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Abstract—This paper addresses the urgent need to transition
to global net-zero carbon emissions by 2050 while retaining
the ability to meet joint performance and resilience objectives.
The focus is on the computing infrastructures, such as hyper-
scale cloud datacenters, that consume significant power, thus
producing increasing amounts of carbon emissions. Our goal is
to (1) optimize the usage of green energy sources (e.g., solar
energy), which is desirable but expensive and relatively unstable,
and (2) continuously reduce the use of fossil fuels, which have a
lower cost but a significant negative societal impact. Meanwhile,
cloud datacenters strive to meet their customers’ requirements,
e.g., service-level objectives (SLOs) in application latency or
throughput, which are impacted by infrastructure resilience and
availability. We propose a scalable formulation that combines
sustainability, cloud resilience, and performance as a joint
optimization problem with multiple interdependent objectives
to address these issues holistically. Given the complexity and
dynamicity of the problem, machine learning (ML) approaches,
such as reinforcement learning, are essential for achieving
continuous optimization. Our study highlights the challenges
of green energy instability which necessitates innovative ML-
centric solutions across heterogeneous infrastructures to manage
the transition towards green computing. Underlying the ML-
centric solutions must be methods to combine classic system
resilience techniques with innovations in real-time ML resilience
(not addressed heretofore). We believe that this approach will not
only set a new direction in the resilient, SLO-driven adoption of
green energy but also enable us to manage future sustainable
systems in ways that were not possible before.

Index Terms—sustainability, green energy, cloud computing,
resilience, machine learning, machine learning resilience

I. INTRODUCTION

Motivation. It has been reported that cloud datacenters’ car-
bon emissions already contribute 2–3% of the overall global
carbon footprint, and it has been estimated that they will
account for 8% by 2030 [9]. Meanwhile, constantly evolving
computing paradigms (e.g., microservices [17], [34], serverless
computing [6], [16], and machine learning (ML) [8], [42])
are demanding increasing amounts of power. The energy
issues are being further exacerbated by challenges in security
and reliability (e.g., Spectre defenses [10]). Given that the
underlying hardware technologies have reached a plateau as
they approach the limits of their ability to scale with respect to
performance and power usage effectiveness, achieving carbon
efficiency for a sustainable future is a daunting challenge.
Challenges. As the use of green energy becomes more perva-
sive [2], [4], [18], increasing the adoption of green energy in
cloud datacenters can scale down the carbon footprint. How-

ever, to achieve that, dependable delivery of customer-specific
cloud operations (especially for critical societal applications,
such as hospitals and transportation infrastructures) must be
an integral part of future sustainable computing. The major
challenges to achieving that goal are outlined below:
• [C1] Fundamental Trade-off between Sustainability and

Cloud SLOs. Cloud datacenter operations have service-level
objectives (SLOs) that detail performance and resilience
requirements [15] regarding latency, throughput, and avail-
ability. Sustainable computing requires both sustainable
energy costs (by minimizing the carbon footprint) and sus-
tainable cloud operations (by meeting SLOs). Conversely,
meeting stringent SLOs can incur high energy costs (e.g.,
due to overprovisioning). Cloud datacenters require careful
design and optimization in dealing with this trade-off.

• [C2] Disruption in Energy Optimization Due to Resilience
Management. Failure mitigation and service recovery pro-
tocols in cloud datacenters are developed to handle various
hardware and software failures (e.g., network link failures
and power outages) [19], [31], [32]. However, classic sys-
tem resilience introduces disruptions to power optimization
by incurring additional energy consumption (due to redun-
dancy, migration, and checkpointing). In addition, as ML
inference engines are increasingly integrated with today’s
cloud datacenters [7], classic system resilience does not
take into account the impact of errors of ML inference,
out-of-distribution situations, and data/model uncertainties.
Co-designing power and resilience management is required
to provide fast failure recovery and differential treatment to
critical/non-critical services to minimize disruptions while
optimizing carbon footprint.

