RL agent interacting with an environment modeled as a systems task (e.g.,
workload autoscaling or congestion control) in the form of a Markov decision process (MDP).

(for workload autoscaling). We first show that the adaptation process of a learned autoscal-
ing policy to new workloads with meta-learning is 5.5× faster than the existing transfer-
learning-based approach (Section 5.5.2), and then demonstrate that AWARE provides stable
online policy-serving performance with less than 3.6% reward degradation (Section 5.5.3).
AWARE’s bootstrapping mechanism helps achieve 47.5% and 39.2% higher CPU and mem-
ory utilization while reducing SLO violations by a factor of 16.9× during training (Section
5.5.4).

Contributions. In summary, our main contributions are:

• A characterization of RL-based production workload autoscaling and the challenges
involved in applying RL in production cloud systems (Section 5.2.3).

• The design of a novel meta-learning-based framework for fast RL model adaptation in
workload autoscaling (Section 5.3.2).

• The design of an RL retraining management and bootstrapping mechanism for stable
policy-serving performance (Section 5.3.3) and robust RL environment exploration
(Section 5.3.4).

• An implementation of the proposed framework in the task of workload autoscaling
with MPA, which enables integration of RL agents with Kubernetes (Section 5.4.1).

• A detailed evaluation of AWARE that demonstrates substantial improvements through
meta-learning and RL lifecycle management while maintaining workload SLOs and
resource utilization (Section 5.5).
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5.2 BACKGROUND & CHARACTERIZATION

5.2.1 Reinforcement Learning

In reinforcement learning (RL), an agent interacts with an environment modeled as a
discrete-time Markov decision process (MDP) (as shown in Fig. 5.2). At time step t, the
agent perceives a state st ∈ S of the environment and takes an action at ∈ A. The agent
receives a reward rt ∈ R as feedback on how good the decision is, and at the next time step
t + 1, the environment transitions to a new state st+1. The whole sequence of transitions
{(st, at, rt)}0≤t≤T is called a trajectory or episode of length T . The agent’s goal is to learn a
policy πθ

11 that maximizes the expected cumulative rewards in the future, i.e., E[
∑T

t=0 γ
t ·rt],

where the discount factor γ ∈ (0, 1) progressively de-emphasizes future rewards. RL consists
of a policy-training stage and a policy-serving stage [79]. At the policy-training stage, the
agent (using an initialized policy) starts with no knowledge about the task and learns by
reinforcement and directly interacting with the environment. At the policy-serving stage, the
trained policy is used to generate an action based on the current state of the environment,
and model parameters are no longer being updated.

5.2.2 Workload Autoscaling with RL

Because of the sequential nature of the decision-making process, RL is well-suited for
learning resource management policies, as it provides a tight feedback loop for exploring the
state-action space and generating optimal policies without relying on inaccurate assump-
tions (i.e., heuristics or rules) [2, 65]. In addition, since the decisions made for workloads are
highly repetitive, an abundance of data is generated to train such RL algorithms even with
deep neural networks12. By directly learning from the actual workload and operating condi-
tions to understand how the allocation of resources affects application performance, the RL
agent can optimize for a specific workload and adapt to varying conditions in the learning
environment. RL [1, 2, 59, 159, 199, 251] has been shown to automate resource manage-
ment and outperform heuristics-based approaches in terms of meeting workload SLOs and
achieving higher resource utilization.

Specifically, we adopted the design and took the open-source implementation of an RL-
based workload autoscaler from FIRM [1], which is the state-of-the-art RL-based autoscaling

11A policy πθ maps the state space S to the action space A and is usually represented by neural networks
(with parameters denoted by θ).

12Deep neural networks can express complex system-application environment dynamics and decision-
making policies but are data-hungry.
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Table 5.1: RL agent state-action space.
State Space (st)

Resource Limits (CPU, RAM), Resource Uti-
lization (CPU, Memory, I/O, Network), SLO
Preservation Ratio (Latency, Throughput),
Observed Load Changes

Action Space (at)
Resource Limits (CPU, RAM), Number of
Replicas

Table 5.2: RL training hyperparameters.
Parameter Value

# Time Steps per Episode 100 × 64 mini-batches
Replay Buffer Size 106

Learning Rate Actor (3× 10−4), Critic (3× 10−3)
Discount Factor 0.99
Soft Update Coefficient 3× 10−3

Random Noise µ (0), σ (0.2)
Exploration Factor ϵ (1.0), ϵ-decay (10−6)

solution, to the best of our knowledge. FIRM uses an actor-critic RL algorithm called
DDPG [210].

The RL agent monitors the system- and application-specific measurements and learns how
to scale the allocated resources vertically and horizontally. Table 5.1 shows the model’s state
and action spaces. The goal is to achieve high resource utilization (RU) while maintaining
application SLOs (if there are any). SLO preservation (SP ) is defined as the ratio between
the SLO metric and the measured metric. If no SLO is defined for the workload (e.g., best-
effort jobs) or the measured metric is smaller than the SLO metric, SP = 1. An SLO metric
can be either request serving latency (e.g., the 99th percentile of the requests are completed
in 100ms) or throughput (e.g., request processing rate is no less than 100/s). The reward
function is then defined the same as in FIRM [1], rt = α ·SPt · |R|+(1−α) ·∑i∈R RUi, where
R is the set of resources. Table 5.2 lists the hyperparameters tuned for better performance
in the experiments. The RL algorithm is trained in an episodic setting. In each episode, the
agent manages the autoscaling of the application workload for a fixed period of time (100
RL time steps in our experiments).

5.2.3 Characterization of RL in Production

In the characterization study of FIRM for workload autoscaling, we selected 16 represen-
tative production cloud workloads based on a survey of 89 industry use cases of serverless
computing applications [266], as serverless workloads are highly dynamic (and thus require
autoscaling) and rely on the provider to manage the resources. The selected production
workloads include CPU-intensive tasks (e.g., floating-point number computation), image
manipulation, text processing, data compression, web serving, ML model serving, and I/O
services (e.g., read, write, and streaming). Next, we deployed the selected workloads as
Deployments in a five-node Kubernetes cluster in a public cloud and ran an RL-based multi-
dimensional autoscaler (i.e., a FIRM agent) with each workload. All nodes run Ubuntu 18.04
with four cores, 16 GB memory, and a 200 GB disk. For RL agent training and inference,

83



W
or
kl
oa

d

Fi
le

Si
ze

Ta
bl
e
Si
ze

M
L
M
od

el

FP
N

O
ps

Im
ag

e
Si
ze

Te
xt

Si
ze

H!
L

L!
H

0.00

0.25

0.50

0.75

1.00

R
ew

ar
d

D
ro

p
P
er

ce
nt

ag
e

0

100

200

N
um

b
er

of
E
pi

so
de

s

Reward Drop

Retraining Cost

Figure 5.3: Retraining cost of RL models.

we used real-world datacenter traces [267] released by Microsoft Azure, collected over two
weeks in 2021.

We next present the key insights from the characterization study in the order of adaptation,
online policy-serving, and early-stage of RL training.

Insight 5.1: Adaptation Retraining Cost. To study the retraining cost of adapting
a trained RL policy to new application workloads, we selected each application from the
workload pool, trained an RL agent for the application until convergence, and retrained the
learned RL policy to serve all the other different applications. We then measured the reward
drop after the workload changed and the number of episodes each agent took to retrain
to convergence. As shown in Fig. 5.3 (column 1), we observed a 45.6% average per-episode
reward drop percentage when the workload had been changed, and retraining to convergence
required around 230 episodes (with the model parameter transfer learning used in FIRM [1]).

Insight 5.2: Online Policy-serving Performance Jitters. We introduced seven
scenarios to explore the performance instability of RL-based workload autoscaling agents
when facing application or service payload size changes and load pattern changes. For I/O
services to a backend file system (e.g., AWS S3) and the compression/decompression services,
the size of files being read, written, or streaming was changed from [128 KB, 256 KB, 384 KB]
to [512 KB, 768 KB, 1024 KB]. For database services, the size of the table being scanned
was changed from 1024 items to 10240 items. For floating-point number calculation, the
number of operations was changed from 108 to 208. For image manipulations, the dimension
was changed from 40×40 to 160×160. For text processing, the JSON file size was changed
from [250 B, 500 B, 1 KB] to [2 KB, 3 KB, 5 KB]. For ML model serving, we changed the
matrix multiplication dimension from 50 to 150. For load pattern changes, we divided the
Azure workload traces into two parts, one half with a higher daily load (> 105 per day) and
the other half with a lower daily load (≤ 105 per day).
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Table 5.3: Workload performance and utilization efficiency deficit (i.e., the relative differ-
ence compared to the rule-based approach) in early-stage RL model training.

RL Episodes EP 1–100 EP 101–200 EP 201–300 EP 301–400

CPU Util -32.3% ± 14% -42.9% ± 15% -22.1% ± 12% -10.0% ± 6%
Memory Util -28.8% ± 11% -30.5% ± 10% -26.5% ± 8% -7.8% ± 2%
SLO Violations 56.1 ± 14 × 22.2 ± 7 × 12.7 ± 5 × 10.1 ± 3 ×

Fig. 5.3 (columns 2–9) shows the per-episode reward drop percentage and the retraining
cost of each scenario. File size changes led to the lowest 12.8% reward drop and around 70
episodes of retraining. We attribute this to I/O-intensive workloads’ relatively low sensitivity
to CPU/memory allocation, compared to compute- or memory-intensive workloads. Other
payload-related changes (i.e., table size, ML model, floating-point number operations, image
dimension, and text size) resulted in a 15.6–19.9% reward drop. Load changes from high
request arrival rates to low arrival rates (i.e., H→L in Fig. 5.3) and from low rates to high
rates (i.e., L→H) resulted in 19.9% and 21.8% reward drops, which required around 98 and
107 episodes of model retraining, respectively.

Insight 5.3: Cost of Early-stage RL Training. As mentioned in Section 5.2.2, RL
training proceeds in episodes. When the initialized RL agent starts to learn the optimal
policy, especially at an early stage of policy training, the policy might be worse than the
baseline heuristics-based approach or even produce undesired actions, such as an oscillating
scaling up and down behavior. This is primarily due to the exploration of the state-action
space and RL agent learning through trial and error. To study what is lost during policy
training, we compared workloads managed by RL agents with the same workloads managed
by the rule-based autoscaling approach (i.e., HPA and VPA). We define the early stage
of RL training to be the training process from the beginning to the episode at which the
RL agent starts to get better than the rule-based approach (which is around 400 episodes
in our experiments) because we are interested in the loss due to RL training compared to
non-RL-based approaches. We then divided the 400 episodes (in the early training stage)
into four segments. For each segment, we calculated the accumulated utilization deficit and
SLO violations of the application workloads controlled by the RL agents; the results are
shown in Table 5.3. The relative difference in utilization or SLO performance is based on
the comparison between the RL agent and the rule-based approach when used to control the
same application workloads with the same set of traces.

Results show that RL policies necessarily lead to poor decisions in the early stages of
training. In the first 100 episodes, the RL agents inevitably caused more SLO violations
than in the other segments (56.1× more than the rule-based approach, which had five SLO
violations per 100 episodes). We observe that most SLO violations were due to the under-
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Figure 5.4: Overview of AWARE.

provisioning of resources, so the CPU and memory utilization deficits (32.3% and 28.8%
lower, respectively, than for the rule-based approach) were smaller than those in the later
segments. In the last three segments, we observe a utilization deficit (i.e., 10–42.9% lower
CPU utilization and 7.8–30.5% lower memory utilization) and more SLO violations (i.e.,
10.1–22.7×) compared to the rule-based approach.

Summary and Implications. Workloads running in production cloud systems might
be user-facing or high-stakes. To enjoy the benefit of RL in systems management, the key
challenge is to produce fast-adapting, effective, and robust RL-based solutions under the
constraints of production cloud systems. As of now, to the best of our knowledge, there are
no systems that can help agent developers address this challenge.

5.3 AWARE DESIGN

5.3.1 Overview

Driven by the insights from Section 5.2.3, we describe the design of AWARE, a frame-
work that supports RL agents for multidimensional Pod autoscaling (MPA) of workloads in
production Kubernetes systems. AWARE manages the RL agent lifecycle to deliver stable
and robust agent performance. Fig. 5.4 provides an overview of AWARE. We next present
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a brief summary of each component in this section.
RL Environment. The RL environment (denoted by 1 in Fig. 5.4) of AWARE consists

of a cluster deployment (e.g., Kubernetes) and an MPA wrapper. The MPA wrapper is
designed and implemented as a shim layer that follows an “agent-centric” pattern of request-
response interaction advocated by OpenAI Gym [268]. The purpose of the MPA wrapper is
to translate measurements and scaling recommendations to and from RL abstractions (i.e.,
states/rewards and actions), respectively. The communication between the wrapper and the
RL agent is through remote procedure calls (RPCs). When the agent steps the environment
forward by sending an action to the MPA wrapper through the RPC request, the wrapper
translates the received action to vertical and horizontal scaling configurations and applies
it to the cluster deployments (e.g., by setting the VPA object [264] and calling the replica
re-scaling API). The wrapper gets measurements from the monitoring service in the cluster
(e.g., Prometheus [119] in Kubernetes), translates them to RL states and rewards, and sends
them back to the agent through the RPC response. The wrapper then waits on the RPC
server for the next action request. We describe implementation details in Section 5.4.1.

The framework can also be applied to other systems management tasks (e.g., job schedul-
ing or network congestion control) by replacing the RL environment. Decoupling the RL
environment (i.e., the environment wrapper) from the rest of the framework and using the
standard OpenAI Gym interface make environment replacement easy [66].

RL API Gateway. The RL API gateway connects the RL agent to the MPA wrapper by
sending the RL action in an RPC request and unpacking the state and reward in the RPC
response for the RL agent. Each RL trajectory consists of <state, action, reward> transitions
in one episode where the RL environment defines the length or the terminating condition of
an episode. The trajectories from each RL agent, along with the logical timestamp (i.e., the
episode and time step index), are saved to the RL trajectory database.

RL Agent (Base Learner). The RL agent implements the DDPG RL algorithm (as
described in FIRM [1]) and interacts with the RL environment to perform policy training
or policy serving (i.e., inference). Since the interface between the RL agent and the MPA
wrapper follows the OpenAI Gym standard, different advanced RL algorithms can be used
to replace the original RL algorithm DDPG.

Meta Learner. To help adapt to new workloads or environment updates within the
problem domain, the meta learner (denoted by 2 ) selects RL trajectories from the database
and generates an embedding that accurately represents the workload running in the environ-
ment. RL trajectories are selected per application, and the criteria are based on the reward
associated with each trajectory. The embedding is then fed to the base learner (i.e., the RL
agent) as part of the input. The RL agent leverages the embedding to adapt (fine-tune)
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its policy by differentiating heterogeneous workloads and environment updates. See Section
5.3.2 for more details.

RL Retraining Detector and Trigger. At the end of each episode, the RL retraining
detector (denoted by 3 ) pulls the recent episode rewards gained by the agent from the
trajectory database. The mean and standard deviation of the per-episode rewards are calcu-
lated and compared to predefined thresholds for performance and variability assessment. If
conditions are met, the RL retraining trigger will intercept the inference or training loop of
the RL agent to switch retraining on or off, respectively. See Section 5.3.3 for more details.

RL Bootstrapper. The RL bootstrapper (denoted by 4 ) determines whether the RL
training is online or offline. In the online RL training mode, the RL agent interacts di-
rectly with the RL environment. However, offline RL training avoids worse-than-baseline
performance or illegal actions in the early stages of RL training, which is desired by pro-
duction systems. In the offline RL training mode, the RL policy training happens offline
based on data collected using a fallback option (i.e., a heuristics-based method), while the
RL policy is not used for interacting with the environment. The RL bootstrapper intercepts
the request-response path between the RL agent and the RL API gateway and replaces the
RL agent with the controller implemented as the fallback option. For instance, in the case
of workload autoscaling, the default autoscalers widely used are the traditional rule-based
approaches HPA (for horizontal scaling) and VPA (for vertical scaling). Given the states
at each time step, corresponding autoscaling actions are then generated based on the HPA
and VPA algorithms and sent back to the RL API gateway for execution. The trajectories
recorded in the RL trajectory database will be used for the offline RL policy training. See
Section 5.3.4 for more details.

5.3.2 Meta Learner

Traditional RL-based resource management approaches [1, 2, 59, 159, 199] require the col-
lection of large amounts of training data samples and retraining (even with transfer learning)
to adapt to new environments for (a) updated or previously unseen application workloads or
(b) constantly evolving cloud infrastructures [13, 14, 15, 16]. Pure RL-based approaches are
no longer tenable in such dynamic cloud environments or even in the context of multi-cloud
computing [17]. A novel approach that provides fast model adaptation is needed to make
RL practical in production cloud systems.

In AWARE, we leverage meta-learning to reduce the retraining overhead and thus adapt
quickly to new environments. In essence, the RL agent is treated as the base learner for
an individual environment, and a meta learner is designed to generate representative em-
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beddings that help differentiate environments. We next give a brief primer on meta-learning
and the concept of embeddings before presenting AWARE’s meta-learning model and an
interpretation of embeddings from a systems perspective.

Meta-learning Primer. Meta-learning is known as learning to learn [269]. A good
meta-learning model is capable of adapting well or generalizing to new environments that
have never been encountered during training time. The adaptation process, essentially a
mini-learning session (with limited exposure to the new environment), happens after the
meta-learning model training stage. In the meta-learning model training stage, rather than
training the learner on a single environment (with the goal of generalizing to unseen “intra-
environment” samples from a similar data distribution), a meta learner is trained on a
distribution of environments, with the goal of learning a strategy that generalizes to unseen
environments (i.e., “inter-environment”). Even without any explicit fine-tuning (i.e., with no
gradient back-propagation on trainable variables), the meta-learning model autonomously
adjusts internal hidden states to learn [261, 270, 271, 272].

Embedding Techniques. Embeddings map variables to low-dimensional vectors in a
way that similar variables are close to each other [262, 263]. Embeddings have been widely
used in the area of NLP and software engineering (e.g., word or code embeddings) and can
also be applied to dense data to create a meaningful similarity metric. In AWARE, em-
beddings are used to explicitly represent and differentiate environments, and meta-learning
enables learning to generate embeddings.

AWARE’s Meta-learning Model Design. There are three key components in the
design of the meta-learning model:
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• A Distribution of MDPs (i.e., RL environments): Each MDP corresponds to one agent
to which the base learner will adapt. During the training of each agent, the meta learner
is exposed to a variety of environments and is trained to adapt to different MDPs. In
our case of workload autoscaling, each environment represents a different application
workload managed by the base learner, where workloads can have heterogeneous SLOs,
payloads, or architecture.

• A Model with Memory: We use a recurrent neural network (RNN) [273, 274, 275]
that maintains a high-dimensional hidden state with nonlinear dynamics to acquire,
process, and memorize knowledge about the current environment. In an RNN, hidden
layers are recurrently used for computation. Compared to memoryless models such
as autoregressive models and feed-forward neural networks, RNNs store information
in the hidden states for a long time, so they are effective in capturing both spatial
and temporal patterns. We did not explicitly use memory augmentation [276] for our
RNN meta learner because we found that the features of our application workloads are
not as high-dimensional as those of computer vision tasks [276], and the RNN hidden
states suffice to provide good representations.

• Meta-learning Algorithm: A meta-learning algorithm learns to update the base learner
to optimize for the purpose of adapting quickly to a previously unseen environment [261,
272]. Our novel approach uses an ordinary gradient descent update of RNN with a
hidden state reset at a switch of MDPs. As training proceeds, the algorithm learns
how to generate an embedding to best represent the environment and differentiate one
environment from another.

Integration between Meta Learner and Base Learner. The base learner discovers a
rule that generalizes across data points for an (Ai, Ej) pair, while the meta learner generalizes
across (Ai, Ej) pairs. Fig. 5.5 illustrates the interaction between the meta learner ( 2 in
Fig. 5.4) and the base learner. Suppose that each data point used in the training and
inference of the RL agent (i.e., a base learner) with the (Ai, Ej) pair i is {(st, at, rt)}0≤t≤T ,
i.e., one RL trajectory TRi from the environment i; then, each data point in the meta learner
is a bundle of M trajectories from the same environment, i.e., [TRi

1, TR
i
2, . . . , TRi

M ]. These
episodes contain characteristics of the ongoing task that can be used to abstract some specific
information about the environment (through <state, action, reward> transition sequences).
The meta learner uses a bidirectional RNN [275] to generate an embedding given a sequence
of RL trajectories from the same environment (same base learner). Unidirectional RNN has
the limitation that it processes inputs in strict temporal order, so the current input has
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Figure 5.6: An example illustrating the idea of workload embedding for encoding spatial
and temporal characteristics from a systems perspective.

the context of previous inputs but not the future. Bidirectional RNN, on the other hand,
duplicates the RNN processing chain so that the inputs are processed in both forward and
backward orders to enable looking into future contexts as well.