• [C3] Variability in Green Energy Supply and Dynamic
Workload. Green energy sources are inherently unsta-
ble [18], and cloud datacenter workloads also exhibit dy-
namically varying spatial and temporal patterns. Combined
with [C1], this requires a continuously optimized trade-
off between cloud SLO violations and carbon emissions,
posing a challenging multi-objective optimization problem.

• [C4] Lack of an Application-aware Power Control Plane.
Substantial efforts have been made towards adopting a top-
down approach in maximizing green energy usage, such as
workload shifting either spatially or temporally based on
predictions of carbon intensity [39]. However, conservative
power control misses energy-saving opportunities, while
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Fig. 1. Our contribution towards dependable green computing with an
intelligent interface and a holistic framework of SLO-aware energy cost
optimization, cluster management, and resilience management.

application-agnostic aggressive power control can lead to
SLO violations [38]. Therefore, it is necessary to take
a scalable, application-aware [3], bottom-up optimization
approach and incorporate hardware/software co-design.

Our Approach. Achieving consistent service-level perfor-
mance and resilience objectives must be an integral part of any
assured green energy usage in cloud datacenters. We aim to
reinvent cloud infrastructure with SLO-aware energy efficiency
as the top priority. With a theoretical optimization formulation
(§II), we address the problem from an ML perspective that has
been shown to be successful in optimizing cloud efficiency [7],
[26], [34], [37]. Fig. 1 presents an overview of our approach,
which consists of three main novel components:

• An intelligent interface between power supply manage-
ment and cluster management (§III-B) for joint optimiza-
tion of the carbon footprint and cloud SLOs. The interface
will enable both (1) top-down energy cost optimization,
by enforcing the temporally varying power cap based on
predicted carbon intensity, and (2) bottom-up SLO-aware
power management (to address [C1] and [C3]), by predict-
ing minimal power demand without SLO violations.

• Multi-tier ML in hierarchical decision-making (§III-A) for
holistic, bottom-up datacenter power-resource management
that is application-centric and can be executed efficiently at
scale (to address [C4]). Conventional approaches are largely
based on handcrafted heuristics that have become challeng-
ing to generate given the variations across heterogeneous
cloud environments and workloads and rapid innovations
across the system stack. We propose a hierarchical decision-
making framework driven by (1) a multi-tier ML model to
achieve combined intelligence in multi-objective optimiza-
tion, and (2) leader-follower game formulation.

• Split reward models and failure recovery acceleration
(§III-C) for SLO-aware energy optimization under datacen-
ter failures (to address [C2]). Split reward functions allow
the ML models to learn differential policies under various
failure recovery procedures and for applications with di-
verse levels of criticality. The failure recovery acceleration
module will coordinate cluster management and resilience

management to minimize disruption to energy optimization.
In addition, ML agent failures can be critical and inter-
related with classic reliability and performance failures.
ML agent resilience requires fast detection, handling, and
retraining for unseen cases that become out-of-distribution
compared to the data on which the agent has been trained.

Contributions. This paper presents multidisciplinary work
that brings together power systems and cloud systems engi-
neering to achieve progress towards dependable green com-
puting. The proposed solution tackles the unique challenges of
classic systems resilience and ML agent failures, as cloud sys-
tems increasingly integrate with ML solutions whose resilience
is hard to verify because of issues such as data uncertainty in
dynamic and heterogeneous cloud environments.

II. PROBLEM STATEMENT & FORMULATION

The key factors that compete to achieve dependable adop-
tion of green energy in cloud datacenters are sustainability,
resilience, and performance. They must be balanced while
mitigating potential instability and costs associated with green
energy, particularly in the event of cloud system or ML
engine failures. The ultimate goal is to continuously reduce
the carbon footprint while scaling infrastructure sustainability.
Cloud datacenter workloads are typically categorized into
latency-critical (LC) jobs and best-effort (BE) jobs [44]. LC
jobs are typically associated with SLOs with respect to either
latency or throughput. BE jobs typically do not have any SLOs,
but their daily throughput should be maintained at a predefined
level (or with some tolerable degradation) [39].

To facilitate the discussion of our proposed ideas and future
challenges, we start by offering a problem statement with a
mathematical formulation of strategic interactions between the
power and cluster management agents.
• Time Window. We assume that the total period [0, T ] for

power-resource management is partitioned into sub-periods,
say [tk, tk+1), which could be one hour or a half-hour [1],
and is referred to as “time interval t”.