The input trajectories (to the meta learner) are selected from the RL trajectory database
(that are generated by the RL agent interacting with the current RL environment) dynami-
cally at runtime. We chose the top M trajectories that have resulted in the highest rewards
so far because the experimental results show that the trajectories with lower rewards are
unhelpful or even harmful. Intuitively, those lower-reward trajectories are generated with a
random policy or a poorly trained policy, so they are not representative of the workloads.

The output from the bidirectional RNN of the meta learner is an embedding that is used to
fingerprint/represent the (Ai, Ej) pair with which the base learner is interacting. As shown
in Fig. 5.5, the generated embedding based on past experience (i.e., the episodes previously
explored by the base learner) is fed to the base learner as part of the input at each time step.
Since we adopted as our base learner the RL design from FIRM [1], which is an actor-critic
RL algorithm, the embedding is taken by the actor network.

Interpreting Embeddings from Systems Perspective. The environment-specific
embedding is able to differentiate one (Ai, Ej) pair from another and thus guides the base
learner to adapt to the new environment. Fig. 5.6 visualizes the key idea of embedding.
The spatial and temporal characteristics of the workloads are encoded and mapped onto a
low-dimensional latent vector space by the embedding layer. Workloads with similar char-
acteristics are projected to locations that are close to each other on that vector space. For
instance, the yellow points (upper figure) indicate that workloads with similar performance
sensitivities (to resource allocations) are projected to locations near each other in the em-
bedding vector space. The blue points (lower figure) show that workloads with similar load
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arrival patterns are projected to adjacent locations in the embedding vector space. By
calculating the cosine similarity between any two generated vectors (i.e., embeddings), we
can get a monotonic similarity measure. To help understand how generated embeddings
can represent spatial and temporal characteristics, we selected RL trajectories from (Ai, Ej)

pairs with human-detectable different performance sensitivities or load patterns, and then
the plotted embedding projection shows that, indeed, similar workloads are closer to each
other when comparing cosine similarities of their embeddings. In Fig. 5.6 (upper), the sensi-
tivity of application performance to different resource allocations is shown in the heatmaps
to illustrate the spatial characteristics, with the X-axis being CPU cores and the Y -axis
being allocated RAM. Darker colors represent worse performance in terms of application
request-serving latency. In Fig. 5.6 (lower), the application load-per-second time series are
plotted to represent the temporal characteristics. Again, workloads with similar patterns
are projected to adjacent locations in the output vector space.

Meta learner Training. During the training of the meta learner, both the meta learner
and base learner model parameters are updated. After each RL episode, the loss value is
generated by the base learner and is backward-propagated to update the model parameters
in the base learner. Since the meta learner is trained across a distribution of environments,
the total loss of all sampled environments in the training dataset is used to update the
model parameters in the meta learner. In the end, the trained meta learner is capable of
abstracting the individuality of each (Ai, Ej) pair; the trained base learner is a shared RL
model that is able to generate optimal workload autoscaling policies conditioned on the
workload embeddings provided by the meta learner. The base learner can be used as a
starting point and as the basis for fine-tuning a specific novel (Ai, Ej) pair in the inference
stage.

Meta learner Inference. After the meta learner is trained, the meta-learning model
is able to adapt the base learner to a new (Ai, Ej) pair that has never been encountered
during training. Note that even though the new environment has never been encountered
during training, it comes from the same distribution as, or shares similar patterns with, the
encountered ones, so that transferring is still possible [261, 270, 271, 272]. The adaptation
process only requires limited exposure to the new environment. Therefore, AWARE simply
samples RL episodes and runs the meta learner to generate the workload embedding. With
the workload embedding, the base learner can be continuously trained to learn the workload
autoscaling policy for the new (Ai, Ej) pair. The meta learner model parameters are fixed
during the inference stage.
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Algorithm 5.1 RL agent lifecycle transition management for bootstrapping and triggering
of online retraining. Four status codes INITIALIZED, ONLINE, OFFLINE, and SERVING stand
for agent-initialized, online training, offline training, and online policy-serving, respectively.
Require: Rewards R = [rt]t∈T , User Profile P
1: procedure ObserveAndTrigger(R, P )
2: stage← INITIALIZED
3: while True do
4: if state.equal(INITIALIZED) then
5: if P .BOOTSTRAP == True then
6: stage← OFFLINE ▷ Bootstrapping
7: else
8: stage← ONLINE ▷ Skip Bootstrapping
9: end if

10: else if state.equal(OFFLINE) then
11: if avg(R) ≥ P.Tonline then
12: stage← ONLINE
13: end if
14: else if state.equal(ONLINE) then
15: if avg(R) ≥ P.Tserving & std(R) ≤ P.Tvar then
16: stage← SERVING
17: end if
18: else if state.equal(SERVING) then
19: if avg(R) < P.Tserving ∥ std(R) > P.Tvar then
20: stage← ONLINE
21: end if
22: end if
23: end while
24: end procedure

5.3.3 Incremental Retraining

When deploying the RL agent in a production system, one needs to ensure that the policy
behaves as expected and scales to the workload in production. AWARE leverages continuous
monitoring to detect any anomalous behavior and trigger retraining when needed. Alg. 5.1
describes how AWARE’s RL retraining module ( 3 in Fig. 5.4) manages the lifecycle of the
agent and enables incremental retraining at runtime (lines 14–21). The input to the retrain-
ing module includes (a) the user profile specifying the configuration, and (b) recent rewards
pulled from the RL trajectory database. When the mean and the standard deviation of the
recent rewards satisfy the threshold-based condition (i.e., agent performance is bounded to
a target value), the agent enters the policy-serving stage; otherwise, the agent enters the
policy-training stage. Retraining of the RL agent is done through online interaction with
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the RL environment. As discussed in Section 5.3.4, non-RL-based approaches (i.e., HPA and
VPA) can be used as a fallback option for RL agents when high-stakes applications want to
keep the RL agent in the offline mode during retraining.

5.3.4 Bootstrapping

The policy at the early RL training stages could be worse than the baseline approaches.
For example, overprovisioning leads to low resource utilization, while under-provisioning
results in SLO violations. For production workloads, especially high-stakes applications,
such suboptimal actions are not acceptable. In AWARE, an RL bootstrapper ( 4 in Fig. 5.4)
has been designed to combine offline and online RL training. If the user specifies enabling
bootstrapping (as shown in lines 4–9 Alg. 5.1), the offline mode will be turned on first.
AWARE will then use Kubernetes HPA [257] (which is a threshold-based approach) for
horizontal workload autoscaling, and use Kubernetes VPA [264] (which adjusts resource
limits based on history profile) for vertical workload autoscaling. Note that HPA and VPA
can also be used as a fallback option for RL when high-stakes applications want to keep the
RL agent in the offline mode during retraining, as discussed in Section 5.3.3.

In the offline mode, the RL bootstrapper intercepts the request-response path between the
agent and the RL API gateway and replaces the RL agent with the fallback controller to react
to the received states and generate actions at each time step. The RL API gateway then takes
the received action for execution, and the resulting behavior is the same as when workloads
are managed by HPA and VPA. The RL agent samples trajectories from the trajectory
database for offline policy training. To overcome extrapolation errors whereby previously
unseen state-action pairs are erroneously estimated, we apply a state-conditioned generative
model to combine with the critic network for producing previously seen actions [277]. In the
online training mode, the agent will then directly interact with the RL environment through
the API gateway.

5.4 IMPLEMENTATION

5.4.1 Kubernetes MPA

We propose our own design and implementation of multidimensional Pod autoscaling be-
cause the current HPA and VPA controllers are independent of each other and can lead to
a large number of tiny Pods [278]. Google MPA [279] is a pre-GA beta version product
that offers an integrated solution for HPA and VPA, but it is not open-sourced and does
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Figure 5.7: MPA design overview and integration with RL.

not support custom recommenders. In AWARE, the MPA framework combines the actions
of vertical and horizontal autoscaling but separates the actuation from the controlling algo-
rithms. As shown in Fig. 5.7, there are three controllers (i.e., a recommender, an updater,
and an admission controller) and an MPA API (i.e., a CRD object [265]) that connects the
autoscaling recommendations to actuation.

The multidimensional scaling algorithm is implemented in the recommender mostly by
importing HPA and VPA libraries to serve as the fallback option for RL-based approaches.
The metrics required by the algorithm are collected from the Kubernetes Metrics Server,
including default metrics such as container resource utilizations and custom metrics such as
application throughput or latency. The scaling decisions derived from the recommender are
stored in the MPA object as scaling configurations. The updater and the admission controller
retrieve those updated configurations from the MPA object and then actuate them as vertical
and horizontal actions on the application Deployments. The separation of action actuation
from scaling decision generation allows developers to replace the default recommender with
the alternative recommender, i.e., the RL controller. The implementation is in Go and at
the stage of releasing to the Kubernetes upstream as well.

5.4.2 Integration with RL

The creation of MPA is through declarative YAML files. To integrate MPA with RL
agents, one needs to specify a custom recommender to replace the default recommender
(HPA+VPA). After an MPA is initialized for the application deployment, an MPA wrapper
is created as a shim layer to communicate with the RL agent through RPCs. We follow
the “agent-centric” pattern of request-response interaction advocated by OpenAI Gym [268].
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The exposed interfaces include (1) init() (for initializing the RL environment), (2) state
= reset() (for resetting the environment at the beginning of each RL episode), and (3)
state, reward = step(action) (for RL agent stepping). When the MPA wrapper receives
an action through the RPC request, it first translates the action to vertical and horizontal
scaling configurations and writes to the MPA object. We deploy Prometheus [119], the
standard monitoring service in Kubernetes, to export default and custom metrics from the
application Deployment. The wrapper then queries the Prometheus service for real-time
metrics and translates to RL states and rewards. Finally, the wrapper sends the metrics
back to the agent through the RPC response. The MPA wrapper is implemented in Python.

5.4.3 Meta-learning-based RL-serving

AWARE’s meta-learning-based RL agent management framework is implemented in Python.
Both the base learner (adopted from FIRM [1]) and the meta learner are implemented us-
ing PyTorch [139]. The meta learner is essentially a bidirectional two-layer RNN followed
by two fully connected layers with the ReLU activation function. We chose the trajectory
bundle size to be 20 for the fastest adaptation with the fewest trajectories according to the
sensitivity analysis. Each RNN hidden layer consists of 256 neurons, and the fully connected
layers consist of 256 and 64 neurons. We chose two layers and an embedding size of 64
because adding more layers and hidden units does not increase performance in our experi-
ments; instead, it slows down training speed significantly. We used the Adam optimizer for
parameter updates.

RL trajectories are saved to InfluxDB [280], an open-source time-series database that is
built to handle metrics with time-stamped data. Recent rewards, sampled RL trajectories
for offline base learner training, and the inputs for embedding generation are all pulled from
the trajectory database by using the InfluxDB Python client library.

AWARE provides a simple and declarative user interface for RL pipeline developers, which
is consistent with Kubernetes’ way of creating and managing objects in the cluster. To specify
the targets for the workloads, i.e., resource utilization targets and the application SLO (if
there is one), users only need to provide a YAML file following the definition template. Both
application latency and throughput SLOs are currently supported. In addition, users can
also specify the thresholds for RL rewards and whether or not to enable bootstrapping in
the YAML file, which constructs the profile used in Alg. 5.1.

96



5.5 AWARE EVALUATION

Our experiments addressed the following research questions:

§5.5.2 Does AWARE provide fast model adaptation to new workloads? What is the value
of meta-learning?

§5.5.3 How does AWARE perform in online policy-serving when workload updates or load
changes occur?

§5.5.4 How does AWARE perform in the early stages of policy training, compared to RL
agents without bootstrapping?

5.5.1 Experimental Setup

We implemented an application generator capable of generating a large number of syn-
thetic applications by combining the 16 selected representative production application seg-
ments [266] (discussed in Section 5.2.3 as well) based on random sampling with replacement
from the segment pool. Each segment represents the smallest granularity of common work-
loads in cloud datacenters. In addition, each segment has to be associated with its own
inputs to simplify load generation (e.g., the image manipulation workloads come with ran-
dom images). The generator also comes with setup and tear-down scripts for all external
services each segment uses (e.g., databases or messaging queues). Overall, we generated 1000
unique applications, deployed them as Deployments in a Kubernetes cluster of 11 two-socket
physical nodes, and ran an RL-based multidimensional autoscaler with each application.
Each server consists of 56–192 CPU cores and RAM that vary from 500 GB to 1000 GB.
Seven of the servers use Intel x86 Xeon E5 processors, and the remaining ones use IBM
ppc64 Power8 and Power9 processors.

While it would be impossible to cover all cloud workloads, the selected production work-
load segments should enable the generation of a large number of synthetic cloud workloads
with varying resource consumption profiles. In the future, the number of implemented seg-
ments can easily be extended if specific workload profiles are missing. We refer to the
open-source artifact for additional details on the generator implementation. With the same
datacenter workload traces [267] discussed in Section 5.2.3 with respect to RL agent train-
ing and policy-serving, we divided the 1000 generated application pool with the 8:2 ratio.
The 800 applications with varied workloads are used to train the meta learner, while the
remaining 200 applications are used to evaluate the adaptability. The total runtime is ∼60
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Figure 5.8: RL agent retraining cost and performance comparison of AWARE, transfer
learning (TL), and transfer learning with augmented features (TL+).

days, and the meta learner training time is ∼312 hours on an Intel(R) Xeon(R) E5-2695
processor.

The RL formulation and design (in the base learner) are adopted from FIRM [1] (as
mentioned in Section 5.2.3). As an end-to-end evaluation, Fig. 5.1 shows that, compared
to AWARE, the RL-based autoscaler FIRM by itself suffered from poor performance dur-
ing the initial training stage (i.e., Stage 1 , which demonstrates the benefit of AWARE’s
bootstrapping mechanism), online policy-serving performance degradation (i.e., Stage 2 ,
which demonstrates the benefit of the online retraining triggering mechanism), and slow
adaptation with non-trivial retraining (i.e., Stage 3 , which demonstrates the benefit of
meta-learning). We then present the evaluation results related to each research question in
Section 5.5.2–Section 5.5.4.

5.5.2 Fast Adaptation

To study adaptability to new workloads, we compared AWARE with the existing transfer
learning approach. FIRM [1] leverages transfer learning to train an RL agent for a new
service based on previous RL experience gained when training the RL agent for a known
service. In the transfer-learning-based approach (TL), the model parameters (weights) are
shared between the agents managing the known workload and the new workload. We also
compared AWARE with a novel approach (TL+) based on transfer learning that includes
additional spatial and temporal features in the RL states, since the meta learner in AWARE
is trained to output an embedding to represent the spatial and temporal characteristics of
the (Ai, Ej) pair. We used the widely used ARIMA model [281] to generate the predicted
load for the next time step (i.e., temporal feature) and recorded a table mapping from

98



Reward CPU Util Memory Util SLO Violations
0

1

2

3

R
el

at
iv

e
P
er

fo
rm

an
ce

Rule-based

No Retraining

AWARE

Converged RL
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ing, the rule-based method, and the agent with the converged RL policy. In the comparison
of reward and CPU/memory utilization, the higher, the better, while a lower number of SLO
violations is better.

resource allocation to performance (i.e., spatial feature). We performed A/B tests in which
the workload traces were the same, but the recommender in MPA was replaced with TL,
TL+, and AWARE, which drove the horizontal and vertical scaling of the workload. We
repeated the A/B test 100 times. In each test, we randomly selected a workload from the
pool and trained the RL agent to convergence. We then randomly selected 10 other different
workloads from the pool for adaptivity evaluation. We measured the retraining time, CPU
cycles involved in retraining, utilization deficit (compared to the converged RL policy), and
SLO violations.

Fig. 5.8 shows that AWARE adapted 5.5× and 4.6× faster (saved 68–72% CPU cycles)
than TL and TL+, respectively. During the adaptation period, TL+ had 4.6× and 6.2×
higher CPU and memory utilization deficit compared to AWARE while AWARE reduced
SLO violations by 7.1×. TL+ encodes additional spatial and temporal features, but each
state is still a stateless snapshot of the running workload. Additional features (i.e., the table
and the ARIMA output) greatly increase the state space. Meta-learning, on the other hand,
offers a systematic and automated way of learning how to differentiate the workloads well
and outputs a low-dimensional embedding to be used by the base learner.

5.5.3 Online Policy-serving

To evaluate the online policy-serving performance when facing workload updates and load
changes (described in Section 5.2.3), we compared AWARE with (a) a rule-based approach,
(b) an RL agent without continuous monitoring and retraining, and (c) an RL agent with
the converged policy. For the rule-based approach with manual scaling, we measured the
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Figure 5.10: RL agent training performance comparison of AWARE, no bootstrapping,
the rule-based method, and the agent with the converged RL policy. In the comparison of
reward and CPU/memory utilization, the higher, the better, while a lower number of SLO
violations is better.

maximum CPU utilization when the SLO was met, and set it as the threshold for HPA.
We used the default Auto mode [264] for VPA. We performed the same style of A/B tests
100 times and replaced the MPA recommender with the four approaches. In each A/B
test, we randomly selected a workload from the pool, trained the RL agent to convergence,
and injected a series of the seven random instability scenarios introduced in Section 5.2.3.
We then measured the average reward, CPU/memory utilization, and the number of SLO
violations during the time until the agent managed by AWARE converged. Fig. 5.9 shows
that AWARE had 9.6% and 14.8% higher CPU and memory utilization, and reduced SLO
violations by 3.1× compared to the RL agent without retraining (the second-best approach),
resulting in 8.6% higher per-episode reward. Compared to the converged RL policy, AWARE
had a 3.6% lower average per-episode reward because we set the retraining threshold to be
5, corresponding to a 2.6% reward degradation. Sensitivity analysis showed that AWARE
converged to the no-retraining baseline as the threshold increased while a smaller than 5
threshold led to constant retraining with no policy serving.

5.5.4 Bootstrapping

To study how much bootstrapping helps reduce the cost of early-stage RL training, we
compared AWARE with (a) the rule-based approach (same as in Fig. 5.9), (b) an RL agent
without bootstrapping, and (c) an RL agent with the converged policy. Since the per-episode
reward achieved by the rule-based autoscaler is around 130 (translated from the measured
utilization and performance), we set the bootstrapping threshold in AWARE to 130. In
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the sensitivity analysis, we observed that a higher threshold led to endless bootstrapping
driven by the rule-based autoscaler (since the measured reward is always lower than the
threshold), while the lower the threshold, the more performance degradation AWARE had
during its early-stage training. A threshold of 0 basically converges to the learning curve
without AWARE bootstrapping (i.e., no offline learning). We performed A/B tests 100
times and replaced the MPA recommender with the four approaches. In each A/B test,
we randomly selected a workload from the pool and trained the RL agent to convergence
(with or without bootstrapping). We then measured the average reward, CPU utilization,
memory utilization, and the number of SLO violations during the time until the RL agent
converged. Fig. 5.10 shows that AWARE had 47.5% and 39.2% higher CPU and memory
utilization, respectively, and reduced SLO violations by a factor of 16.9× compared to the RL
agent without bootstrapping (the second-best approach), resulting in 47.3% higher average
per-episode reward before convergence.

5.6 EXTENSION TO GENERAL ML FOR SYSTEMS TASKS

In addition to resource management [1], ML techniques such as supervised learning (SL)
and RL have been widely applied in many other system management tasks, e.g., job schedul-
ing [69] and power management [16]. However, from production experience at Microsoft [57],
costly model retraining (regarding computation time, energy consumption, and additional
hand-made data collection) is a common issue to adapt to previously unseen applications or
deployment environments that are constantly introduced in heterogeneous (or even multi-
cloud) datacenters [13, 17].

To facilitate efficient ML model adaptation in practice, we extend the idea of meta-learning
and introduce FLASH, a general framework that assists developers in training and deploying
ML agents with fast adaptability to diverse cloud applications and environments in the
context of different system management tasks. The goal is not to revise existing ML/RL
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algorithms or modeling approaches that have been proposed to handle various system tasks
but to improve existing model training and adaptation in a transparent manner.

Background. FLASH is in line with the vision of an ML-centric cloud platform [56]
that embeds ML to handle various system management tasks throughout the platform by
learning from data and automating management decisions. As shown in Fig. 5.11, a system
management task (e.g., workload autoscaling in a Kubernetes cluster) involves three main
components: application (e.g., the deployed workload), environment (e.g., the underlying
infrastructure), and management agent (i.e., either an ML agent with a model trained
to perform the task or a non-ML agent based on static heuristics developed with offline
profiling). Independently for each task, FLASH reduces the model retraining cost when
adapting the ML agent across applications and environments specific to that task.

Pretrain-Finetune Paradigm. FLASH is the first general framework that introduces
embedding-based meta-learning [261, 282] for ML-based cloud system management. Given
a management task (e.g., workload autoscaling) and an ML agent (originally designed and
trained to handle that task in the context of application Ai and environment Ej), FLASH
introduces an abstraction of a base learner . FLASH’s objective is to facilitate fast adapta-
tion (i.e., reduced training time) of the base learner to novel (Ai, Ej) pairs. Toward this goal,
we introduce a meta learner trained to handle a given management task and generalize
across different (Ai, Ej) pairs. The meta learner captures application and environment het-
erogeneity by explicitly modeling the unique characteristics of (Ai, Ej) pairs using learned
embedding representations, and thus benefits adaptation.

FLASH operates in two phases: pretraining and fine-tuning, as shown in Fig. 5.12. Instead
of training a model for each (Ai, Ej) pair, FLASH first pre-trains a shared model as the
common basis with meta-learning. To rapidly adapt to a new (Ai, Ej) pair in a task, the
shared model is then further fine-tuned by conditioning on the embedding generated (by the
meta learner) for the new (Ai, Ej) pair.

The core design of FLASH originates from this key insight that existing training datasets
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Table 5.4: FLASH use cases and ML agents developed for cloud system management tasks.
See Section 5.6.2 for detailed descriptions.
Use Case Application Environment Agent Model Input / State (RL) Output / Action (RL) Loss / Reward (RL)

Resource Config
Search (RCS)
[64]

Serverless
Function

Serverless
Platform SL Fully Connected

Neural Network

Base memory, Execution time, Target memory,
Node.js process.resourceUsage()
and process.cpuUsage() outputs

Execution time
Mean absolute
percentage error
(MAPE)

Workload
Autoscaling (WA)
[1]

Kubernetes
Deployment

Kubernetes
Cluster RL

DDPG (Deep
Deterministic
Policy Gradient)

Resource limits (CPU, RAM), Resource
utilization (RU), SLO preservation ratio (SP ),
Load changes

Resource limits,
Number of replicas

α · SPt + (1− α)
·∑i∈R RUi

CPU Frequency
Scaling (CFS)
[16]

Docker
Container

Physical
Server RL Q-Learning

Instructions per second (IPS), CPU usage,
Measured core frequency, SLO preservation
ratio (SP ) for latency/throughput

Core Frequency
β · ((IPSt − IPSt−1)
/IPSt)∆freq>0+
(1− β) · SPt

of an ML agent inherently contain spatial-temporal characteristics specific to each (Ai, Ej)

pair. However, those characteristics are poorly utilized to generalize across (Ai, Ej) pairs
because the ML agent’s goal is to specialize for the specific pair that the agent is lastly trained
on. For instance, in resource management, workload’s performance sensitivities to resource
configurations (i.e., spatial characteristics) can be derived from the labels in supervised
learning [64] or RL rewards [1]. In autoscaling, the time-varying load patterns (i.e., temporal
characteristics) are available in RL trajectories [66]. To utilize available datasets and learn
to generalize across (Ai, Ej) pairs, we leverage meta-learning [272], a family of techniques
known as “learning to learn” [283], which has demonstrated fast model adaptivity in image
classification [282], robotics [261], and cybersecurity [284].

5.6.1 General Meta Learner Design.

We introduce embedding-based meta-learning that is designed to explicitly model the in-
dividuality of each (Ai, Ej) pair in a system management task. Instead of meta-learning
the architectural or algorithmic level configurations (e.g., parameter initialization, learning
rate, or neural network architecture), FLASH’s meta learner learns to generate an embed-
ding that projects the application- and environment-specific characteristics to a vector space.
On this projected vector space, (Ai, Ej) pairs with similar characteristics are projected to
neighboring locations, while those different ones are projected to locations far from each
other.

As shown in Fig. 5.13, the meta learner (per task and thus per SL/RL base learner)’s
network architecture consists of (1) an input layer, (2) a recurrent neural network (RNN)
layer, and (3) a fully connected neural network (FCNN) layer (i.e., the embedding layer).

Input Layer. The input layer selects what kind of information the meta learner retrieves
from the data buffer for embedding generation. Based on the insight that the training
datasets of the developed ML models already contain spatial-temporal characteristics of each
(Ai, Ej) pair, labeled data samples (in SL) and trajectories (in RL) are used as inputs to the
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Figure 5.13: FLASH’s architecture and integration between the meta learner and base
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meta learner. However, for RL, simply using all trajectories is computationally intensive in
practice. Instead, we choose M/2 trajectories with the highest rewards and M/2 trajectories
with the lowest rewards, excluding lower-reward trajectories generated during the initial
training stage due to their lack of representativeness.

RNN Layer. We use a bidirectional GRU (a special class of RNNs) [273, 275] that
maintains a high-dimensional hidden state with nonlinear dynamics to acquire, process,
and memorize knowledge about the current environment. In an RNN, hidden layers are
recurrently used for computation. Compared to memory-less models such as autoregressive
models and feed-forward neural networks, RNNs store information in hidden states for a long
time. Hence, they are effective in capturing both spatial and temporal patterns. In addition,
a unidirectional RNN has the limitation that it processes inputs in strict temporal order,
so the current input has the context of previous inputs only (not the future). Bidirectional
RNNs, on the other hand, duplicate the processing chain so that the inputs are processed
in both forward and backward orders to include future contexts as well. It should be noted
that we do not use the memory augmentation technique [276] for our RNN-based meta
learner because we find that the feature space in system management tasks is not as high-
dimensional as those of computer vision tasks, and the RNN hidden states suffice to provide
good representations.

Embedding (FCNN) layer. The output from the RNN layer of the meta learner is fed
to a fully connected two-layer neural network to generate an embedding (i.e., a fixed-size
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vector) that is used to fingerprint or represent the (Ai, Ej) pair with which the base learner
is dealing. As shown in Fig. 5.13, the generated embedding is finally concatenated by the
base learner as part of the SL feature vector or RL state vector at each time step.

More implementation details, network architecture, and hyperparameters are presented in
Appendix A.1.

Pre-training and Fast Adaptation FLASH is pre-trained on a pool of (Ai, Ej) pairs
(i.e., a pretraining pool of applications or environments) and fine-tuned to novel (Ai, Ej)

pairs in the adaptation pool, as shown in Fig. 5.14.

• Pretraining. FLASH is exposed to a pretraining pool of (Ai, Ej) pairs and trained to
discriminate the individuality of each pair with meta-learning. The loss value generated
from the base learner is backward-propagated to update the model parameters of both
the base learner and the meta learner. FLASH uses an ordinary gradient descent
update of RNN-based networks (inspired by SNAIL [261]) with a hidden state reset
at a switch of (Ai, Ej) pairs. After convergence, the model checkpoint of the meta
learner and the base learner (which is called the pretrained shared model) is then served
as a common basis to fine-tune customized models for different (Ai, Ej) pairs in the
adaptation stage. In addition to individuality, FLASH also captures the commonality
across (Ai, Ej) through the shared model (or shared policy in RL) that is conditioned
on the embeddings, which allows a base learner to adapt to different pairs with the
same shared model parameters. The resultant shared model in FLASH is analogous to
a pre-trained “foundation model” for a given cloud system management task.

• Adaptation. Since the pretrained shared model is conditioned on application- or
environment-specific embeddings, the adaptation process only requires limited expo-
sure (i.e., a few SL samples or RL trajectories to feed to the meta learner) for embedding
generation. Note that even though the new (Ai, Ej) pair has never been encountered,
adaptation is still possible when the new pair shares similar patterns with the encoun-
tered ones [261, 272]. For the pairs with quite dissimilar patterns (identifiable based
on the distance in the embedding space as we describe in Section 5.6.3 predictability
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// For supervised learning agents
interface SLModel <F: Feature , P: Label > {

void RegisterBaseLearner(string , F, P);
void InsertDataSamples(List[<F, P>]);
Embedding <E> GetEmbedding ();
void ToggleMetaModelUpdate(bool);

}
// For reinforcement learning agents
interface RLModel <S:State , A:Action , R:Reward > {

void RegisterBaseLearner(string , S, A);
void InsertTrajSamples(List[<S, A, R>]);
Embedding <E> GetEmbedding ();
void ToggleMetaModelUpdate(bool);

}

Listing 5.1: FLASH APIs for SL and RL agents. SLModel is parameterized by the feature
and label type of the data samples. RLModel is parameterized by the state, action, and reward
type of the RL trajectories.

analysis), the shared model/policy conditioned on the embedding can be further fine-
tuned to adapt to the optimal customized model/policy. The model parameters of the
meta learner are fixed.

Overall, the pretrain-finetune paradigm provides an efficient way to balance pre-training cost
with the need for fast adaptation for heterogeneous cloud applications and environments.

FLASH Programming Interface FLASH exposes a unified API to ML agent developers
that supports both SL and RL as shown in Listing 5.1. Each interface has four operations
that the developers need to implement for integration with FLASH.

(1) Register the SL or RL base learner by providing the name of the system manage-
ment task (there will be one meta learner per task) and the input shapes. The
meta learner then starts to initialize the meta-learning network by configuring the
dimensions. The input dimension is numSamples*(F.shape+P.shape) for SL and
numTrajs*(S.shape+A.shape+1) for RL.

(2) Insert the data samples (for SL) or trajectory samples (for RL) into the data buffer.
The meta learner will update the data buffer based on the selection criteria in Section
5.6.1.

(3) Get the current embedding. The base learner will take the embedding generated by
the meta learner and concatenate it to the feature vector in the case of SL or the state
vector in the case of RL.
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(4) Turning on and off the meta learner model parameter update. This function transitions
between the meta-learning training and inference stages. When turned off, the shared
model (i.e., pre-trained meta learner and base learner) parameters will not be updated.
Practically, developers can retrain the meta learner every week or so to incrementally
minimize out-of-distribution probabilities based on the frequency that new (Ai, Ej)

pairs are added to the task.

5.6.2 Additional Use Cases

In addition to FIRM, we study two other use cases of FLASH, each of which corresponds
to a different system management task. The three chosen ML agents differ in input data,
ML models they use, and the output they produce (i.e., prediction or action). All three
agents are handled by FLASH in a unified manner without any changes to the original model
design, regardless of the modeling approach (i.e., supervised learning or RL), architecture,
or optimization constraints.

Resource Configuration Search. A resource configuration agent (i.e., Sizeless [64])
predicts the performance of a serverless function on various resource configurations. In this
case study, we focus on the most recent work, Sizeless [64], which applied supervised learning
in predicting the optimal memory size of serverless functions based on monitoring data for a
single memory size. As mentioned in Section 2.4, the diversity of application workloads and
compute infrastructure requires model adaptation. We take the open-source implementation
of the Sizeless model as the base learner and integrate it with FLASH meta learner. The
resultant agent is referred to as FLASH-Sizeless.

In Sizeless, the task of predicting the execution time of a serverless function is formulated
as a regression problem. The input includes a target memory size and monitoring data
(e.g., heap usage) when running at base memory size(s), and the output is the estimated
execution time (see Table 5.4). The users can then decide which memory configuration to
choose, given the cost and estimated performance when running with that configuration.
Sizeless trains a fully connected neural network with ReLU as the activation function based
on the average execution time and monitored resource consumption metrics when running
with the base memory size(s). More details are shown in Appendix A.2. The features and
labels are recorded to the data buffer by calling InsertDataSamples(). The embedding is
retrieved with GetEmbedding() and then appended to the original feature vector used in the
fully connected neural network.

CPU Frequency Scaling. A power management agent overclocks CPU cores (by scaling
up frequency) only when it benefits the workloads. For instance, SmartOverclock is an
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intelligent on-node overclocking agent proposed by Microsoft [16]. We adopt SmartOverclock
as the base learner to integrate with FLASH, and the resultant agent is referred to as
FLASH-SmartOverclock. CPU frequency scaling presents opportunities for substantial
performance improvements or saving of CPU cores on different sets of workloads [285, 286].
Despite the benefits of overclocking, it significantly increases node power consumption and
can shorten processor lifetimes. SmartOverclock learns to balance application workload
performance improvements with extra power cost by using RL to decide when and how
much to scale the CPU core frequency. However, application heterogeneity leads to quite
diverse performance sensitivity to frequency changes, depending on compute or I/O intensity
at any given time during the application lifecyle [287]. Therefore, learned frequency scaling
policies may not work for a novel set of application workloads.

SmartOverclock uses an RL model, Q-Learning [211]. At each time step t (every 1 sec-
ond), the agent monitors the average Instructions Per Second (IPS) performance counter
across the cores of each VM and learns when to adjust the core frequency. Table 5.4
shows the RL model’s state and action spaces. Since the goal is to increase the frequency
only when the workload benefits from it, e.g., (a) higher CPU frequencies increase the
IPS, or (b) the SLO preservation ratio (SPt) is high, the reward function is defined as
rt = β · ((IPSt − IPSt−1)/IPSt)∆freq>0 + (1− β) · SPt. More details of the model and this
case study are deferred to Appendix A.4. FLASH receives an RL trajectory when the base
learner calls InsertTrajSamples() after each episode. To handle variable-length trajecto-
ries, each trajectory in the buffer is padded with 0s to have equal lengths. Then, the state,
action, and reward tensors along the last dimension are concatenated to create the input for
the RNN layer. The embedding is retrieved by calling GetEmbedding() and then appended
to the state vector taken by the Q-Network (in Q-Learning) to complete the value function.

5.6.3 FLASH Evaluation

In each case study, we evaluate (1) the performance degradation of the ML agent with
FLASH when testing for new applications/environments, and (2) the efficacy of FLASH’s
meta learner in fast model adaptation. In addition, we show that a similarity metric derived
from the generated embeddings can be leveraged to enhance the predictability of adaptation
cost.

FLASH-Sizeless Setup. Three datasets are used for evaluation: (1) the original Sizeless
dataset [64] consisting of 2000 serverless applications, (2) the OpenWhisk dataset, which we
collected on a local OpenWhisk cluster following the same methodology as Sizeless but with
CPU allocation added as the resource configuration in addition to function memory size,

108



Table 5.5: Sizeless agent prediction error (i.e., MAPE) with and without FLASH.
Dataset Sizeless OpenWhisk CloudBandit

# of Samples 1-shot 2-shot 3-shot 1-shot 2-shot 3-shot 1-shot 2-shot 3-shot

Sizeless (training) 0.040 0.036 0.035 0.316 0.258 0.236 0.610 0.439 0.424
Sizeless (testing) 0.360 0.400 0.336 0.823 0.552 0.540 0.985 0.889 0.798

FLASH-Sizeless (training) 0.038 0.036 0.032 0.321 0.247 0.259 0.624 0.416 0.435
FLASH-Sizeless (testing) 0.046 0.038 0.034 0.357 0.263 0.275 0.649 0.424 0.497

Improved (testing) 87.22% 90.50% 89.88% 56.62% 52.36% 49.07% 34.11% 52.31% 37.72%

and (3) the CloudBandit dataset [235] for 30 VM-based applications which covers resource
configuration (e.g., VM type and vCPU count), performance metrics, system metrics on
three public cloud platforms. We run ten iterations of five-fold cross-validation with a 50/50
training/testing split for each dataset. Datasets (1) and (2) are used to evaluate the model’s
robustness across different applications, while dataset (3) is used to evaluate the robustness
across different cloud infrastructures (i.e., environments). Details of the dataset are deferred
to Appendix A.2.

FLASH-Sizeless Prediction Error without Adaptation. Table 5.5 shows the model
performance comparison where the evaluation metric is mean absolute percentage error
(MAPE). We evaluate the model performance on unseen applications (for Sizeless and Open-
Whisk datasets) and environments (for CloudBandit dataset) with X-shot (X ∈ [1, 2, 3])
settings, where X is the number of data samples Sizeless agent uses as the base configura-
tion(s) to predict the application performance under the target configuration. The Sizeless
dataset leads to the lowest testing MAPE (on average 0.37 for the vanilla Sizeless model
and 0.04 for FLASH-Sizeless) because function memory size is the only configuration be-
ing considered. The OpenWhisk dataset contains CPU allocation in addition to function
memory size, and thus the average testing MAPE is higher (0.64 for the Sizeless model and
0.3 for FLASH-Sizeless). The CloudBandit dataset results in the highest testing MAPE
because the collected data is across both heterogeneous workloads and three different cloud
providers. Lastly, the testing MAPE drops when the number of samples used as the base
configurations for prediction increases from 1-shot to 3-shot since the agent can leverage
more runtime information. FLASH-Sizeless achieves up to 90.5%, 56.6%, and 52.31% lower
MAPE compared to the original Sizeless model in datasets Sizeless, OpenWhisk, and Cloud-
Bandit, respectively. The improvement on the CloudBandit dataset is the lowest because
both the Sizeless and OpenWhisk datasets contain detailed system metrics (e.g., user/system
CPU time, heap used, and cache misses), which helps generate more expressive embeddings.

FLASH-SmartOverclock Setup. We leverage the open-source application generators
and representative serverless benchmarks from Sizeless to generate 1000 synthetic applica-
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Figure 5.15: Comparison of the performance and retraining cost of the SmartOverclock
model with FLASH.

tions (as described in Appendix A.4) because serverless workloads are highly dynamic (and
thus require autoscaling) and rely on the provider to manage the resources. For RL agent
training and inference, we use real-world datacenter traces [267] released by Microsoft Azure,
collected over two weeks in 2021. Next, we deploy the selected workloads in Docker contain-
ers on three different types of processors: Intel Xeon E5-2683 v3, Intel Xeon CPU E5-2695 v4,
and AMD EPYC 7302P. Therefore, the cross-application/processor settings require model
adaptation across both applications and environments.

In the evaluation, we repeat five experiment runs wherein, in each run, the pretraining of
FLASH-SmartOverclock is done on 200 randomly selected applications (i.e., the pretraining
pool in Fig. 5.14), and the adaptation evaluation is done on the remaining 800 applications
(i.e., the adaptation pool). A sensitivity study on the pretraining pool sizes is deferred to
Appendix A.7.

FLASH-SmartOverclock Reward Drop without Adaptation. To evaluate the per-
formance degradation without retraining, we design an autoscaler A/B test where FLASH-
SmartOverclock agent and the original SmartOverclock agent are the two variants control-
ling the autoscaling for the same set of traces. We repeat the A/B test 100 times. In each
test, we randomly select a processor type and an application from the application pool and
then train the agent until convergence. We then randomly select ten other different ap-
plications from the pool, each running on a randomly selected processor, for reward drop
evaluation. Fig. 5.15(a) shows the CDF of the per-episode reward, and we find that FLASH-
SmartOverclock improves the average reward drop percentage from the baseline (i.e., labeled
as “Converged” in the figure) from 39% to 7.1%.

FLASH-SmartOverclock Adaptation Cost. Similar to Section 5.5.2, we evaluate the
retraining cost by comparing FLASH with Transfer learning (TL) regarding the number of
RL episodes needed to converge. TL retrains an RL agent for a new application based on
previous RL experience gained for known applications. The model parameters (weights) are
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Figure 5.16: Correlation between the embedding similarity and (1) the reward drop per-
centage without retraining (in blue) and (2) the retaining cost with FLASH (in red).

shared between the agents managing the known workload and the new workload. Fig. 5.15(b)
shows the CDF of the RL retraining cost and, on average, FLASH-SmartOverclock adapts
9.2× faster than TL.

FLASH Adaptation Predictability The embedding generated by the meta learner
not only enables fast model adaptation to novel cloud applications or environments but
also provides predictability regarding both (1) performance drop and (2) retraining over-
head. Given two embeddings ei and ej, we found that the embedding similarity defined
as S(ei, ej) = (1 − ED(ei, ej) + CS(ei, ej))/2 can be a good indicator, where ED(ei, ej) is
the normalized Euclidean distance and CS(ei, ej) is the Cosine similarity between the two
embeddings. Fig. 5.16 illustrates the correlation between embedding similarity and (1) the
reward drop percentage (in blue) and (2) the number of RL episodes needed for retraining (in
red) with FLASH in the example task of workload autoscaling. Performance and retraining
cost prediction help understand the cost before deploying ML agents for new applications
or to new environments.

5.7 RELATED WORK

RL Training and Model-serving Frameworks. Ray [79] is an open-source distributed
execution framework that facilitates RL model training and serving by making it easy to
scale an RL application and schedule distributed runs to efficiently use all resources (i.e.,
CPU, memory, or GPU) available in a cluster. Amazon SageMaker [288] uses the Ray RLlib
library that builds on the Ray framework to train RL policies. SageMaker also provides cloud
services that help build and deploy ML models (e.g., data processing and model evaluation).
RLzoo [289] is an RL library that aims to make the development of RL agents efficient by
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providing high-level yet flexible APIs for prototyping RL agents. RLzoo also allows users to
import a wide range of RL agents and easily compare their performance. Park [66] provides
12 representative RL environments in the field of systems and networking (e.g., job schedul-
ing) for developing and evaluating RL algorithms. Genet [70] is an RL training framework
for learning better network adaptation policies. Genet leverages curriculum learning [290],
which aims to sequence tasks to achieve the best performance on a specific final task instead
of quickly adapting to a new task within a small number of gradient descent steps.