• Power Supply. We model each energy source as e ∈ E,
e.g., fossil fuels, solar energy, and wind energy. The power
supply of energy source e is then pe = Pe(t) for any time
interval t, and its carbon intensity is ce = Ce(t). The total
power supply to a datacenter is then PS(t) =

∑
e∈E Pe(t),

and the combined carbon intensity of the total supply is
CI(t) =

∑
e∈E Ce(t) · Pe(t)/PS(t).

• Datacenter Power Consumption. We define the power con-
sumption of a datacenter as PC(t) = PCIT (t) · PUE,
where PUE is the ratio between the total facility energy
and IT equipment energy. A datacenter typically has a
constant PUE that is dependent on the power efficiency
of the datacenter’s operations [14]. In this paper, we as-
sume that only PCIT (t) is under our control and that it
depends on the scheduled workload at time t, the num-
ber of machines that are running, and the power mode
or core frequency on each running machine. Therefore,
PCIT (t) =

∑
s∈S(t) PCIT (s, t), where server s is from

the total running server set S(t).
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Fig. 2. Multi-tier ML in hierarchical decision-making.

• Server Power Consumption. The power consumption of a
server PCIT (s, t) has been shown to be related to the
processor (CPUs or accelerators, such as GPUs) utilization
(u(s, t)) and running frequency (f(s, t)), and the relation-
ship is called a power profile p [40]. Different proces-
sors can have different power profiles, and each power
profile can be modeled as a power model Fp, typically
parameterized by a neural network trained with profiling
data. Therefore, the power consumption of a server can be
defined as PCIT (s, t) = Fp(u(s, t), f(s, t)).

• Cluster Management Actions. (1) Determine the number of
servers in use, i.e., S(t); (2) determine processor frequency
on each server f(s, t) by fine-grained core-level frequency
tuning or server-level power capping; (3) schedules when
jobs run or stop running (e.g., BE jobs can be delayed to
run when carbon intensity is lower).

• Constraints and Objectives. The objective is to minimize
the carbon footprint of the datacenter over any period
of time T, i.e., to minimize

∑
t in[0,T ] PC(t) · CI(t),

constrained by the power cost budget, the SLOs of LC jobs,
and the daily throughput degradation threshold for BE jobs.

III. DESIGN METHODS AND DISCUSSION

A. Multi-tier ML/RL Decision-Making and Control

In cluster management to serve datacenter workloads, as
shown in Fig. 2, we divide the decisions into three interde-
pendent layers: (1) job scheduling and placement, (2) resource
allocation and scaling, and (3) on-node power control. A
hierarchical set of decision-making actions can affect workload
SLO preservation and power consumption. Starting from the
interface (top), the set of jobs to run and to delay are
determined by the job scheduling layer. Those jobs are then
placed onto the set of running servers (i.e., s(t)) determined by
the power control layer. The resource configuration and scaling
layer allocates the resources to running jobs and dynamically
scales the resource allocations at runtime. Collaboratively, the
on-node power control layer adjusts control plane knobs to
reduce power consumption while meeting SLOs.

How can we achieve multi-objective optimization in a
competitive, hierarchical decision-making framework? The
power supply’s objective is to minimize power consump-
tion and the carbon footprint, while datacenter applications’
objective is to maximize performance and availability. Ex-
isting learning-based approaches such as FIRM [34] and
SIMPPO [36] can help achieve latency-critical (LC) job SLOs

with resource autoscaling but require coordination with other
tiers of decision-making agents to (1) optimize power con-
sumption with processor frequency scaling [46], and (2) opti-
mize for datacenter carbon footprint minimization by leverag-
ing the constrained flexibility of best-effort (BE) jobs [39].
The game-theoretical formulation requires a reward model
design to reconcile meeting all application demands (LC job
SLOs and BE job daily throughput) and scaling down carbon
footprint. We plan to design a multi-agent framework that can
efficiently explore and exploit optimal policies in the multi-
objective hierarchical decision-making framework.