RL in Production. Panzer et al. [291] provide a survey of existing RL applications
in production system domains, including resource scheduling. They summarize the imple-
mentation challenges and generalizability of simulation-trained RL models. SOL [16] is an
extensible framework for developing ML/RL-based controllers for tasks such as core fre-
quency scaling. SOL is complementary to AWARE, which can further guarantee that the
RL agent operates safely under various realistic issues, including bad data and external in-
terference like resource unavailability. SIMPPO [2, 218] provides a scalable framework based
on the mean-field theory that enables multiple RL agents to coexist in a shared multi-tenant
environment. Autopilot [198] is a workload autoscaler used at Google that leverages multi-
armed bandits (i.e., the simplest version of RL) to choose a variant of the sliding window
algorithms that historically would have resulted in the best performance for each job. In its
essence, it is still a heuristic mechanism and has been shown [59] to suffer from poor system
stability because of inaccurate estimation of horizontal concurrency; it can also result in a
large number of tiny Pods [278] due to the independence between horizontal and vertical
scaling.

Meta-learning for Systems. ResTune [292] leverages meta-learning to optimize hy-
perparameters that boost Bayesian optimization on database performance tuning knobs.
Xue et al. [293] employ neural processes, a meta-learning model, to train a fully connected
neural network to predict workload CPU utilization. However, neural processes cannot
adapt the model parameters on the fly during inference based on the current task or con-
text [282]. Other examples of meta-learning model parameter initialization include PSO [294]
and DMRO [295], which do not explicitly and adequately model the individuality of tasks
as FLASH does through its interpretable embedding generation.

Zero/Few-shot Learning for Systems. Hilprecht et al. ([296]) first propose the idea
of zero-shot learning for databases (e.g., query cost estimation and index selection). By
encoding database queries with transferable features, an ML-driven model can generalize
across databases since feature representations remain consistent. Zero/few-shot learning has
also been applied in intrusion attack detection in networks [297] and microservices [298].
Meta-learning can be complementary by learning a good representation that can generalize
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well to help with zero/few-shot learning [299].
Curriculum Learning for RL. We consider curriculum learning [300] (e.g., Genet [70])

in the networking domain) as an orthogonal technique for meta-learning. In our context, the
ML agent can be trained with a sequence of ⟨application, environment⟩ pairs ordered in
terms of “difficulty”. While curriculum learning aims to optimize the asymptotic performance
in the final task of the learning sequence [300], meta-learning provides theoretically proved
generalizability across tasks.

5.8 DISCUSSION AND FUTURE CHALLENGES

Extension to Other System Domains. AWARE is a general and extensible framework
that can be applied to other systems management tasks (e.g., congestion control or job
scheduling). To apply it to a new domain, one needs to (1) replace the RL environment
by implementing the provided environment wrapper interface; and (2) provide a default
non-RL-based agent for the RL bootstrapper. In FLASH, we demonstrate the use of meta-
learning in resource configuration search and CPU frequency scaling. We leave the study of
the performance in other system domains to the future.

Meta Learner Model Size/Complexity. Our experiments show that a two-layer bidi-
rectional GRU (RNN) followed by a fully connected layer already provides 5.5× faster model
adaptation compared to transfer learning (in the task of workload autoscaling). We plan
to conduct larger-scale experiments to investigate the necessity of an extreme-size model
or a more complex model architecture (e.g., Transformers [301]). However, a larger model
may lead to unnecessarily higher pre-training costs and inference overhead, which could be
detrimental to latency-sensitive online system management tasks (e.g., job scheduling [69]
or autoscaling [187]).

Feasibility. There have been rich monitoring or profiling data in modern datacenters that
enables pre-training across (Ai, Ej) pairs with meta-learning. For instance, Google-Wide
Profiling (GWP) [84, 302] and Monarch [303] are profiling infrastructures for datacenters,
providing performance insights for machines and cloud applications. Cluster managers such
as Borg [304] monitor a full range of applications and generate task-event (e.g., kill and
pending) and resource usage monitoring (e.g., CPU usage, memory usage, and disk I/O
time) that provide rich characteristics about running application workloads [84].

Amortization of Pretraining Overhead. Pretraining across a distribution of (Ai, Ej)

pairs can require a large amount of training overhead (e.g., pretraining on 200 pairs costs 5.2
hours). However, adapting for potentially larger-scale novel (Ai, Ej) pairs requires substan-
tially fewer model update iterations. This trade-off allows us to reduce the per-pair training
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cost (i.e., amortization, as shown in Appendix A.7), especially for diverse or constantly
evolving (Ai, Ej) pairs in cloud environments.

Meta Learner Retraining. The base learner and meta learner abstractions in FLASH
enable an ML-for-systems base learner model to be used with no changes to the base learner
model design or training algorithms. Base learner inputs/outputs (see Table 5.4) are used
as inputs to the meta learner. Therefore, substantial feature changes (adding new features
or removing existing features) in the base learner can lead to retraining the meta learner
from scratch.

Cross-Task Model Adaptation. FLASH enables fast model adaptation to new (Ai, Ej)

pairs within each task so one meta learner is trained per task. Therefore, the learned
embeddings are bound to a particular task. An exception could be that if applications are
the same but simply the tasks are different (e.g., for the same containers, task A is to allocate
the initial resource configuration, and task B is autoscaling), they might be able to share
the same embeddings because the embeddings essentially represent the application features.
Future work has to be done for general cross-task adaptation [305].

Out-of-distribution Workloads. AWARE provides the opportunity to quickly cus-
tomize the model to specific workloads. However, out-of-distribution (Ai, Ej) pairs still
require training because meta-learning assumes that all pairs, including the unseen cases,
are inherently within the learned distribution [272] (e.g., in terms of service request arrival
patterns or sensitivity to resource allocation). Given the diversity of workloads in the cloud
datacenter (used in the training dataset), the meta learner and the shared base learner can
be continuously trained, and out-of-distribution cases are covered eventually. Meanwhile,
with offline RL training, users can still benefit from the heuristics-based solution used as the
fallback option. One limitation of our experiment was that the generated applications might
not have covered all possible cloud workloads. However, application segments can easily
be extended in the synthetic application generator if specific workload profiles are missing
(Section 5.5.1).

On-policy RL Algorithms. When RL agents are being bootstrapped at the initial
stage, off-policy RL agents (such as DDPG [1, 210] and DQN [59, 159]) can be trained
directly using the collected RL trajectories. However, on-policy RL agents (such as PPO [2])
require trajectories generated from their own policy. One potential way to train on-policy
RL agents offline would be to build a simulator based on the collected trajectories, which
would essentially map resource allocation to workload performance and system metrics.
A balanced experience replay scheme [306] could potentially be applied for locating near-
on-policy samples from the simulator constructed based on the offline dataset. Instead of
drawing trajectories from the trajectory database (as in Section 5.3.4), the RL base learner
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can interact with the simulator for bootstrapping.

5.9 SUMMARY

This chapter has presented the challenges of applying RL in workload autoscaling and
other tasks in production cloud platforms. We then proposed a general and extensible
framework for deploying and managing RL agents in production systems. To demonstrate
the framework, we implemented AWARE for automating RL-based workload autoscaling in
Kubernetes and experimentally showed (a) the benefits of leveraging meta-learning for fast
model adaptation, and (b) how the design of AWARE ensures the stable and robust online
performance of RL models. AWARE is open-sourced at https://gitlab.engr.illinois.
edu/DEPEND/aware.

Building upon the meta-learning idea in AWARE, we also explored the general challenges
of model adaptation toward ML-centric cloud platforms in practice. We presented FLASH,
a general and extensible framework for developing ML agents that can rapidly adapt to
new, previously unseen cloud applications or environments. To demonstrate FLASH, we
implemented three agents and experimentally showed how FLASH improves model adap-
tation with meta-learning and a pretrain-finetune paradigm. FLASH is open-sourced at
https://gitlab.engr.illinois.edu/DEPEND/flash.
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CHAPTER 6: LEARNING DEEP LEARNING MODEL SERVING POLICIES

6.1 INTRODUCTION

Over the past few years, increasingly capable large models have been developed for every-
thing from recommendations to text or image generation. Pre-trained deep learning (DL)
models make it easy for developers to develop and deploy new models with lightweight fine-
tuning, few-shot learning, or even prompting [18]. As a result, model serving (i.e., inference)
has become an essential workload in modern cloud systems.

However, serving deep learning models at scale puts a pressing need to improve power
efficiency , i.e., to reduce energy consumption while maintaining model-serving perfor-
mance requirements. A recent study from Google attributed 60% of its ML energy use
to inference [307]. AWS estimates inference to make up 90% of total ML cloud comput-
ing demand [308]. Unfortunately, existing model-serving systems focus on either perfor-
mance (i.e., latency and throughput) [224, 226, 309, 310, 311, 312], model prediction accu-
racy [313, 314, 315], or LLM optimization [316, 317, 318, 319], but are not power-aware. In
this chapter, we target power efficiency in DL model serving.

Challenges. We could potentially leverage GPU Dynamic Voltage and Frequency Scaling
(DVFS) techniques that have been widely used during GPU training [320, 321, 322, 323] to
save energy. However, dynamic GPU frequency scaling on modern deep learning model-
serving workloads poses three main challenges due to their unique characteristics.

[C1] First, it is challenging to determine the optimal GPU frequency that meets per-
formance requirements while maximizing power efficiency. Since low latency in inference
is critical, model-serving workloads are typically associated with service-level objectives
(SLOs) [310, 311, 312] on end-to-end latency. To meet stringent SLOs, contemporary serv-
ing systems either fix the GPU frequency at the default setting or rely on DVFS to scale
down frequency based on utilization metrics [324]. However, DVFS is sub-optimal, impre-
cise, and has non-intuitive implementations in production [324] while overprovisioning GPU
frequency leads to high power consumption. The optimal frequency is non-trivial to set for
a GPU device that can serve different models or a mix of model partitions from different
models [312] when considering stringent latency SLOs, throughput, and costs.

[C2] Second, serving non-deterministic generative models makes it hard to differentiate
the negative impact of GPU frequency down-scaling from the inherent non-determinism in
execution time. The non-determinism comes from the autoregressive nature of generative
models. To process each request, one has to run multiple iterations; the output of each
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iteration is used as input in the following iteration. Worse, a first-come-first-serve (FCFS)
request scheduling policy suffers from head-of-line blocking issues [20], leading to less power-
saving headroom without SLO attainment violations.

[C3] Finally, unlike CPUs, GPUs do not support fine-grained (e.g., per-core) frequency
scaling. Therefore, if the model or multiple model partitions (from different models) are
placed onto a device, the frequency can only be reduced to the maximum frequency demand
among all partitions. Power-unaware model partitioning and placement strategies [312] fail
to unlock further power saving, even if the optimal frequency mentioned in [C1] can be
figured out for each partition.

Our Work. This chapter addresses the above challenges by presenting µ-Serve, the first
power-aware deep learning model serving framework with fine-grained model provisioning
and GPU frequency scaling. The goal of µ-Serve is to maximize power efficiency while
preserving the model-serving performance (i.e., SLO attainment). To achieve the goal, µ-
Serve consists of the following main components:

• Power-aware fine-grained model provisioning. µ-Serve generates a model paral-
lelism plan (i.e., model partitioning) for each model and then places model partitions
onto devices in a power-aware manner. A model comprises a series of operators (e.g.,
multiply) over multidimensional tensors. Our key insight is that some operators are
more sensitive 13 to frequency changes while others are not; those operators that are
insensitive to frequency changes often contribute less to the end-to-end latency of serv-
ing a request. Based on this insight, we design a novel model provisioning algorithm
(Section 6.3.1 and Section 6.3.2) by considering operator sensitivities to generate model
partitions and ensure that each device contains partitions with comparable sensitivi-
ties. This algorithm addresses [C3] and maximizes power-saving opportunities.

• Speculative request serving. To address non-deterministic execution when serving
generative models (i.e., [C2]), we introduce a lightweight proxy model that is fine-
tuned to predict the execution times of each input query. This is based on our insight
that a much smaller model can be quite good at understanding the output length
of a large model. Based on the proxy model, we design a speculative shortest-job-
first (SSJF) scheduler (Section 6.3.3) that improves the performance predictability of
serving requests of autoregressive models. SSJF helps achieve higher SLO attainment
and consequently more power-saving opportunities.

13We define sensitivity as the change in operator execution latency (∆L > 0) given the change in GPU
frequency (∆F < 0), i.e., −∆L/∆F .
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• SLO-preserving GPU frequency scaling. At runtime, µ-Serve uses a multiplicative-
increase-additive-decrease (MIAD) algorithm (Section 6.3.4) to exploit the power-
saving opportunities and dynamically scale GPU frequency while preserving perfor-
mance SLOs, which addresses [C1].

Offline Profiling and Online Orchestration. µ-Serve requires an offline phase before
running online for power-aware model serving. In the offline phase, µ-Serve first profiles
each primitive operator [325] to get its sensitivity score, indicating how operator execution
latency changes with the change in GPU frequency. After obtaining a sensitivity score
database, µ-Serve then generates power-aware model partitioning plans by utilizing model
parallelism (Section 6.3.1) and deploys model partitions based on placement plans (Section
6.3.2) that create maximized power-saving opportunities. Such power-saving opportunities
are then exploited at runtime by dynamic GPU frequency scaling based on workloads and
SLO performance. In the online phase, µ-Serve serves model inference requests with a
novel speculative shortest-job-first scheduler (Section 6.3.3) that addresses non-deterministic
execution patterns of autoregressive models. To reduce power consumption while preserving
model-serving performance SLOs, µ-Serve dynamically scales GPU frequency at each device
with an MIAD algorithm (Section 6.3.4).

Results. We evaluate µ-Serve with a diverse set of deep learning models (including tradi-
tional non-Transformer models like CNNs, Transformers, and Transformer-based generative
models) and production workloads on an 8-node 16-GPU cluster (Section 6.4). Evaluation
results show that, compared to existing state-of-the-art serving systems, µ-Serve achieves
a power reduction factor of 1.9–2.6× at varying rates, 1.5–2.3× at varying stringent SLOs,
and 1.2–2× when scaling to higher numbers of devices, without SLO attainment violations.

Contributions. In summary, our main contributions are:

• A novel power-aware ML model serving framework that unlocks power-saving opportu-
nities through fine-grained operator management and dynamic GPU frequency scaling.

• A speculative request scheduler with light proxy models that addresses non-determinism
in generative models.

• An open-source implementation of µ-Serve and evaluation on real-world model datasets
and production traces.
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Figure 6.1: Model training and model serving.

6.2 BACKGROUND AND MOTIVATION

We begin with an overview of model-serving systems (Section 6.2.1), opportunities for
power saving (Section 6.2.2), and non-deterministic execution of generative model workloads
(Section 6.2.3).

6.2.1 Model Serving System Model

Model training is the process of building or learning a model from datasets, starting
from scratch or pre-trained models [18]. The training process requires iterative forward and
backward passes. After training, those ready-to-serve models are saved to a model registry
(Fig. 6.1 left).

Model serving, or model inference, is to use the model to extract useful features from the
inputs through a forward pass (Fig. 6.1 right). The structure of model-serving workloads
follows a simple request-response paradigm where clients (either users or AI applications)
submit requests for that model to a serving system, which schedules the requests, dispatches
them to hardware devices (e.g., GPUs), and returns the results. Compared to model training,
model serving does not involve complex backward computation and model weight updates
but has more demanding performance requirements in inference latency (i.e., request com-
pletion time) and throughput. With the rise of pre-trained foundation models (e.g., in NLP
and vision), it is expected that a model can be trained once and serve an extensive sequence
of millions of inferences.

In this chapter, we focus on the Deep Neural Network (DNN) model (including CNNs [326],
Transformers [327], and Transformer-based generative models [328]) serving on homogeneous
GPU clusters (Fig. 6.1).

Model Parallelism and Partitioning. To satisfy user demand, model serving often
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must adhere to stringent SLOs on latency (e.g., 99% of the requests for a model must be
finished within 500 ms). However, there can be significant and unpredictable burstiness in
the arrival process of user requests [189, 312, 329]. Parallel model execution is necessary
when attempting to satisfy the serving latency requirements or support large models that
do not fit in the memory of a single device [312].

DNN models are composed of a series of operators (e.g., matrix multiplication and activa-
tion functions) over multidimensional tensors. There are two categories of model parallelism:
intra-operator and inter-operator parallelism [330]. Intra-operator parallelism is to partition
a single operator across multiple devices for parallel execution. It reduces the computation
latency for serving a request but introduces the communication overhead of splitting the
input and merging the output. Inter-operator parallelism is to partition a model’s operator
execution graph into multiple stages that can execute on multiple devices in a pipeline fash-
ion. It allows the model to exceed the memory limitation of a single GPU device but it does
not reduce the computation latency of a single request.

Power Efficiency. To the best of our knowledge, µ-Serve is the first power-aware
DNN model-serving framework that aims to minimize power consumption while preserving
the model-serving performance. State-of-the-art model-serving frameworks and commercial
model-serving products use default GPU core frequency settings [324] for two main reasons.
First, it is nontrivial to determine the optimal GPU frequency when serving diverse models
or a mix of model partitions from different models when considering both stringent SLOs
and costs. Second, GPU DVFS (dynamic frequency scaling based on utilization) is shown
to be sub-optimal, imprecise, and has non-intuitive implementations in production [324].

Power optimization in ML model training [320, 321, 322, 323] has been active in the
past few years. The central idea is to find the optimal GPU core frequency based on the
valley trends when scaling frequencies (i.e., energy saving is maximized on the middle-level
frequency). Building on top of that, EnvPipe [322] reduces frequencies at stages that are not
on the critical path of the training pipeline with interleaving forward and backward passes.
Perseus [323] identifies straggler stages (e.g., due to I/O bottleneck or hardware failures) and
reduces frequencies to synchronize the speed of all other stages. However, these optimization
tricks cannot be applied to model inference with a single forward pass. It gets challenging
in model serving due to a mixture of model partition placement and dynamic request arrival
patterns (unlike static and iterative training).
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6.2.2 Opportunities for Power Saving

To understand if model serving also exhibits power-saving opportunities like model train-
ing, we start with an illustrative experiment to show how GPU frequency affects model
serving latency. We use two NVIDIA Tesla V100 (16 GB) GPUs to serve each DNN model
from Table 6.1. During the experiments, we reduce the GPU frequency from 1300 MHz to
200 MHz with a step size of 100 MHz. Fig. 6.2 (left) shows the end-to-end latency of serving
a single request while Fig. 6.2 (right) shows the corresponding power efficiency.
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Figure 6.2: Model-serving latency and power consumption characterization at varying
GPU core frequency levels.

The model-serving latency-frequency curves of all models exhibit a steep decline at low
frequencies, but the decrease rate eventually approaches a horizontal asymptote at high fre-
quencies. In contrast, the power curves for serving all models show a nearly linear relation-
ship between the GPU frequency and the power consumption. This contrasting observation
leads to a power-saving opportunity by reducing the GPU frequency when the SLO attain-
ment is high. For example, serving gpt2-large can meet the SLO (1000 ms) even when the
GPU frequency is reduced from 1300 MHz to 800 MHz. By doing so, the power consumption
is reduced by a factor of 1.8× from 214 Watts to 120 Watts.

However, such power-saving opportunity varies as the SLO attainment depends on fac-
tors such as request arrival rate, burstiness, and SLO scales (as defined in [312]). In ad-
dition, coarse-grained GPU frequency scaling for an entire model cannot fully unlock the
power-saving opportunity. We show in Section 6.3 how fine-grained model multiplexing and
dynamic GPU frequency scaling can help based on the performance-power sensitivity and
activation frequency of different operators.
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6.2.3 Autoregressive Patterns

Traditional DNN models (e.g., ResNet and BERT) have deterministic execution patterns
while Transformer-based generative models (e.g., GPT) are trained to generate the next
token in an autoregressive manner. Therefore, to process a request to generative models,
multiple iterations of the model have to be run; each iteration generates a single output
token, which is then appended to the original input in the following iteration (except for the
termination token <EOS>).

To illustrate this non-deterministic nature of serving model inference workloads due to
autoregressive patterns, we analyze the output token length distribution in the LMSYS-
Chat-1M dataset [331] which contains one million real-world conversations with 25 state-of-
the-art LLMs. The output token length (N) dominates the execution time (T ) of a request
because T = C +K ∗N , where K is the latency to generate one token and C is the model-
serving system’s overhead including DNS lookups, proxies, queueing, and input tokenization.
K depends on model optimization techniques (e.g., quantization) and execution environment
(e.g., hardware), which are the same for all inputs. As shown in Fig. 6.3, the output token
length of the model output varies significantly for the same model. The p95/p50 of the
output token length for each model varies from 1.7 (claude-1) to 20.5 (llama-13b).
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Figure 6.3: Output token length distributions of various large language models collected
in the LMSYS-Chat-1M dataset.

Since model executions are non-deterministic, it is challenging to differentiate the nega-
tive impact of GPU frequency down-scaling from the inherent non-determinism. Worse, it
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suffers from head-of-line blocking issues when scheduling requests for model-serving as most
state-of-the-art LLM inference systems use a first-come-first-serve (FCFS) scheduling policy.
FastServe [317] uses a multi-level feedback queue to improve the average job completion time
but it does not address the non-determinism nature.

6.3 µ-SERVE DESIGN AND IMPLEMENTATION

µ-Serve is a power-aware multi-model model-serving framework designed for a homoge-
neous GPU cluster that serves Deep Neural Network (DNN) models (including Transformers
and Transformer-based generative models [328]) serving systems. From Section 6.2, we can
see that there are several key challenges to improving power efficiency in DNN model serving:

• Determine the optimal SLO-preserving GPU frequency that minimizes power con-
sumption (i.e., [C1]).

• Address non-deterministic execution patterns in generative models for performance
predictability and avoiding head-of-line blocking (i.e., [C2]).

• Maximize the power-saving opportunity while GPUs do not support fine-grained fre-
quency scaling (i.e., [C3]).

We propose µ-Serve to specifically tackle these challenges. The overall architecture of
µ-Serve is shown in Fig. 6.4, which consists of an offline phase and an online phase. In the
offline phase, µ-Serve first profiles each primitive operator [325] to get its sensitivity score,
indicating how operator execution latency changes with the GPU frequency reduction. Based
on the operator-level sensitivities, µ-Serve then generates power-aware model partitioning
plans by utilizing model parallelism (Section 6.3.1) and deploys model partitions based on
placement plans (Section 6.3.2) that maximize power-saving opportunities.

In the online phase, µ-Serve serves model inference requests while dynamically managing
device frequency scaling. For each autoregressive model, µ-Serve uses a novel speculative
shortest-job-first scheduler (as described in Section 6.3.3) that improves SLO attainment
by avoiding head-of-line blocking and thus increases power-saving opportunities. For the
remaining models, µ-Serve uses the default FCFS scheduling policy. To minimize power
consumption while preserving model-serving performance SLOs, µ-Serve dynamically scales
GPU frequency at each device with a multiplicative-increase-additive-decrease (MIAD) al-
gorithm (as described in Section 6.3.4).
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Figure 6.4: µ-Serve architecture overview and workflow.

6.3.1 Power-aware Model Parallelism

Model parallelism is necessary to enable running larger models, or larger batches of inputs,
and to serve bursty workloads with better latency and throughput [312, 330]. µ-Serve par-
allelism module ( 1 in Fig. 6.4) partitions each ML model (by using model parallelism) to
generate model partitions that can maximize power efficiency while considering the latency
and throughput trade-offs so that the placement module ( 2 in Fig. 6.4) can choose the best
combination for all models in the whole cluster. To achieve this, µ-Serve relies on profiled
operator sensitivity scores and AlpaServe [312], an auto ML model parallelization system for
inference.

As described in Section 6.2.1, when compiling and deploying DNN models for request-
serving, each model is commonly defined as a computational (dataflow) graph where nodes
are operators and edges are tensors (or data) [332]. Example operators include matrix mul-
tiplication and relu or tanh activation functions). Serving a request means the completion
of the dataflow in the execution graph. Our key insight is that (1) some operators are more
sensitive to GPU frequency changes (i.e., sensitive operators) while others are not (i.e., in-
sensitive operators); and (2) insensitive ones often contribute less to the end-to-end latency
of serving a request. Since the minimum GPU frequency that a model partition can tolerate
is determined by the most sensitive operators, µ-Serve avoids mixing sensitive and insensitive
operators into the same partition.

Operator Sensitivity Score Profiling. Since the model graphs are represented in
XLA’s HLO format [325], a backend-agnostic intermediate representation (IR), we choose
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to profile only the primitive operators 14 defined in HLO that are shared by all models. We
define the sensitive score of each operator as ∆Latency/∆Frequency where ∆Latency is
the increase in execution time (normalized) of the operator when decreasing the GPU core
frequency from the default setting to half of the default frequency and ∆Frequency is the
frequency decrease. We adopt the tensor dimensions from AI-Matrix [333], a production
dataset released by Alibaba. When profiling primitive operators, we run each operator
independently with each tensor dimension repeated 5000 times and take the average of all
runs. Profiling of primitive operators happens offline and the obtained sensitivity score
database is then used in model parallelism and placement plan generation.

Model Parallelism Plan Generation. Since different parallelization configurations
(intra-/inter-operator parallelism) have different latency and throughput trade-offs, µ-Serve
extends AlpaServe [312] to run an auto-parallelization compiler to generate a list of possible
configurations for every single model and let the placement module (Section 6.3.2) choose
the best combination for all models in the whole cluster.

At the core of AlpaServe runs an optimization algorithm with one inter-operator pass
(based on dynamic programming) and one intra-operator pass (based on integer linear pro-
gramming) to generate efficient model parallel partitions. AlpaServe treats each operator as
the smallest unit for partitioning. To prevent operators with similar sensitivities from being
split we do not change the AlpaServe auto-parallelism algorithm but extend AlpaServe with
a new abstraction, i.e., operator cluster, which is a cluster of operators that share similar
sensitivity scores. µ-Serve treats each operator cluster instead of each operator as the par-
titioning unit. As shown in Alg. 6.1, generating operator clusters can be achieved by taking
the model specifications and profiled sensitivity scores and grouping neighbor operators with
similar sensitivity scores (below a threshold) together. The output is the model parallelism
plan (i.e., partitions and their memory demands for a given model) that optimizes the per-
request execution latency. We leave the decision of model placement (which also happens
offline) to Section 6.3.2.

6.3.2 Power-aware Model Placement

Given a list of model partitions (generated by Section 6.3.1) and a fixed GPU cluster,
model placement is to map each model partition to a GPU device within the memory con-
straint. The goal of model placement is to maximize SLO attainment (i.e., the percentage

14As a unifying abstraction for multiple frameworks (e.g., Pytorch and TensorFlow) and hardware plat-
forms (CPUs, GPUs, and TPUs), XLA summarizes common DL operators into around 100 primitive oper-
ators.
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Algorithm 6.1 Operator Clustering
Require: Model specification M , Operator sensitivity score database D (a map of <oper-

ator, score> pairs)
1: procedure OperatorClustering(M , D)
2: clusters← ∅
3: currCluster ← ∅
4: currCluster.add(M .head)
5: clusterScore ← avg(currCluster)
6: for each op in M.operators do
7: if abs(D.get(op) - clusterScore < THRES) then
8: currCluster.append(op)
9: clusterScore ← avg(currCluster)

10: else
11: clusters.append(currCluster)
12: currCluster ← newList([op])
13: end if
14: end for
15: Return clusters
16: end procedure

of requests served within SLO). Power-aware model placement module ( 2 in Fig. 6.4) takes
model partitions and the GPU cluster specification as inputs and generates a model partition
placement plan that preserves SLOs while maximizing power-saving opportunities.

However, model placement is typically modeled as a bin-packing problem and is a com-
putationally NP-hard problem [334]. For scalability and serving potentially a larger device
cluster, we partition the cluster into several groups of devices (same as in AlpaServe). Each
group of devices selects a subset of models to serve. Finding the optimal ⟨model partition,
device group, device⟩ is a combinatorial optimization problem with a configuration space
growing exponentially with the number of devices and the number of models. µ-Serve first
selects the ⟨model partition, device group⟩ configurations that maximize SLO attainment
based on AlpaServe [312] and then generates ⟨model partition, device⟩ configurations that
maximize the power-saving opportunities. After deploying the placement plan, the offline
stage is completed.

Mapping Models to Device Groups. µ-Serve runs the model placement algorithm in
AlpaServe [312] that (1) uses a simulator-guided greedy algorithm to decide which models to
select for each group, and (2) enumerates group partitions and model-parallel configurations
to pick the best ⟨model, device group⟩ placement that maximizes SLO attainment.

Mapping Model Partitions to Devices. For each device group, given a list of de-
vices and model partitions that are assigned to the device group from the last step, µ-Serve
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Algorithm 6.2 Model Partition Placement
Require: Device group DP (list of GPUs), Model partition plan MP (multi-model), D

(same in Alg. 6.1), CT (maximum number of devices to place to))
1: procedure ModelPlacement(DP , MP , D)
2: bins← ∅ ▷ a map of device to a list of partitions
3: modelBinsCount← ∅
4: for each model in MP do
5: // Sort partitions by sensitivity scores
6: for each p in model.getSortedPartitions() do
7: bestDevice = None
8: bestScore = INFINITY
9: selectedBins = getAvailableBins(bins, p)

10: for each d, partitions in selectedBins do
11: if modelbinsCount[model] < CT then
12: // Get similarity in sensitivity scores
13: score← getSimilarity(p, partitions)
14: if bestScore < score then
15: bestScore = score
16: bestDevice = d
17: end if
18: end if
19: end for
20: bins[bestDevice].append(p)
21: modelBinsCount[model] += 1
22: end for
23: end for
24: Return bins
25: end procedure

generates ⟨model partition, device⟩ placement plans that maximize the power-saving oppor-
tunities. Based on our insight that (1) operators have diverse sensitivity to GPU frequency
scaling and (2) insensitive operators contribute less to the end-to-end latency, the intuition
behind µ-Serve’s model placement algorithm is to group operators with similar sensitivities
together. Since how much the GPU frequency can be reduced is determined by the most
sensitive model partition on that device, µ-Serve avoids co-locating a mix of sensitive and
insensitive partitions onto the same GPU devices.

The overall procedure is shown in Alg. 6.2. µ-Serve first estimates the sensitivity scores
of a model partition based on the weighted sum of operator sensitivity scores (using the
operator count and tensor dimensions as the weights). All model partitions are then sorted
based on the estimated sensitivity scores. For each model partition in the sorted list, we get
the feasible “bins” or devices (by checking memory availability) and assign the partition to
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Figure 6.5: Workflow of the speculative scheduling in µ-Serve.

a bin that has the best fitting score. The fitting score for ⟨partition p, bin b⟩ is defined as
the similarity between the sensitivity score of p and the weighted average of the sensitivity
scores of all existing partitions in b. To avoid spreading partitions from the same model to
too many devices (and thus inducing high communication overhead), we enforce an upper
limit CT on how many bins a model can be packed into. CT is set based on the empirical
results of the maximum number of devices to partition onto without SLO violations. The
outcome is the model placement plan with a list of bins and corresponding model partition
assignment. µ-Serve takes the model placement plan for deployment, which completes the
offline stage.

6.3.3 Scheduling

User requests are dispatched to corresponding models at runtime. For each model in-
stance, a request queue is maintained, and µ-Serve uses a speculative shortest-job-first (SJF)
scheduler( 3 in Fig. 6.4) to decide the request execution order of autoregressive models
and a default FCFS scheduler for traditional deep learning models. SJF alleviates the non-
determinism of generative models and the head-of-line blocking issue in FCFS scheduling.
We must have knowledge or a good estimate to deploy SJF. As shown in Fig. 6.5, µ-Serve’s
speculative SJF scheduler relies on the prediction from an output token length predictor. The
prediction is used to estimate the job execution time in SJF as the output token length dom-
inates the execution time (linear relation) as described in Section 6.2.3. The predictor relies
on a lightweight proxy model based on our insight that a small model is already quite good
at predicting the lengthiness of a significantly larger (>20×) model’s output. In addition,
we use a semantic cache to improve the prediction accuracy of hot input queries.

Output Token Length Predictor. Given the user input to a certain generative model,
our predictor tries to predict the length of the model’s response in terms of the number
of tokens because the model inference time is linearly related to the output token length
(Section 6.2.3). We use BERT as a proxy model and build a multi-class classifier based
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on BERT as the output token length predictor. Specifically, we take the last layer hidden
state of the first token (i.e., CLS) from the BERT output, and pass it through an additional
two-layer feed-forward neural network to generate the prediction (Fig. 6.6). As suggested
by the original BERT paper [327], the final hidden state corresponding to this token is
used as the aggregate sequence representation for classification tasks. We could get better
classification performance by averaging or pooling the sequence of hidden states for the
whole input sequence. However, taking the whole sequence is more compute-intensive and
therefore not worth the marginal gains.
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Figure 6.6: Output token length predictor in µ-Serve.

Predictor Training. Our predictor adopts the pre-trained BERT model weights as
provided by [327] and we further fine-tune the weights (together with the additional two-
layer classifier network) on the LMSYS-Chat-1M training data [331]. Pre-training on a large
corpus of unlabeled text gives BERT some basic understanding of human languages, while
the fine-tuning step allows BERT to learn the task-specific knowledge (in our case, the output
token length of a generative model given the input query). Our fine-tuning has two phases:
In the first phase, the parameters of both BERT and the classifier are tuned, while in the
second phase, we fix the weights of BERT and only update the classifier’s parameters. Such
a two-phase regime turns out to achieve a good balance between prediction accuracy and
training efficiency.

Since predicting the exact length of the output can be difficult, we treat the token length
prediction problem as a coarse-grained (multi-class) ordinal classification task [335]. Specifi-
cally, we characterize the output token length percentiles of each generative model based on
its training samples and categorize the length labels of each model into 5 classes, namely [0,
p25), [p25, p50), [p50, p75), [p75, p99), and [p99, +). We convert the classes into 5 integers
{0, 1, 2, 3, 4} and let our predictor output a real value as the prediction. We apply a mean
squared error (MSE) training loss to minimize the distance between the real-valued predic-
tions and the integer-valued class labels. During inference, we round the prediction value
to the nearest integer in {0, . . . , 4}. As shown in Sec. 6.4.3, such an ordinal classification
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approach outperforms pure regression- or classification-based solutions.
To handle the requests sent to diverse models with diverse output verbosity (as shown

in Fig. 6.3), we train a single predictor shared by all the models but additionally convert
the model names into one-hot feature vectors and include them as part of the input to our
predictor to let it distinguish between different models. A shared predictor leads to some
degradation in the prediction accuracy when compared to having a separate predictor for
each model. Nevertheless, using a single predictor largely reduces the maintenance cost and
improves the training sample efficiency by allowing the predictor to simultaneously learn
from the samples of multiple models.

Choices of Classification. The granularity of classification (i.e., how many classes to
predict) is determined by the end-to-end scheduling results (in latency and throughput)
instead of the prediction accuracy. It is because of our observation that better prediction
accuracy does not necessarily lead to better scheduling performance. Empirical evaluations
on our datasets suggest that as the number of classes rises, prediction accuracy drops (be-
cause it gets harder to predict more fine-grained output lengths), but scheduling performance
first rises and then falls, peaking when there are 5 classes. We attribute this observation to
the fact that the scheduler benefits from more fine-grained prediction but receives negative
impacts when prediction is worse, i.e., when predicting >5 classes.

Use of Semantic Cache. The µ-Serve scheduler includes a simple semantic cache based
on GPTCache [336] to store the ground truth output token sequence length of hot inputs.
Instead of going through the predictor to get an estimated output length prediction, µ-
Serve retrieves the cached length for the input that triggers a cache hit. Caching has been
commonly used to reduce frequent and computationally expensive data accesses. In µ-Serve,
a semantic cache is a ⟨key, value⟩ memory buffer where keys are embeddings and values are
output lengths. Embeddings are generated by embedding models that map text inputs into
a low-dimensional continuous vector space and are stored in a vector database [336]. For
each input, the most similar cached input is retrieved using a similarity evaluation function
to determine if the cached input matches the input query semantically. The cached ground
truth length is then used by the scheduler. If there is a cache miss, the scheduler still uses
the predicted output length. See Section 6.3.5 for implementation details.

6.3.4 GPU Frequency Scaling

µ-Serve’s GPU frequency scaler ( 4 in Fig. 6.4) consists of a monitoring and a frequency
scaling component. The former monitors per-model request-serving latency while the latter
determines appropriate GPU frequency scaling actions for each GPU device. We adopt a
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Algorithm 6.3 GPU Frequency Scaling
Require: GPU Device GD, Model Partitions MP (a map of ⟨model, partition⟩ pairs placed

on GD)
1: procedure GPUFrequencyScaling(GD, MP )
2: // Start from the default high frequency
3: freq = DEFAULT
4: GD.setFrequency(freq)
5: while True do
6: action = SAME ▷ one of {UP,DOWN,SAME}
7: for each p in MP do
8: target = p.getModelSLO()
9: actual = p.getModelLatency()

10: slack = (target− actual)/target
11: if slack < 0.05 then
12: action = UP ▷ requires up-scaling
13: break
14: end if
15: latency = p.getWeight() * actual
16: degradation = latency ∗ STEP/freq
17: if degradation/target < slack − 0.05 then
18: action = DOWN ▷ down-scaling
19: end if
20: end for
21: if action==UP then
22: freq = min(MAX, freq ∗ 2)
23: else if action==DOWN then
24: freq = max(MIN, freq − STEP )
25: end if
26: GD.setFrequency(freq)
27: end while
28: end procedure

multiplicative-increase-additive-decrease (MIAD) algorithm [337] for GPU scaling based on
the feedback signal of the slack between the target SLO latency and the actual latency, in-
spired by the AIMD algorithm in congestion control. The intuition behind adopting MIAD
is that we want to be conservative when scaling down GPU frequencies to avoid interrup-
tions to SLO attainment (addictive decrease) while being aggressive when scaling up GPU
frequencies to respond fast to workload spikes.

As shown in Alg. 6.3, the scaler starts from the default frequency (usually the maximum
frequency). After initialization, model latencies are sampled every 500 ms, and the frequency
scaling step is determined at every iteration by scanning through all model partitions’ latency
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slack (as defined in L10 in Alg. 6.3). For each model partition, any negative or small
slack leads to an up-scaling action (we set the threshold = 0.05). Otherwise, we estimate
the degradation of down-scaling the frequency based on the linear relationship between
frequency and execution latency. A larger-than-degradation slack results in a down-scaling
action. Ultimately, after scanning through all model partitions, an up-scaling action doubles
the current frequency while a down-scaling action decreases the current frequency by STEP .
Note that when the current frequency reaches the maximum, but scaling-up is repeatedly
called, it can be treated as a signal to replicate the model instance. Each iteration is
performed every second.

6.3.5 Implementation

µ-Serve is implemented with 6.1K lines of code in Python on top of an existing model-
parallel inference system, AlpaServe [312]. We extend its auto-parallelization algorithms
to get the power-aware model-parallel strategies and placement plans. In µ-Serve’s sched-
uler, the semantic cache is implemented with GPTCache [336]. We use the HuggingFace
embedding function, the NumpyNormEvaluation similarity evaluation function (with a de-
fault similarity threshold of 0.8), the SQLiteCache cache manager, and the FAISS vector
database. To avoid starvation in scheduling, µ-Serve adopts aging [338] to promote jobs
with long waiting times. Preemption could help correct previous suboptimal decisions with
a least-slack-time-first policy. However, µ-Serve does not adopt preemption due to its added
complexity in context switch [339], memory management [318], and cache replacement poli-
cies [317] (for key-value cache in serving LLMs).

6.4 EVALUATION

Our experiments addressed the following research questions:

§6.4.2 Does µ-Serve achieve power-saving (and how much) while preserving SLO attain-
ment?

§6.4.3 How much does the proxy-model-based scheduler in µ-Serve improve latency and
throughput?

§6.4.4 How robust is µ-Serve’s power-aware model partitioning and placement under
model variations?
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Table 6.1: Details of the models used in experiments.

Model # of Params Size Latency AR?

ResNet-50 25M 0.2 GB 51 ms No
BERT-base 110 M 0.5 GB 123 ms No
BERT-large 340 M 1.4 GB 365 ms No
RoBERTa-base 125 M 0.5 GB 135 ms No
RoBERTa-large 355 M 1.4 GB 382 ms No
OPT-1.3b 1.3 B 5.0 GB 1243 ms Yes
OPT-2.7b 2.7 B 10.4 GB 2351 ms Yes
GPT2-large 774 M 3.3 GB 832 ms Yes
GPT2-xl 1.5 B 6.4 GB 1602 ms Yes
CodeGen-350m 350 M 1.3 GB 357 ms Yes
CodeGen-2b 2.0 B 8.0 GB 2507 ms Yes
Bloom-1b1 1.1 B 4.0 GB 523 ms Yes
Bloom-3b 3.0 B 11.0 GB 1293 ms Yes
Switch-base-16 920 M 2.4 GB 348 ms Yes
Switch-base-32 1.8 B 4.8 GB 402 ms Yes

6.4.1 Experiment Setup

Models. Since µ-Serve is a general ML model-serving framework, we consider traditional
non-Transformer models, Transformers, and Transformer-based generative models for evalu-
ation. For each model family, we select several most commonly used model sizes and variants
(to mimic different fine-tuned versions) for experimentation. Table 6.1 provides details about
model sizes and inference latency on testbed GPUs. The latency is measured for a single
query with a sequence length of 512 on a single GPU. AR stands for autoregressive.

Workloads. We use the Microsoft Azure function traces [340] and production traces from
a private datacenter dedicated to ML workloads in SenseTime [341] to drive the inference
workloads. Since the SenseTime dataset contains both ML training and inference workloads
(without distinction), we select the traces with job completion time < 5 seconds and the
number of used GPUs ≥ 1 to ignore training jobs and admin query workloads (CPU work-
loads, e.g., training progress check). For each model in Table 6.1, we round-robin serverless
functions and ML inference jobs to generate traffic. For vision model inputs, we use the Im-
ageNet dataset [342]. For language model inputs, we use the LMSYS-Chat-1M dataset [331]
which contains one million real-world conversations.