B. Intelligent Interface in Power-Cluster Management

As shown in Fig. 1, the interface between the power supply
management and cluster management modules supports both
top-down optimization (i.e., shaping power demand based on
carbon intensity) and bottom-up optimization (i.e., shaping
power supply based on SLO-aware power demand). The
interface API communicates the power supply, carbon inten-
sity, and power consumption (demand) at each time interval
[(PS(t), CI(t), PC(t))]t∈[0,T ]. In the top-down optimization,
PS(t) and CI(t) are determined based on predictions of the
carbon intensity variation of each energy source Ce(t) and then
passed down to cluster management for temporal/spatial load
shaping or resource reprovisioning. In the bottom-up approach,
the power demand PC(t) is determined based on predictions
of the workload and what-if analysis of potential management
decisions (i.e., scheduling, resource allocation, and on-node
power control). Note that after the what-if analysis, the PC(t)
can be a range instead of a scalar. PC(t) is then passed to the
power supply module that controls the mix of energy sources
exploited to minimize the carbon footprint within the energy
cost budget. We need an intelligent interface to learn global
optimality under uncertainty by reconciling datacenter work-
load power demand with multi-source green energy availability
and balancing top-down and bottom-up optimizations.

How can a stochastic game-theoretical formulation pro-
vide an efficient model for optimal solutions at scale? The
game-theoretical formulation (§II) naturally forms a hierar-
chical decision-making (leader-follower) structure where the
“leader” can be the power supply module and the “follower”
can be the cluster management module. It could potentially be
formulated as a leader-follower Stackelberg game [5], [29],
[30], as the leader determines and announces its strategy
first by anticipating the followers’ policies, and the followers
determine their strategies as the best response to the leader’s
strategy. Given the stochasticity in both green energy gener-
ation and datacenter workloads, finding the optimal solutions
efficiently can be challenging. It is important to be resilient to
situations such as blackouts caused by extreme weather events,
as datacenters have limited power reserves (e.g., batteries).
We plan to focus on the design of the contracts between both
parties by decoupling different layers in §III-A.

How can widely different decision-making time scales
for power supply and cluster management be reconciled to
achieve a holistic solution? Power supply and carbon intensity
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have more coarse-grained dynamics (e.g., on an hourly basis)
than the minute/second level datacenter workload dynamics,
so the decision-making frequency is different. High-frequency
and low-frequency agents can be modeled as a hierarchical
decision-making problem: low-frequency agents might adopt
long-term learning strategies, while high-frequency ones might
need to adapt quickly to immediate changes in the environ-
ment. To achieve effective decision-making, it is crucial to
model the interactions, delays, and feedback loops accurately.
Given the uncertainty and unpredictability of multi-source
green energy availability, adapting solutions to changing con-
ditions while optimizing multiple objectives in real-time adds
another layer of complexity.

C. Split Reward Model for Systems-ML Resilience

Reward models or reward functions are commonly used to tune
management policies in learning-based systems management
tasks [34], [36], [46]. In power supply management, the reward
is higher for a lower carbon footprint, and there is a penalty for
higher-than-budget energy costs. Reward functions for cluster
management aim to penalize low resource utilization and re-
ward the meeting of LC job SLOs or BE job daily throughputs.
However, cluster management policies learned under failure-
free or normal operational conditions can fail or lead to sub-
optimal decisions during datacenter failure recovery processes
(e.g., because of networking failures or misconfigurations). For
example, PARM [38] shows that outages or power-capping
events can lead to severe performance degradation and agent
policy failures. When cluster management agents are unaware
of failure recovery procedures/strategies, agents’ decisions can
lead to cascading cluster outages or metastable failures [23],
[38]. In addition, ML inference failures can be critical and
interrelated with classic system failures. ML agent resilience
requires fast detection, handling, and model retraining for tail
cases that become out-of-distribution compared to the data on
which the agent has been trained.

To address this gap, we propose split reward models that
coordinate cluster management and resilience management.
We introduce dedicated reward functions for failure recovery
mode for keeping critical services running while attempting
and accelerating system recovery.