Metrics. We use SLO attainment (i.e., the percentage of requests served within the
latency SLO) and power consumption (in Watts) as the major evaluation metrics since the
goal of µ-Serve is to minimize power consumption while preserving SLO performance. We
adopt the definition of SLO Scales from AlpaServe [312] which refers to different multiplies
of the SLO latency of the model request. The SLO latency of the model request is measured
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Figure 6.7: Power saving evaluation.
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Figure 6.8: SLO preservation evaluation.

as the single-request latency with the parallelism plan generated by AlpaServe. We are
also interested in model-serving throughput and how these measures change with varying
numbers of devices, request arrival rates, and traffic burstiness.

Testbed. We deploy µ-Serve on a cluster with 8 nodes and 16 GPUs. Each node is an
IBM Cloud gx2-16x128x2v100 instance with 2 NVIDIA Tesla V100 (16GB) GPUs. Each
GPU supports a maximum Streaming Multiprocessor (SM) frequency of 1380 MHz and a
minimum of 200 MHz.

6.4.2 End-to-end Results

In this section, we compare µ-Serve against three baselines (AlpaServe [312], AlpaServe-
Sched, and AlpaServe-Scaling) when serving widely used open-source large deep learning
models on publicly available workload traces (as described in Section 6.4.1). AlpaServe
is a state-of-the-art model-serving system that generates model parallelism and placement
plans to maximize SLO attainment under varying workload conditions. AlpaServe-Sched is
AlpaServe with the FCFS scheduler replaced with µ-Serve’s scheduler (Section 6.3.3) but
without GPU frequency scaling. AlpaServe-Scaling deploys model partitions according to
parallelism and placement plans from AlpaServe and runs µ-Serve’s GPU frequency scaling
algorithm (Section 6.3.4) and scheduler at runtime. We are interested in the power-saving
comparison and knowing whether µ-Serve achieves power-saving while preserving the SLO
attainment.

We deploy all models (in Table 6.1) in the experiments. Each model instance is driven by
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an independent request generator using a randomly selected trace set as described in Section
6.4.1. The memory consumption of all models (including activation and runtime contexts)
is 62.5 GB which can be fit onto 4 devices.

Power Saving. Fig. 6.7 shows the power consumption of serving all models with varying
SLO scales, (combined) arrival rates, and the number of devices. Note that when SLO
attainment is violated, there is no power saving (as shown in the red-shaded area, e.g., an
SLO scale of 0.8) because the device frequency is the same for all approaches. When SLO
attainment is met, µ-Serve reduces the power consumption in AlpaServe by 1.51–2.29× at
different SLO scales. At different arrival rates, the reductions in power consumption are
1.85–2.61×, compared to AlpaServe. The larger the SLO scale (less stringent SLO) and
the smaller the arrival rate, the more the power saving. We find that adding dynamic GPU
frequency scaling on top of AlpaServe has already been able to reduce power consumption by
a factor of 1.1–1.5× and 1.4–1.7× at varying SLO scales and rates. µ-Serve further improves
the power saving by an average of 1.4× compared to AlpaServe-Scaling. We find that the
improvement does not vary with SLO scales or arrival rates because it is the statically set
model partition placement strategies that cause different power savings from the same GPU
frequency scaling approach.

In the experiments with varying numbers of devices, we replicate each model instance (so
now the total model memory demand is up to 8 devices) and increase the number of devices
from 4 to 14. Fig. 6.7 (right) shows the per-device average power consumption. When there
are no idle devices (i.e., at 6 and 8 devices), the power saving from µ-Serve compared with
AlpaServe is 1.23–1.39×. When there are more idle devices, all per-device power consumption
curves start to decrease. Since µ-Serve and AlpaServe-Scaling actively down-scale the GPU
frequency, the power saving increases to 1.75–2× and 1.44–1.64× compared to AlpaServe.

AlpaServe-Sched is not shown in Fig. 6.7 since we observe that it has the same power
consumption as AlpaServe. This is because only the execution ordering of the requests is
different between the two baselines and there is no idle time. Therefore, the scheduler does
not have an effect on power saving.

Model Serving Performance. We evaluate the SLO attainment to understand what
the cost of µ-Serve is while achieving power savings. We measure the 99th-percentile (p99)
latency of serving a request for each model and normalized it to the SLO latency. When
the normalized p99 latency is less than 1, it means the SLO attainment is greater than 99%.
On the other hand, the model serving system does not meet the SLO attainment of 99%.
Fig. 6.8 shows the normalized p99 latency of serving all models with varying SLO scales,
(combined) arrival rates, and the number of devices.

Same as in the power-saving evaluation, the red-shaded area indicates that the 99% SLO
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Figure 6.9: Scheduler evaluation under varying arrival rates.
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Figure 6.10: Scheduler evaluation under varying request burstiness.

attainment of AlpaServe-Sched is not met. Therefore, the three approaches AlpaServe-
Sched, AlpaServe-Scaling, and µ-Serve converge to nearly the same p99 latency because the
device frequencies are fixed at the maximum. When there is no SLO violation in AlpaServe-
Sched, µ-Serve and AlpaServe-Scaling both meet the 99% SLO attainment. µ-Serve has
2–9% higher p99 latency than AlpaServe-Scaling. By replacing FCFS with µ-Serve’s sched-
uler, AlpaServe-Sched achieves 26–31% lower p99 latency. In the experiments with varying
numbers of devices (as shown in Fig. 6.8 (right)), since serving all models requires at least 8
devices, there are SLO attainment violations at 4 and 6 devices. At 6 devices, only AlpaServe
fails to meet the SLO attainment. At 8 devices, all approaches meet the SLO attainment
and µ-Serve has 5% higher p99 latency compared to AlpaServe-Scaling, which also holds
when there are idle devices (i.e., at 10–14 devices).

6.4.3 Scheduling

In this section, we evaluate the output length predictor and scheduler performance. Ad-
ditional ablation studies on the scheduler can be found in Appendix B.

Token Length Predictor Evaluation. We evaluate our output token length predictor
on the LMSYS-Chat-1M dataset. Overall, our predictor achieves an average accuracy of 0.42
across 25 models (compared to the accuracy of 0.2 for a random guess). As shown in Fig. 6.11,
despite using a shared predictor, our predictor achieves rather balanced performances across
different models, with the prediction accuracy ranging from 0.33 for llama-13b to 0.50 for
wizardlm-13b. Training a customized predictor for each individual model leads to slightly
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Table 6.2: Output token length predictor evaluation results.

Metrics Ord. CLS
(MSE)

Ord. CLS
(L1)

CLS REG
(MSE)

REG
(L1)

Accuracy ↑ 0.4290 0.4272 0.4599 0.4014 0.4383
F1 Score ↑ 0.3563 0.3332 0.4021 0.3318 0.3477
L1 Error ↓ 0.7587 0.7480 N/A 0.6077 0.5557

MSE ↓ 0.9859 1.0857 N/A 0.8077 0.8996

better accuracy. For instance, a customized predictor for vicuna-13b achieves an accuracy
of 0.429 (>0.42 for a general predictor). However, training customized predictors can in-
cur more training and model management overhead. Therefore, we do not proceed with
customized predictors.

We also conduct ablation studies to investigate the effectiveness of our ordinal-classification-
based token length predictor. In Table 6.2, we compare our predictor with multiple alterna-
tive approaches, including ordinal classification with L1 loss, (standard) classification with
cross-entropy loss and resampling, and regression with MSE & L1 loss. Interestingly, we find
that higher prediction accuracy does not necessarily lead to better scheduling performance
(e.g., lower latency or higher throughput). Instead, it matters more to the scheduler that
the predictor can rank any two inputs correctly. For instance, a predictor with higher mean
accuracy may mispredict several long outputs to be very short, leading to HoL and much
worse latency. Table 6.2 shows that our ordinal classifier with MSE loss fails to outperform
the alternative predictors in any metrics. However, as we will show in the scheduler eval-
uation next, µ-Serve’s scheduler benefits more from our chosen predictor despite a slightly
lower accuracy of 0.4290 (< 0.4599 compared to CLS).

Scheduler Evaluation. We evaluate the scheduling performance regarding the job com-
pletion time (JCT) and the serving throughput to understand if prediction accuracy is
sufficient. Our comparison baselines include (1) first-come-first-serve (FCFS), which is the
default scheduler in state-of-the-art model-serving frameworks such as AlpaServe [312] and
Orca [316], and (2) shortest-job-first (SJF) with oracle output token prediction. Fig. 6.9 and
Fig. 6.10 show the scheduling performances with varying request arrival rates and burstiness.
We also compare with three alternative designs, i.e., SJF with regression predictor, binary-
class predictor, and multi-class predictor (with no semantic cache). With varying request
rates, µ-Serve reduces JCT by 41.3% compared to FCFS and increases the throughput by
2.5×. In comparison, the oracle SJF reduces the JCT by 49.8% and increases the throughput
by 3.6×. Under different burstinesses, µ-Serve reduces JCT by 38.6% compared to FCFS
and increases the throughput by 2.2×. In comparison, the oracle SJF reduces the JCT by
43.8% and increases the throughput by 3.6×. With semantic cache, µ-Serve improves JCT
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Figure 6.11: Predictor accuracy across all models.
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by 23% and increases throughput by 1.2× (i.e., the comparison with Multi-CLS).
Predictor Overhead. We evaluate the latency overhead of the predictor for autoregres-

sive models (as indicated in Table 6.1) because the output token prediction is only on the
critical path of serving autoregressive models. The latency overhead includes both semantic
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Figure 6.14: Robustness analysis.

cache lookup and proxy model prediction. Fig. 6.12 compares the predictor latency overhead
and model request execution time. Note that the Y -axis is in the log scale. The average
model execution time is 9.8 s, and the p5th execution time is 360 ms. The average predic-
tor latency is 37.6 ms (0.4% of the total latency), and the maximum is 56.3 ms, which is
less than the minimum model execution time of 120 ms. Therefore, we conclude that the
predictor introduces negligible overhead to the end-to-end model-serving latency of autore-
gressive models, which supports the design and benefits of using a lightweight proxy model
in µ-Serve.

Support for Request Batching. Adaptive batching [310, 313] has been used to maxi-
mize throughput while meeting latency objectives [313]. µ-Serve supports various batching
techniques. More evaluation results can be found in Appendix B.3

6.4.4 Model Partitioning and Placement

In this section, we aim to understand the power-saving opportunity concerning the per-
centage of insensitive operators in a model, output non-determinism, and workload variation.

Power Saving Opportunity vs. Insensitivity Ratio. Power saving stems from the
key insight that operators have diverse sensitivity to GPU frequency scaling, and thus,
insensitive operators are leveraged to down-scale GPU frequency while preserving the SLO
attainment. We define insensitive operators to be those model operators with sensitivity
scores less than 1. Fig. 6.14 (a) illustrates how power-saving opportunities vary with the
percentage of insensitive operators in different open-source models (up to 60%). Compared
with AlpaServe-Scaling, the power reduction increases by 2.2× when the percentage increases
from 10% to 60%.

Robustness to Model Execution Non-determinism. Fig. 6.14 (b) shows the rela-
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tionship between power saving and the model output length. We find that as the average
model output length increases (i.e., more iterations per model request), the power reduction
of µ-Serve compared to AlpaServe decreases from 59% to 10% because of more intensive
model executions (and thus fewer power-saving opportunities).

Robustness to Workload Variations. As shown in Section 6.4.2, µ-Serve achieves
power saving while preserving SLO attainment by dynamic GPU frequency scaling. In reac-
tion to workload variations, Fig. 6.13 illustrates the scaling actions of the MIAD algorithm in
µ-Serve with the changes in request arrival rates. µ-Serve adopts an aggressive (multiplica-
tive) frequency increase policy and conservatively decreases the frequency at each step (e.g.,
during the time 10–20 seconds). Note that if the frequency stays at the maximum frequency
but there are continuous SLO attainment violations, a scale-out signal can be sent to the
model autoscaler (which µ-Serve does not implement), left to the discussion in Section 6.6.

6.5 RELATED WORK

General Model-Serving Systems. The emergence of ML applications motivates the
prevalence of ML model-serving systems that provide services such as scheduling, place-
ment, batching, and autoscaling. Clipper [313], TensorFlow-Serving [309], MArk [310], In-
ferLine [226], Shepherd [311], and Clockwork [224] are some earlier general ML model serving
systems for serving models like ResNet that are relatively small. They support latency-aware
provision to maximize the overall goodput. More recently, AlpaServe [312] utilizes model
parallelism for statistical multiplexing. INFaaS [314] and Cocktail [315] propose a model-less
serving framework to automate the model selection and autoscaling to meet SLOs. However,
these general systems are not power-aware and fail to consider the autoregressive property
of LLMs. Instead, dynamic batching and autoscaling are complementary to µ-Serve.

LLM Inference Optimization. Recently, several model-serving systems [316, 317, 318]
have been proposed to optimize LLMs. Orca [316] considers the autoregressive token gen-
eration pattern of LLMs and introduces iteration-level scheduling. However, it uses a first-
come-first-serve (FCFS) scheduling policy that suffers from head-of-line blocking which we
address in this chapter. FastServe [317] proposes preemptive scheduling with a Multi-Level
Feedback Queue. However, it introduces extra memory overhead to maintain intermediate
states for unfinished jobs. vLLM [318] is a high-throughput LLM serving engine based on
PagedAttention for token storage that achieves near-zero waste in KV cache memory. vLLM
also adopts an FCFS scheduling policy for all requests. TurboTransformers [319] proposes a
memory allocation algorithm to balance the memory footprint and (de-)allocation efficiency
and a batching scheduler using dynamic programming to achieve optimal throughput. µ-
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Serve can benefit from the memory management optimization of these systems and improve
the power efficiency of serving LLMs.

Operator Placement Optimization. AlpaServe [312] partitions collections of models
using inter- and intra-operator parallelism and generates operator placement strategies to
reduce serving latency in the presence of bursty workloads. µ-Serve relies on AlpaServe to
generate feasible operator parallelism partitioning plans. Another line of work is GPU-centric
offloading, which utilizes CPU memory or disk to store portions of the model parameters. For
instance, PowerInfer [343] loads frequently-activated neurons onto the GPU for fast access
while offloading infrequently-activated neurons to the CPU, thus significantly reducing GPU
memory demands and CPU-GPU data transfers. FlexGen [344] proposes a novel scheduling
approach to prioritize throughput over latency, processing batches sequentially for each layer.
DejaVu [345] accelerates LLM inference by using activation sparsity to selectively process
only those neurons that are predicted to be activated. These systems are orthogonal to
µ-Serve as their objective is to reduce GPU memory demand with offloading while µ-Serve
aims to improve the power efficiency of model serving.

Speculative LLM Inference. Speculative decoding or look-ahead decoding accelerates
LLM token generation with smaller approximation models [346, 347], multiple decoding
heads [348], or n-gram generation [349]. We do not consider speculative LLM inference
because of its extra computational overhead of token generation and verification.

6.6 DISCUSSION AND FUTURE CHALLENGES

Model Instance Autoscaling. Autoscaling (adding/removing model instances) is an
essential orchestration task. Model replica autoscaling is another widely used model-serving
technique [310, 313, 314, 315] to adapt to workload spikes. These techniques are comple-
mentary to µ-Serve. Nevertheless, we leave it to future work on integrating µ-Serve with
these techniques to support dynamic model replication and request batching.

Heterogeneous Accelerators. In µ-Serve’s system model, we consider only a homoge-
neous GPU cluster. However, GPU devices in a cluster can be heterogeneous in terms of
hardware (e.g., A100, V100, and T4), resource configurations (e.g., memory size), frequency
range, and power features [329, 350, 351, 352]. Device heterogeneity raises challenges in both
model provisioning (e.g., which type of device to assign to a specific model partition) and
dynamic frequency scaling (the power saving, idle power, and power efficiency differ across
different types of devices). We leave the study of such complicated optimization space to
future work.

Other Power Management Features. In µ-Serve’s GPU management model, we
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consider only SM frequency scaling because of fast actuation and fine-grained increments.
Instead, there are other power management features on more advanced GPUs such as
power capping, various GPU operation modes, memory frequency scaling, and MIG shar-
ing [324]. It is worthwhile to study the interplay between these power features and explore
co-optimization policies for power saving.

Scalability. Fig. 6.7 shows that µ-Serve consistently facilitates per-device power savings
as the cluster undergoes scaling out at no idle devices. Based on these results, we assert that
similar power-saving opportunities are likely to be present in cloud-scale deployment while
ensuring SLO attainment.

6.7 SUMMARY

In this chapter, we have presented µ-Serve, a system for serving multiple large deep learn-
ing models that maximizes power saving while preserving request-serving SLO attainment.
The key innovation of µ-Serve lies in the fine-grained modeling of operator sensitivity and
power-aware model provisioning that creates power-saving opportunities. Such opportuni-
ties can be exploited by dynamic GPU frequency scaling online to achieve power reduction
without SLO violations at varying conditions. We quantified and discussed when and to
what extent such saving opportunities exist through extensive evaluations. An open-source
implementation of µ-Serve can be found at: https://gitlab.engr.illinois.edu/DEPEND/
power-aware-model-serving.
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CHAPTER 7: CONCLUSIONS

This dissertation has established the foundations and principles for designing practical
and robust autonomous cloud infrastructures through efficient machine learning techniques.
The vision is self-optimizing, self-adapting cloud utility fabrics that can continuously refine
their behavior to harmonize multiple cloud efficiency objectives in a fundamentally more
autonomous and robust manner, minimizing human-engineered heuristics.

This dissertation has taken the first step towards designing and managing cloud systems
to optimize resource efficiency, performance isolation, and power efficiency with deep rein-
forcement learning. We first demonstrate that learning-based cloud systems achieve supe-
rior performance and generalizability than traditional heuristic-driven approaches in a wide
range of systems and environments, including microservices resource management, server-
less workload autoscaling, deep learning model serving, power management, and congestion
control. Based on online telemetry data and data-driven analytics, a key advantage of these
learning-based approaches is their ability to automatically tailor policies for precise deploy-
ment settings (e.g., resource contention, workload patterns, and network types). Crucially,
the learned policies can dynamically adapt to challenging scenarios that fixed heuristics
struggle with, especially corner or tail cases that were not explicitly accounted for during
the manual heuristics design/tuning phase.

While building and deploying these learning-based systems in production cloud environ-
ments (working with our IBM collaborators), we have also identified a series of challenges
that hinder the practical adoption of machine learning in systems due to issues around
robustness, reliability, and the ability to maintain performant operations across all scenar-
ios. Developing both efficient and robust learning for systems approaches fundamentally
requires new machine learning algorithms with system support. In this dissertation, we have
described the details of these challenges arising from cloud multi-tenancy and heterogene-
ity, and presented a general learning framework design with two key abstractions: (1) the
virtual agent abstraction that employs mean-field theory to manage distributed learning
agents in multi-tenant cloud systems, and (2) the meta learner abstraction to fast adapt
learned ML models or policies across heterogeneous cloud applications and environments
based on generalizable state embeddings.

The abstraction-driven design provides scalability and robustness to learning-based sys-
tems while remaining practical and highly extensible to various online learning algorithms
and systems management tasks beyond resource management and power/frequency control.
With the proposed framework and the open-source platform implementation, we aim to fos-
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ter collaboration across research communities in machine learning, networking, and systems,
and enable researchers to develop and robustly validate new machine learning approaches
on real-world cloud systems management problems at scale.

While the work in this dissertation represents significant strides towards learning-based
cloud systems management, many critical open challenges remain to attain this broader
vision of fully autonomous cloud systems management. To conclude this dissertation, we
outline several important but challenging research directions for the next steps.

7.1 LOOKING FORWARD

Policy Interpretation and Verification. For the learned policies from machine learn-
ing models to be practically adopted and deployed in mission-critical production cloud sys-
tems, it is crucial that the policies and decisions made by the ML agents are interpretable
and understandable by human operators. Additionally, formal verification that the learned
policies maintain certain required system properties and constraints can be beneficial be-
fore deployment. However, the black-box and unpredictable nature of modern deep neural
network models presents a significant hurdle. There is understandable skepticism around
applying these advanced ML techniques in systems that require high reliability, as even
well-trained neural networks can sometimes lead to suboptimal or catastrophic outcomes in
corner cases [252, 353] or be exploited by adversarial attacks [354].

While progress has been made in enhancing ML explainability, such as techniques to
translate neural network policies into interpretable rule-based models like decision trees [355,
356, 357], key challenges remain. Maintaining the performance benefits of deep RL policies
while providing full transparency is difficult. In formal verification of machine learning for
systems [358, 359], the complexity increases exponentially with the size of the neural network
and environment state space. Moreover, it is challenging to comprehensively specify the
system properties that must be satisfied for each cloud management task.

Overcoming these hurdles by combining model interpretation, verification, and controlled
deployment approaches could pave the way for the safe adoption of learned policies in pro-
duction. One potential approach is a two-stage workflow: first performing policy exploration,
training, and rule extraction in a sandboxed environment. Then the interpretable, verified
rule-based policies can be deployed at scale on production cloud infrastructure. Address-
ing these challenges through fundamental innovations in ML explainability, verification, and
their integration into the learned systems management frameworks will be critical to re-
alizing the vision of robust, trustworthy autonomous cloud control planes. Collaborations
spanning machine learning, formal methods, cloud systems, and operational practices will
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be vital to make pragmatic progress.
Foundation Model for Systems. Lately, foundation models (FMs) have exhibited

notable efficacy in tackling a range of intricate tasks, especially in natural language processing
(NLP). An FM is typically referred to as any ML model that is trained on broad data at
scale and can be adapted to a wide range of downstream tasks [18]. FMs have been driving
a paradigm shift in the way that modern-day ML models are trained and used. Rather
than learning each task-specific model from scratch (which is costly in terms of both dataset
collection and training time), an FM model that is pre-trained once can be adapted to
various tasks via lightweight fine-tuning [360] or few/zero-shot learning [361, 362].

Despite the successes of FMs in the language and vision domains, there is relatively little
work exploring the development of an analogous FM for cloud systems management or
in the area of systems and networking in general. The existing way of developing and
training one model per systems task is costly in terms of both training time and dataset
collection effort [58]. In this dissertation, we have shown that the learned model in each task
requires substantial retraining (even with transfer learning) when serving new applications
or cloud environments. FLASH [363, 364] facilitates model adaptability across applications
or environments (but not across tasks). Ultimately, we desire an FM that can learn general
systems management policies across tasks [305]. However, such a task-aware FM requires
both a homogeneous task specification structure and unified data representation modeling
that can be generalized across systems management tasks, similar to a unified next-token
prediction task across different NLP-related tasks.

Combined Systems and ML Resilience. The widespread adoption of learning-based
system agents, or ML agents in short, across the various system stacks and layers of cloud
datacenters has introduced a new dimension to the challenge of ensuring system resilience.
Traditionally, system resilience focused on mitigating faults and failures within the hardware
and software components, employing techniques such as redundancy, failover mechanisms,
and error handling [365]. However, with the proliferation of ML agents making predictions
and generating system management or control decisions, the fault model has expanded be-
yond the traditional realm.

These ML agents, whether employing supervised learning, RL, or recent advancements
like general or fine-tuned large language models (LLMs), introduce a new set of potential
failure modes. ML models, despite their sophistication, can be susceptible to data/model
uncertainties, biases, out-of-training-distribution shifts, adversarial attacks, and other forms
of degradation or unexpected behavior (e.g., silent data corruptions [366]). Consequently,
the requirements for resilient systems must now encompass the resilience of these ML agents
themselves. There is an urgent need to understand and improve the systems and ML re-

145



silience in large-scale cloud datacenters. One promising direction could be to combine mech-
anistic models [367] that capture domain knowledge with data-driven learning approaches,
leveraging the strengths of both to build more robust and reliable systems.

Sustainable Green Computing. Today’s hyper-scale cloud datacenters consume sig-
nificant power. It has been reported that they already contribute 2–3% of the overall global
carbon footprint and will account for 8% by 2030 [368]. Meanwhile, emerging deep learning
and large model training or inference workloads [18, 369, 370]) are demanding increasing
amounts of power. Achieving carbon efficiency for a sustainable future is a daunting chal-
lenge. Learning-based cloud systems management must address the urgent need to transition
to green computing while retaining the ability to meet joint performance and resilience ob-
jectives. The goal is to reduce the carbon footprint by optimizing the usage of green energy
sources (e.g., solar energy), which is desirable but costly and relatively unstable while con-
tinuously meeting cloud service SLOs in availability and performance. The major challenges
to achieving that goal are outlined below:

• Fundamental Trade-off between Sustainability and Cloud SLOs. Sustainable computing
requires both sustainable energy costs and sustainable cloud operations (by meeting
SLOs). Conversely, meeting stringent SLOs can incur high energy costs (e.g., due to
overprovisioning). Cloud datacenters require careful design and optimization in dealing
with this fundamental trade-off.

• Variability in Green Energy Supply and Dynamic Workload. Green energy sources are
inherently unstable [371], and cloud datacenter workloads also exhibit dynamically
varying spatial and temporal patterns. This requires a continuously optimized trade-
off between cloud SLO violations and carbon emissions, posing a challenging multi-
objective optimization problem.

• Lack of an Application-aware Power Control Plane. Existing efforts adopt a top-down
approach in minimizing carbon footprint, such as load shifting based on predictions
of carbon intensity [372]. However, conservative power control misses energy-saving
opportunities, while application-agnostic aggressive power control can lead to SLO vi-
olations [252]. Therefore, it is necessary to take a scalable, application-aware [373],
bottom-up optimization approach and incorporate hardware/software co-design for to-
day’s hyper-scale cloud datacenters.
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APPENDIX A: META LEARNING CASE STUDIES

A.1 META LEARNER ARCHITECTURE IN FLASH

In this section, we introduce the neural network architecture of FLASH’s meta learner
(as shown in Fig. A.1) and the embedding generation process. In FLASH, embeddings are
used to explicitly represent and differentiate cloud application and environment pairs (i.e.,
(Ai, Ej)), and meta-learning enables learning to generate such embeddings in a way that the
individuality of each pair can be modeled and extracted. As mentioned in Section 5.6.1, the
meta learner consists of the input layer, RNN layer, and embedding layer.

Input Layer. The input layer unifies different formats of data samples into a sequence
vector to be taken by the RNN layer. Let us denote the embedding generation function
in meta learner by f : D → Rd where d is the size of the embedding. For supervised
learning (SL), the data samples D include a vector of feature variables [x] and labels (i.e.,
predictions) [y]. Each element Xt in the input sequence vector contains the concatenation
of xt and yt for the t-th sample, i.e., Xt = [xt, yt]. For reinforcement learning (RL), the
data samples D include a set of M RL trajectories generated by the agent interacting with
the environment. Each trajectory contains characteristics of the (Ai, Ej) pair in the system
management task that the agent is currently managing. Each element Xt in the input
sequence vector concatenates the state, action, and reward in each trajectory at time step
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Figure A.1: Neural network architecture of FLASH’s RNN-based meta learner for embed-
ding generation.
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t ∈ [0, T ] where T is the trajectory length. For instance, as shown in Fig. A.1, Xt contains
[St(m), At(m), Rt(m)] from trajectories m ∈ [1,M ] where St, At, and Rt refer to the state,
action, and reward at time step t in each trajectory.

RNN Layer. As mentioned in Section 5.6.1, FLASH uses a bidirectional GRU (Gated
Recurrent Unit), a special class of RNN [275], that maintains a high-dimensional hidden
state with nonlinear dynamics to acquire, process, and memorize knowledge about each
(Ai, Ej) pair. An RNN is a type of neural network that is specialized for processing a
sequence of data X0, X1, ..., XT where each indexed element Xt corresponds to one pre-
processed variable in the input layer. In particular, we applied a multi-layer, bidirectional
gated recurrent unit (GRU) RNN [374] to the input sequences. Two unidirectional RNN
hidden layers are chained together in opposite directions and act on the same input (as
shown in Fig. A.1). For the forward RNN hidden layer, the first input is X0, and the last
input is XT , but for the backward RNN hidden layer, the first input is XT , and the last input
is X0. The output of the bidirectional RNN layer is generated by concatenating together
the corresponding outputs (i.e., the hidden states) of the two underlying unidirectional RNN
hidden layers. Mathematically, given M input sequences (i.e., RL trajectories), we have the
output OT = 1

M

∑M
m=1 H

m
i , where Hm

i is the intermediate output for the m-th trajectory in
the i-th (Ai, Ej) pair.

We do not explicitly use the popular memory augmentation technique [276] for the meta
learner as the features of our application workloads are not as high-dimensional as those
of computer vision tasks [276]. We also leave the usage of more advanced sequence models
such as long short-term memory (LSTM) [375, 376] and attention-based techniques (e.g.,
Transformers [301]) to our future research.

Embedding (FCNN) layer. The output (i.e., a fixed-size vector) from the bidirectional
RNN layer is fed to a fully connected neural network (FCNN) layer to generate an embedding
that is used to fingerprint/represent the ((Ai, Ej)) pair with which the base learner is dealing.
The input size is equal to the size of the hidden RNN layer, and the output size is equal
to d, which is the embedding size. ReLU is used as the activation function. The generated
embedding from the FCNN layer will be concatenated by the base learner as part of the
feature vector (in the SL case) or the state vector at each time step (in the case of RL).

We implement FLASH’s meta learner with PyTorch [139], and the hyperparameters are
shown in Table A.1.
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Table A.1: FLASH training hyperparameters.

Parameter Value

Trajectory Buffer Size 32
Trajectory Expiration Time 300 time steps
Learning Rate 3× 10−4

RNN Input Size 256
RNN Hidden Layers 2
RNN Hidden Layer Size 256
Dropout 0.05
Embedding Size 32

A.2 DETAILS OF CASE STUDY ON SIZELESS

Model. Sizeless [64] uses a fully connected neural network as the predictor for the regres-
sion task. The features (after feature engineering) and label used in the Sizeless model are
shown in Table A.2, which are consistent with the original paper [64]. After a grid search
to tune the hyperparameters of the model (as shown in Table A.3), the final model uses the
Adam optimizer, a MAPE loss function, 200 epochs, an L2 regularization of 10−2, and four
256-neuron layers in the neural network.

Applications and Sizeless Dataset. We adopt the 16 representative production cloud
workloads selected in Sizeless [64] based on a survey of 89 industry use cases of serverless com-
puting applications [266]. The selected production workloads include CPU-intensive tasks
(e.g., floating-point number computation), image manipulation, text processing, data com-
pression, web serving, ML model serving, and I/O services (e.g., read, write, and streaming).
The Sizeless dataset (released by the original paper) is collected by running 2000 synthetic
AWS Lambda applications generated by random sampling with replacement from the seg-
ment pool (consisting of the 16 selected representative production application segments) and
combining the selected segments together. Each segment represents the smallest granularity
of common workloads in cloud datacenters.

The original Sizeless dataset includes measurements on the execution time and resource
consumption metrics (see [64] for a full table of dataset columns) for all applications across
six different memory sizes (128 MB, 256 MB, 512 MB, 1024 MB, 2048 MB, 3008 MB) for
ten minutes each at 30 requests per second with an exponentially distributed inter-arrival
time. In the future, the number of implemented segments can easily be extended if specific
workload profiles are missing.

To study the model prediction accuracy degradation when encountering new applications
or compute platform changes, we constructed two new datasets, OpenWhisk and Cloud-
Bandit. We first implemented a synthetic application generator based on the open-sourced
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AWS Lambda application generator from Sizeless [64]. Overall, we generated 1000 unique
applications that are deployable on both OpenWhisk (for evaluation of the resource con-
figuration search task) and Kubernetes (for evaluation of the workload autoscaling task in
Appendix A.3 and CPU frequency scaling task in Appendix A.4).

Table A.2: Features and labels in Sizeless.
Features (X)

Base memory, Execution time under the base
memory, Heap used, User CPU time, System
CPU time, Voluntary context switches, Bytes
written to file system, and Bytes received over
network, Target memory

Label (y)
Execution time under the target memory

Table A.3: Sizeless training hyperparameters.
Parameter Parameter Range Selected

Optimizer SGD, Adam, Adagrad Adam
Loss MSE, MAE, MAPE MAPE
Epochs 200, 500, 1000 200
Neurons 64, 128, 256 256
L2 0, 0.0001, 0.001, 0.01 0.01
Layers 2, 3, 4, 5 4

OpenWhisk Dataset. Following the same dataset collection methodology as Size-
less [64], we deployed each generated synthetic application on a 50-VM OpenWhisk cluster
setup on IBM Cloud. In addition to the memory size of the function container (which is
the only resource configuration considered in Sizeless), we also consider CPU allocation (i.e.,
cpu.shares used in OpenWhisk) as another resource configuration. The collected metrics
remain the same as in the Sizeless dataset.

CloudBandit Dataset. The CloudBandit dataset [235] covers application resource con-
figuration (i.e., number of nodes, CPU family type, number of vCPUs, and VM type),
performance metrics, and system metrics on three different public cloud platforms. The
CloudBandit dataset was originally collected by running 30 production workloads on a vari-
ety of different resource configurations across three different cloud providers: Amazon Web
Services, Microsoft Azure, and Google Cloud Platform. We preprocessed the dataset to align
it with the Sizeless model training dataset by replacing the target memory size (used in the
Sizeless dataset) with the target resource configurations, such as the VM type and vCPU
count (used in the CloudBandit dataset).

Datasets OpenWhisk and CloudBandit are used to evaluate the ML model’s generalizabil-
ity across different applications, while the dataset CloudBandit is also used to evaluate the
model’s generalizability across different computing infrastructures. Results are presented in
Section 2.4 and Section 5.6.3.

A.3 DETAILS OF CASE STUDY ON FIRM

Model. As described in Section 3.2, FIRM [1] uses an actor-critic RL algorithm, DDPG [210].
The RL agent monitors the system- and application-specific measurements and learns how
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to scale the allocated resources vertically and horizontally. Table 3.2 shows the agent’s
state and action spaces. Table 3.3 shows the model hyperparameters. The goal is to
achieve high resource utilization (RU) while maintaining application SLOs (if there are
any). SLO preservation (SP ) is defined as the ratio between the SLO metric and the mea-
sured metric. If no SLO is defined for the workload (e.g., best-effort jobs) or the measured
metric is smaller than the SLO metric, SP = 1. The reward function is then defined as
rt = α · SPt · |R|+ (1− α) ·∑i∈R RUi, where R is the set of resources (i.e., container CPU
limit and memory capacity in our case). The RL algorithm is trained in an episodic setting.
In each episode, the agent manages the autoscaling of the application workload for a fixed
period of time (100 RL time steps in our experiments).

Applications and Traces. As mentioned in Appendix A.2, we generated 1000 synthetic
applications (deployable on both OpenWhisk and Kubernetes) using the selected 16 rep-
resentative production cloud serverless workloads as application segments (same as in the
resource configuration search task mentioned in Appendix A.2). We reuse these application
segments in the task of workload autoscaling as well because serverless workloads are highly
dynamic (and thus require autoscaling) and rely on the provider to manage the resources.
For RL agent training and inference, we use real-world datacenter traces [267] released by
Microsoft Azure, collected over two weeks in 2021. Next, we deploy the selected workloads as
Deployments in a five-node Kubernetes cluster on IBM Cloud Virtual Private Cloud (VPC)
and run an RL-based multi-dimensional autoscaler with each Deployment, controlling both
the number of replicas (horizontal scaling) and the container sizes (vertical scaling). All
nodes run Ubuntu 18.04 with four cores, 16 GB memory, and a 200 GB disk.

Application Updates/Patches. We introduce, in total, seven scenarios to explore
model performance degradation when facing application patches, service payload size changes,
or load pattern variations: (1) For I/O services to a backend file system (e.g., AWS S3) and
the compression/decompression services, the size of files being read, written, or streaming is
changed from [128 KB, 256 KB, 384 KB] to [512 KB, 768 KB, 1024 KB]. (2) For database
services, the size of the database table being scanned is changed from 1024 items to 10240
items. (3) For floating-point number calculation, the number of operations is changed from
108 to 208. (4) For image manipulations, the image dimension is changed from 40×40 to
160×160. (5) For text processing, the JSON file size is changed from [250 B, 500 B, 1 KB]
to [2 KB, 3 KB, 5 KB]. (6) For ML model serving, we change the matrix multiplication di-
mension from 50 to 150. (7) For load pattern changes, we divide the Azure workload traces
into two parts, one half with a higher daily load (> 105 per day) and the other half with a
lower load (≤ 105 per day).
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A.4 DETAILS OF CASE STUDY ON SMARTOVERCLOCK

Model. SmartOverclock [16] is an on-node learning-based agent developed by Microsoft
to adjust the CPU core frequency of a running VM dynamically. SmartOverclock uses an
RL algorithm called Q-Learning [211]. At each time step t (every 1-second interval), the
agent monitors the average Instructions Per Second (IPS) performance counter across the
cores of each VM and learns when to adjust the core frequency. Table A.4 shows the model’s
state and action space. Table A.5 shows the model training hyperparameters.

Table A.4: RL state-action space and re-
ward function in SmartOverclock [16] for
CPU frequency scaling.

State Space (st)
Instructions per second (IPS), CPU usage, Mea-
sured core frequency, SLO Preservation Ratio (La-
tency, Throughput)

Action Space (at)
CPU core frequency (every second)

Reward Function (rt)
α · ((IPSt − IPSt−1)/IPSt)∆freq>0 + (1− α) · SPt

Table A.5: SmartOverclock (Q-Learning)
training hyperparameters (adopted from Sta-
ble Baseline3 [211]).

Parameter Value

Learning Rate 1× 10−4

Learning Starts 50000
Buffer Size 1000000
Batch Size 32
Discount Factor 0.99
Target Network Update Rate 1.0
Exploration Fraction 0.1

The state vector includes IPS, CPU usage, and current core frequency that are measured
at each time step t. For VMs with SLOs or measurable application-level metrics, the same
variable SLO preservation ratio (SPt) is also considered. Based on the state, the agent picks
the frequency for the next time epoch. To balance the performance improvements with
the extra power cost (of increasing the core frequency), the reward function is defined as
rt = α · ((IPSt − IPSt−1)/IPSt)∆freq>0 + (1− α) · SPt, with the assumption that workload
benefits from a higher frequency when (a) higher CPU frequencies increase the IPS, or (b)
the SLO preservation ratio is high.

Applications and Environments. We reuse the application workloads and application
patches described in Appendix A.3 to evaluate model adaptability for new applications or
application updates. To evaluate the model adaptability on heterogeneous compute infras-
tructures, we run experiments on three types of processors: (1) an Intel Xeon E5-2683 v3 2.0
GHz processor, which is capable of running up to 3.0 GHz, (2) an Intel Xeon CPU E5-2695
v4 2.1 GHz processor, which is capable of running up to 3.1 GHz, and (3) an AMD EPYC
7302P 3.0 GHz processor, which is capable of running up to 3.3 GHz.
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A.5 ADDITIONAL MOTIVATING EXAMPLES

Congestion control agents at the transport layer adjust the sending rate based on the
measured network statistics. Prior work [71, 72, 74, 254] has proposed RL-based solutions.
For instance, Aurora [72] decides the sending rate at the beginning of each time step (of length
proportional to RTT) to maximize the reward (a combination of throughput, latency, and
packet loss rate). RL agent trains a policy to optimize the reward over a given distribution of
training network environments (e.g., network connections with certain bandwidth patterns,
delay, and queue length). It is hypothesized that local history contains information about
patterns in traffic and network conditions and thus can be exploited for better rate selection
by learning the mapping from experience via a deep RL approach. For example, the learned
RL agent is able to distinguish non-congestion loss from congestion-induced loss, while TCP
CUBIC halves the sending rate upon any occurrence of loss, and thus fails to fully utilize
the link’s bandwidth [72].
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Figure A.2: Reward degradation in Aurora.

However, training in a wide range of network environments leads to suboptimal perfor-
mance, whereas training in a narrow distribution of environments results in poor general-
ization. For the distributions spanning a wide variety of network environments (e.g., a large
range of possible bandwidth or link delay), an RL policy may perform poorly when tested
in a different environment than the set of environments seen during training. We generate
simulated training environments with various network condition parameters following prior
work [66, 70, 72] (in total 625 environments). The parameters are used as configurations
in the network simulator to specify the network condition, such as bandwidth range, link
delay, queue size, random loss rates, and delay noises. We take the open-source implemen-
tation of the RL model in Aurora to explore the RL agent performance degradation when
encountering network environments different from the one used for training. Fig. A.2 shows
the per-episode reward of the Aurora agent in different scenarios of network environment
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changes. The X-axis represents different testing scenarios of network environment changes.
In “Base”, the RL agent is trained and tested in the same environment. In “BW”, “Delay”,
“Size”, and “Loss”, the RL agent is tested in different environments regarding bandwidth,
link delay, queue size, and loss rate, respectively. In “All”, the RL agent is tested in all
different scenarios. We find that the performance degradation of the RL agents (regarding
the reward) can be up to 32.8% at the 90th percentile and have a median degradation of
27%. In addition, we find that among all configurations, changes in queue size have the least
effect on the agent performance (with an average of 12.5% reward degradation), while link
delay changes have the highest (40.2%).