How can we achieve fast, cloud service-aware failure
recovery across power and cluster management? In terms
of system failure recovery, the primary objective should be
to restore system operation so as to ensure a successful
application execution. Consequently, the power and cluster

management software may either switch to a degraded mode
or be disabled until the system fully recovers. In the presence
of a failure, the system is already under significant stress, and
all available (or operational) resources should be devoted to
ensuring proper recovery. In addition, balancing the trade-offs
between prioritizing critical services for faster recovery while
also maintaining efficient for non-critical tasks requires careful
design of the split models. We plan to incorporate service-
aware load control to bridge the gap and coordinate cluster
management with resilience management. A novel reward
model for the recovery mode is needed to facilitate faster
recovery (instead of only maintaining an optimal system state).
Rapid identification of failure conditions, adaptation to energy
availability, categorization of workloads, and appropriate real-
location of resources in real time pose significant challenges.

How can resilient ML agent performance be achieved if
there are out-of-distribution or tail cases? As shown in Fig. 3,
in addition to classic system resilience, ML agent resilience is
also a challenge. At inference time, special attention should be
given to tail cases that become out-of-distribution compared
to the data on which the agent is trained [35]. ML agent
resilience requires fast detection and handling (by retraining)
of tail cases. Potential strategies include (1) falling back to
heuristics-based approaches; (2) meta-learning tail samples to
generate specialized models; and (3) re-distribution to merge
specialized models into the original model.

D. Additional Discussion

We have not yet covered other challenges, such as multi-cluster
and hardware heterogeneity.
Geographically Distributed Datacenters. The problem can
be more complicated when considering multiple geographi-
cally distributed datacenters [1], [39], each of which can have
a heterogeneous energy supply with different carbon inten-
sity curves. Datacenter workloads could perhaps be migrated
across clusters through leveraging their spatial flexibility.
Heterogeneous Hardware Accelerators. Heterogeneous
hardware accelerators, especially those used for ML workloads
(e.g., large model training and inference), are consuming more
and more datacenter power. For instance, GPU devices in a
cluster can be heterogeneous in terms of hardware, resource
configurations (e.g., memory size), and power features [11],
[25], [43], [47]. Device heterogeneity raises challenges in
both job placement (e.g., which type of device to assign to
a specific ML job) and power control (as the power efficiency
differs across devices). We leave the study of this complicated
optimization space to future work.

IV. RELATED WORK

Datacenter Carbon Footprint Management. Substantial
efforts have been made towards datacenter carbon footprint
assessment [3] and reduction, mostly by adopting a top-
down approach (e.g., workload shifting based on carbon
intensity predictions) [1], [27], [39], [41]. For example, Carbon
Explorer [1] takes datacenter power demand and renewable
energy generation at specific geographic locations, and outputs



load (power demand) distributions. However, these approaches
ignore application intent (e.g., leading to performance degrada-
tion) and resilience requirements. Instead, this paper proposes
a bottom-up approach for dependable green computing.
Datacenter Cluster Management. Cluster management de-
cisions (e.g., resource allocation, job scheduling, and core
frequency tuning) directly affect the datacenter power con-
sumption and thus the carbon emissions [13], [21], [22], [28],
[38], [49]. For example, CarbonScaler [22] greedily scales the
resources allocated to applications in response to fluctuations
in carbon intensity. ReTail [13] reduces the power consumption
of latency-critical applications that have SLO constraints by
predicting the minimum frequency based on a trained model.
GreenDRL [49] uses an RL-based scheduler in a solar-energy-
supported datacenter that minimizes energy costs.
Datacenter Resilience Management. Datacenter failure mit-
igation and recovery procedures have been developed for
various causes (e.g., networking issues, power outages, and
misconfiguration) that incur reduced computing capacity [12],
[20], [24], [31], [33], [45], [48], [50]. However, without
coordination with cluster management, the reduced capacity
can lead to SLO degradation and low availability, while unin-
formed cluster management can incur metastable failures (i.e.,
a sustained effect of cascading or exacerbated failures) [23].
In addition, the integration of ML inference failures, data or
model uncertainties, and runtime out-of-distribution errors is
rarely addressed in the system’s context.
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