CPU frequency scaling also benefits from RL-based solutions [16, 75, 76, 77, 285]
where the agent adjusts the frequency of CPU cores to balance application performance
improvements with the extra power cost. For example, SmartOverclock [16] leverages an RL
model Q-Learning to pick the frequency at each time step based on the average Instructions
Per Second (IPS) performance counter and the current frequency across the cores of each
VM. However, heterogeneous workloads have different scaling factors (i.e., the sensitivity of
performance benefit given frequency increase), and various processors offer quite different
scaling ranges and turbo performance. We explore the effect of changes in both workloads
and processor types (as described in Appendix A.4) on the RL agent performance. Fig. A.3
shows that the per-episode reward degradation of the RL agents can be up to 44.2% at the
90th percentile when testing on a different set of workload changes and 17.3% when testing
on a different processor.
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Figure A.3: Reward degradation in SmartOverclock.
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A.6 ADDITIONAL CASE STUDY ON CONGESTION CONTROL

We also integrate FLASH with a congestion control agent at the transport layer selecting
the sending rate based on the sender’s observations of the real-time network conditions. As
mentioned in Appendix A.5, in RL-based congestion control, the agent is trained to learn a
policy to optimize performance over a given distribution of training network environments.
If the distribution changes for new network environments, the RL agent can fail to adapt
quickly because it is not trained to generalize.

RL Formulation and Implementation. We take the open-source implementation of
Aurora, an RL-based congestion control agent from prior work [72], as the base learner
to integrate with FLASH. In Aurora’s RL formulation, the agent maps a locally perceived
history of feedback from the traffic receiver, which reflects past traffic and network conditions,
to the next choice of sending rate at the traffic sender. Aurora [72] uses an actor-critic RL
algorithm, PPO [209]. Table A.6 shows the state and action spaces of the RL model.
Table A.7 shows the model training hyperparameters.

In the RL formulation of the congestion control task, the RL agent is on the traffic sender
side, and its actions translate to changes in sending rates. At each time step t, the sender
can adjust its sending rate xt, which then remains fixed throughout the time window until
time step t + 1. RL states are bounded histories of network statistics that are observed
by sending packets at a rate xt and receiving packet acknowledgments. In summary, the
network statistics vectors consist of (a) latency gradient/inflation, the derivative of latency
with respect to time; (b) latency ratio, the ratio of the current mean latency to the minimum
observed mean latency in the connection’s history; and (c) sending ratio, the ratio of packets
sent to packets acknowledged by the receiver. The reward function is defined as rt = α ·
Throughputt+β ·Latencyt+ γ ·Losst where throughput is measured in packets per second,
latency in seconds, and loss is the proportion of all packets sent but not yet acknowledged
at time step t.

We adopt the same model design and hyperparameters as used in the open-source imple-
mentation of Aurora. The resultant agent is referred to as FLASH-Aurora. Similar to the
base learner implemented for FIRM and SmartOverclock (as described in Section 5.6.2), the
base learner sends RL trajectories by calling InsertDataSamples([<S, A, R>]) after each
RL episode. The embedding is then retrieved by calling GetEmbedding() and appended to
the state vector (which is then taken by the actor network of PPO to generate the final
actions) in the base learner.

Evaluation Setup. We train and test FLASH-Aurora in a network environment sim-
ulator [72] that can simulate network links with a wide variety of network scenarios. The
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Table A.6: RL state-action space and re-
ward function in Autora [72] for the conges-
tion control task.

State Space (st)
Sending/receiving rate, Sending/receiving
duration, avg RTT in a time window, min
RTT, RTT inflation, RTT ratio, Ack/Sent
latency inflation, Loss/Sent ratio

Action Space (at)
Sending rate in the current time window

Reward Function (rt)
rt = α ·Throughputt+β ·Latencyt+γ ·Losst

Table A.7: Aurora training hyperparameters
(PPO algorithm).
Parameter Value

# Time Steps per Episode 2048 × 64 mini-batches
Learning Rate 3× 10−4

Discount Factor 0.99
GAE Lambda 0.95
CLIP Range 0.2
Entropy Coefficient 0.005
Value Function Coefficient 0.5

simulator comes with a range of configurations: link bandwidth (in Mbps), link latency or
RTT (in ms), packet queue size, and package loss rate. In the original paper, the configura-
tion of the training environment is selected uniformly at random from ranges of parameters
that are set to [1.2 Mbps, 6 Mbps] for link bandwidth, [50 ms, 500 ms] for link latency,
[0%, 5%] for loss rate, and [2, 2981] for queue size. To train and evaluate RL agents in
a wider variety of network scenarios, we expand the ranges of configuration parameters to
[0.1 Mbps, 128 Mbps] for link bandwidth, [1 ms, 512 ms] for link latency, [0%, 10%] for
loss rate, and [1, 10240] for queue size. We then divide the range for each configuration
into five sub-ranges, and each simulation environment is constructed by randomly selecting
the configuration parameter range from the five sub-ranges, resulting in 625 environments in
total. In the evaluation, we repeat five experiment runs wherein each run, the pre-training of
FLASH-Aurora is carried out in 200 randomly selected environments (i.e., the “pre-training
pool” in Fig. 5.14), and the adaptation evaluation is done on the remaining 425 environments
(i.e., “adaptation pool”).
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(b) Retraining Cost.
Figure A.4: Comparison of the performance and retraining cost of the Aurora model with
FLASH.

Reward Drop without Adaptation. To evaluate the performance degradation without
retraining, we design a congestion control A/B test where FLASH-Aurora agent and the
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original Aurora agent are the two variants controlling the congestion control for the same
set of traces in the simulator. We repeat the A/B test 100 times. In each test, we randomly
select an environment from the adaptation pool and train the agent until convergence. We
then randomly select ten other different environments from the adaptation pool for reward
drop evaluation (i.e., RL policy-serving). Fig. A.4(a) shows the CDF of the per-episode
reward, and we find that FLASH-Aurora reduces the average reward drop percentage from
the baseline (i.e., the agent trained to convergence on the testing environment), labeled as
“Converged” in Fig. A.4(a), from 28% to 5.6%.

Model Adaptation Cost. We compare FLASH with the transfer learning (TL)-based
approach to retrain an RL agent for a new network environment based on previous RL
experience gained for known environments. In the TL-based approach, the model parameters
(weights) are shared between the agents managing the known environments and the new
environment. We measure the retraining time (to convergence) of Aurora (TL) and FLASH-
Aurora. The results are shown in Fig. A.4(b). We find that, on average, FLASH-Aurora
adapts 2.4× faster than TL, with a 58.3% reduction in RL episodes required to convergence
(on average 112 episodes compared to 46.7 episodes).

A.7 AMORTIZED TRAINING COST ANALYSIS

As discussed in Section 5.8, pre-training across a distribution of (Ai, Ej) pairs can require
a large amount of training overhead (e.g., pre-training on 200 pairs costs 5.2 hours with an
NVIDIA Tesla V100 (16 GB) GPU). However, the retraining/adaptation of a base learner
for each novel (Ai, Ej) pair from a potentially larger-scale adaption pool only requires no or
fewer model update iterations. In addition, such lightweight fine-tuning at scale can amortize
the initial pretraining cost and thus reduce the per (Ai, Ej) pair training cost. This trade-off
allows us to reduce the overall training effort, especially in scenarios where the application
or environment is dynamic or constantly evolving.

To understand the amortization of the training cost for different scales of adaptation pool
of (Ai, Ej) pairs, we take the workload autoscaling task as an example, pre-train FLASH on
different sizes of the pretraining pool of applications (i.e., 50, 100, 150, and 200 applications),
and evaluate the adaptation cost (i.e., number of RL training episodes) when adapting to
different number of novel applications. We compare FLASH with transfer learning (TL).
In FLASH, the randomly initialized model is pre-trained on the pretraining pool and then
used for adaptation to each novel application. In TL, the randomly initialized model (i.e.,
FIRM) is continuously being trained on each novel application (without any pre-training).
We show in Fig. A.5 the training cost analysis of FLASH and TL with different sizes of the
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Figure A.5: Training cost analysis of transfer learning (TL) and meta-learning with various
sizes of pretraining application pool in the task of workload autoscaling.

pretraining application pool in the task of workload autoscaling. The X-axis represents the
number of applications that the model has been adapted to, and the Y -axis (in log-scale)
represents the average per-application RL training episodes across all applications that have
been adapted to.

We find that with the size of the initial pretraining pool growing, the initial pretraining
cost increases (but the increase rate slows down), while the adaptation cost in fine-tuning
decreases. For instance, pre-training FLASH on 200 and 100 applications costs 6900 and
5800 episodes, respectively, while the average adaption cost for fine-tuning is 41.8 and 83.5
episodes, respectively. In terms of per-application adaptation cost, compared to transfer
learning (labeled as “TL” in Fig. A.5), FLASH has a higher cost when only using it to adapt
to a smaller number of unseen applications. However, when FLASH has been used to adapt
to more than 60 applications, the per-application adaptation cost starts to be lower than TL,
due to the amortization of the pre-training cost with the benefits of lightweight fine-tuning.
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APPENDIX B: ADDITIONAL EXPERIMENTS ON µ-SERVE

B.1 ABLATION STUDY ON PROXY MODELS

Model-Specific Results. In Fig. B.1, we plot the detailed evaluation results of our out-
put token length predictor on each individual model from the LMSYS-Chat-1M dataset. We
consider standard evaluation metrics including accuracy, precision, recall, and F1 score. Our
predictor achieves rather balanced performances across different models, with the prediction
accuracy ranging from 0.33 for llama-13b to 0.50 for wizardlm-13b.

Evaluation Results for Smaller Predictor Models. In the main text of the paper,
we primarily build our predictor on top of the “BERT-Base” model [377] with 12 Trans-
former layers and 768 hidden dimensions. In this appendix, we consider a smaller predictor
based on the “BERT-Tiny” model with 2 layers and 128 dimensions. Table B.1 summarizes
the evaluation results of multiple predictors built upon BERT-Tiny using different training
schemes, including ordinal classification, standard classification, and regression. Compared
with the BERT-Base results in Table 6.2, we can see that the smaller BERT-Tiny model
has lower prediction performance in almost every metric that we consider. In fact, the
BERT-Tiny-based regressors (trained using MSE or L1 loss) seem to significantly underfit
the training data and do not perform much better than random guesses. This is expected
because the smaller BERT-Tiny architecture is less expressive and can hardly capture the
subtle features from the input queries in natural languages.

Scheduling Performance Comparison In terms of the prediction latency overhead,
the average, p99.9, and maximum inference latencies of the predictor built on top of BERT-
Tiny are 1.8 ms, 3.7 ms, and 10.2 ms, respectively, less than that of the predictor built with
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Figure B.1: Output token length predictor evaluation results for each individual model.
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Table B.1: BERT-tiny-based output token length predictor evaluation results.

Metrics Ord. CLS
(MSE)

Ord. CLS
(L1)

CLS REG
(MSE)

REG
(L1)

Accuracy ↑ 0.3947 0.4097 0.4193 0.2425 0.2425
F1 Score ↑ 0.3121 0.3193 0.3687 0.0781 0.0781
L1 Error ↓ 0.7752 0.7558 N/A 0.9528 0.9530

MSE ↓ 0.9656 1.0398 N/A 1.8639 1.8643
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Figure B.2: Scheduling performance comparison with BERT-Base and BERT-Tiny as the
proxy models.

BERT-Base. We then use predictors based on BERT-Base and BERT-Tiny proxy models in
the µ-Serve scheduler and compare the scheduling performance regarding the job completion
time (JCT) and throughput. Fig. B.2 shows the comparison of the two proxy models when
we use different training schemes: multi-class classification, ordinal classification with L1
loss and MSE, and regression with L1 loss and MSE. The scheduler with BERT-Base as
the proxy model achieves 1–3.6% less JCT and 4.7–8.5% higher throughput. As expected,
the smaller model incurs even less latency overhead but suffers worse prediction accuracy
and scheduling performance in return. Therefore, we use BERT-Base as the proxy model in
µ-Serve’s scheduler.

B.2 ABLATION STUDY ON µ-SERVE SCHEDULER

In this section, we conduct experiments to understand the role of the speculative shortest-
job-first (SJF) scheduler (Section 6.3.3) in power saving. The results in Section 6.4.3 show
an improvement of 38.6–41.3% in JCT and 2.2–2.5× in throughput. Using the same setup
as in Section 6.4.2, we compare three methods: AlpaServe, AlpaServe-Scale (No Sched), and
µ-Serve (No Sched). All three methods are implemented without µ-Serve scheduler, i.e.,
they are based on the default FCFS scheduler in AlpaServe. Fig. B.3 and Fig. B.4 show the
comparison of power saving and SLO attainment of the three methods.

In terms of SLO attainment, without µ-Serve scheduler, there are more situations that the
p99 latency is above the SLO latency as suggested by the wider red-shaded area compared
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Figure B.3: Power saving evaluation (without µ-Serve scheduler).
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Figure B.4: SLO preservation evaluation (without µ-Serve scheduler).

to Fig. 6.8 (indicating worse SLO attainment). When there is an SLO attainment violation,
online GPU device frequency scaling does not actuate any down-scaling. Even without SLO
attainment violation, AlpaServe has a worse SLO attainment compared with AlpaServe-
Sched (up to 31% lower p99 latency as shown in Fig. 6.8). Therefore, the power-saving
opportunities are reduced.

Fig. B.3 shows the power consumption when running the three approaches. At SLO
attainment violations (i.e., in the red-shaded area), there is no power saving. When there are
no SLO attainment violations, the power saving achieved by µ-Serve (No Sched) compared
to AlpaServe is up to 1.8×, 1.92×, and 1.49× at varying SLO scales, rates, and numbers
of devices (less than the improvement of 2.3×, 2.61×, and 2× when µ-Serve runs on its
scheduler as shown in Fig. 6.7). This 21–27% reduction in power saving attributed to
the missing of µ-Serve’s scheduler justifies the role of the scheduler in µ-Serve empirically.
AlpaServe-Scaling (No Sched) has up to 1.42×, 1.42×, and 1.28× power saving compared to
AlpaServe at varying SLO scales, rates, and numbers of devices, respectively. Compared to
the improvement of AlpaServe-Scaling on top of AlpaServe (as shown in Fig. 6.7), AlpaServe-
Scaling (No Sched) also has less improvement (e.g., 1.42× < 1.7× improvement at varying
rates).

Without the speculative SJF scheduler in µ-Serve, the power saving from µ-Serve and
AlpaServe-Scaling becomes 21–27% less. The main reason is that replacing µ-Serve’s sched-
uler with FCFS leads to worse SLO attainment and more SLO violations, and consequently
less GPU frequency down-scaling (i.e., power saving) opportunities.

161



Req1
Req2

Req3 Low Util

Batch size = 3 Batch size = 3
Req1

Req2
Req3 Req4

Req5

One Batch 1st Batch 2nd …

Figure B.5: Batching vs. Continuous batching.

1 3 5 7 9
Arrival Rate

0

20

40

60

80

JC
T

SJF (Oracle) FCFS SSJF

(a) No batching.

1 3 5 7 9
Arrival Rate

0

20

40

60

JC
T

SJF (Oracle) FCFS SSJF

(b) Dynamic batching.

1 3 5 7 9
Arrival Rate

0

10

20

30

40

JC
T

SJF (Oracle) FCFS SSJF

(c) Continuous batching.
Figure B.6: Job completion time (JCT) with varying rates.
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Figure B.7: Job completion time (JCT) with varying burstiness.

B.3 SUPPORT FOR VARIOUS BATCHING TECHNIQUES

With predictions of the output token length of each incoming inference request, µ-Serve’s
scheduler schedules requests with shorter predicted lengths to run first. µ-Serve supports
three modes of batching: no batching, dynamic batching, and continuous batching. In
the no-batching mode, the request is served one by one according to the execution order
determined by µ-Serve’s scheduler. In the dynamic-batching mode, the scheduler waits for
batch_wait_timeout or until max_batch_size requests in each batch have been filled up
whose order is determined by µ-Serve. In the continuous-batching mode (first proposed
by Orca [316]), requests are batched at the iteration level and the early-finished request is
substituted by the next request in the waiting queue (ordered by µ-Serve). The difference
between (dynamic) batching and continuous batching is illustrated in Fig. B.5.

We evaluate the scheduling performance regarding the job completion time (JCT) and
the serving throughput to understand if prediction accuracy is sufficient. Our comparison
baselines include (1) first-come-first-serve (FCFS), which is the default scheduler in state-
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(c) Continuous batching.
Figure B.8: Throughput with varying rates.
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Figure B.9: Throughput with varying burstiness.

of-the-art model-serving frameworks such as Orca [316] and vLLM [318], and (2) shortest-
job-first (SJF) with the actual output token length (i.e., oracle).

Request Serving JCT. We evaluate µ-Serve and the comparison baselines in three
batching settings: (1) no batching, (2) dynamic batching, and (3) continuous batching (max
batch size is set to 4 for both batching cases). Fig. B.6 and Fig. B.7 show the average LLM
serving JCT with varying request arrival rates and burstiness. With varying request rates,
µ-Serve reduces JCT by 34.5%, 39.6%, and 33.2% compared to the FCFS scheduler, under
three batching settings respectively. In comparison, the oracle SJF scheduler reduces the
JCT by 43.7%, 58.2%, and 43.0%. Under different burstinesses, µ-Serve reduces JCT by
30.5%, 39.0%, 35.0% compared to FCFS, while the oracle SJF reduces the JCT by 37.6%,
52.9%, and 41.5%.

Request Serving Throughput. Under the same experimental settings, we present the
throughput results in Fig. B.8 and Fig. B.9. With varying request rates, µ-Serve increases the
throughput by 3.6×, 3.0×, and 2.8× in the no batching, dynamic batching, and continuous
batching cases, respectively. In comparison, the oracle SJF increases the throughput by
4.7×, 4.1×, and 3.2×. Under different burstinesses, µ-Serve increases the throughput by
2.6×, 2.6×, and 2.2× while the oracle SJF increases the throughput by 3.4×, 3.8×, and
2.7×.

At Varying Batch Sizes. We repeat the experiments while increasing the batch sizes.
Results are shown in Fig. B.10. Continuous batching always has less JCT and higher through-
put than dynamic batching (same results as shown in [316]). At varying batch sizes, µ-Serve’s
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Figure B.10: Benefits of SSJF at varying batch sizes.

scheduler performance is better than FCFS’s but the improvements in JCT and throughput
that µ-Serve brings decrease as the batch size increases. This is because the larger the batch,
the less difference there is when reordering the queue.

B.4 SUPPORT FOR MULTI-ROUND LLM CONVERSATIONS.

In addition to general LLM inferences, µ-Serve’s scheduler also supports interactive LLM
inference that happens in rounds. Previous rounds of user input queries and LLM responses
are usually provided as context to the current-round input query. However, the input limit
to BERT-base as a proxy model is 512 tokens, which can be much less than the context
window. To support multi-round conversations, we use a simple strategy of concatenation
and truncation. Specifically, we concatenate all the previous-round user prompts (P1, P2,
P3, etc.), LLM responses (R1, R2, R3, etc.), and the current-round user prompt to form a
context-augmented input query for the current round of conversation. Then, we retain only
the last 512 tokens of the concatenated query, dropping the earlier portions. By concatenat-
ing the previous conversation history and truncating it if necessary, this approach allows a
proxy model to effectively handle multi-round conversations while staying within the input
length limitation.

At Different Conversation Rounds. We evaluate the effectiveness of µ-Serve’s support
for multi-round LLM conversations. Results are shown in Fig. B.11. At different conversation
rounds, the improvement of JCT (compared to FCFS) varies from 33.1% (at round #5) to
38.9% (at round #1); The improvement of throughput varies from 1.67× (at round #5) to
2.22× (at round #1).
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Figure B.11: SSJF evaluation across conversation rounds.

B.5 POTENTIAL USES OF µ-SERVE SCHEDULER FOR OTHER TASKS.

In Chapter 6, we study the benefit of µ-Serve’s scheduler in model-serving latency and
throughput, and consequently the SLO attainment. Because of higher SLO attainment,
there is more headroom for dynamically down-scaling GPU device frequencies to save power
without introducing SLO attainment violations. However, we anticipate that there can be
more potential use cases and extensions of µ-Serve’s proxy-model-based scheduler.

• Optimization in model-serving latency or throughput. A proxy-model-based model
output length predictor can be used with existing model-serving systems (e.g., Clip-
per [313], TensorFlow-Serving [309], MArk [310], InferLine [226], Shepherd [311], and
Clockwork [224]) to maximize the systems throughput/goodput or to support better
latency-aware provision by avoiding head-of-line blocking and optimizing the waiting
time of queued requests.

• Optimized batching and GPU utilization. Output token length prediction can be used
to batch requests with similar execution lengths together to improve GPU utilization
and prevent shorter requests from waiting for longer ones [316].

• Optimization in model-serving memory and key-value cache management. The mem-
ory management system needs to accommodate a wide range of output lengths [318].
In addition, as the output length of a request grows at decoding, the memory required
for its key-value cache also expands and may exhaust available memory for incoming
requests or ongoing generation for existing requests. µ-Serve’s prediction can poten-
tially help make scheduling decisions, such as deleting or swapping out the key-value
cache of some requests from GPU memory.
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