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Abstract
User-facing latency-sensitive web services include numerous
distributed, intercommunicating microservices that promise
to simplify software development and operation. However,
multiplexing of compute resources across microservices is
still challenging in production because contention for shared
resources can cause latency spikes that violate the service-
level objectives (SLOs) of user requests. This paper presents
FIRM, an intelligent fine-grained resource management frame-
work for predictable sharing of resources across microser-
vices to drive up overall utilization. FIRM leverages online
telemetry data and machine-learning methods to adaptively
(a) detect/localize microservices that cause SLO violations,
(b) identify low-level resources in contention, and (c) take ac-
tions to mitigate SLO violations via dynamic reprovisioning.
Experiments across four microservice benchmarks demon-
strate that FIRM reduces SLO violations by up to 16× while
reducing the overall requested CPU limit by up to 62%. More-
over, FIRM improves performance predictability by reducing
tail latencies by up to 11×.

1 Introduction

User-facing latency-sensitive web services, like those at Net-
flix [68], Google [77], and Amazon [89], are increasingly
built as microservices that execute on shared/multi-tenant
compute resources either as virtual machines (VMs) or as
containers (with containers gaining significant popularity of
late). These microservices must handle diverse load char-
acteristics while efficiently multiplexing shared resources
in order to maintain service-level objectives (SLOs) like
end-to-end latency. SLO violations occur when one or more
“critical” microservice instances (defined in §2) experience
load spikes (due to diurnal or unpredictable workload pat-
terns) or shared-resource contention, both of which lead to
longer than expected times to process requests, i.e., latency
spikes [4,11,22,30,35,44,53,69,98,99]. Thus, it is critical to
efficiently multiplex shared resources among microservices
to reduce SLO violations.
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Figure 1: Latency spikes on microservices due to low-level
resource contention.

Traditional approaches (e.g., overprovisioning [36, 87], re-
current provisioning [54,66], and autoscaling [39,56,65,81,84,
88,127]) reduce SLO violations by allocating more CPUs and
memory to microservice instances by using performance mod-
els, handcrafted heuristics (i.e., static policies), or machine-
learning algorithms.

Unfortunately, these approaches suffer from two main prob-
lems. First, they fail to efficiently multiplex resources, such as
caches, memory, I/O channels, and network links, at fine gran-
ularity, and thus may not reduce SLO violations. For example,
in Fig. 1, the Kubernetes container-orchestration system [20]
is unable to reduce the tail latency spikes arising from con-
tention for a shared resource like memory bandwidth, as its
autoscaling algorithms were built using heuristics that only
monitor CPU utilization, which does not change much dur-
ing the latency spike. Second, significant human-effort and
training are needed to build high-fidelity performance models
(and related scheduling heuristics) of large-scale microservice
deployments (e.g., queuing systems [27, 39]) that can capture
low-level resource contention. Further, frequent microservice
updates and migrations can lead to recurring human-expert-
driven engineering effort for model reconstruction.

FIRM Framework. This paper addresses the above prob-



lems by presenting FIRM, a multilevel machine learning (ML)
based resource management (RM) framework to manage
shared resources among microservices at finer granularity
to reduce resource contention and thus increase performance
isolation and resource utilization. As shown in Fig. 1, FIRM
performs better than a default Kubernetes autoscaler because
FIRM adaptively scales up the microservice (by adding local
cores) to increase the aggregate memory bandwidth alloca-
tion, thereby effectively maintaining the per-core allocation.
FIRM leverages online telemetry data (such as request-tracing
data and hardware counters) to capture the system state, and
ML models for resource contention estimation and mitigation.
Online telemetry data and ML models enable FIRM to adapt
to workload changes and alleviate the need for brittle, hand-
crafted heuristics. In particular, FIRM uses the following ML
models:
• Support vector machine (SVM) driven detection and lo-

calization of SLO violations to individual microservice
instances. FIRM first identifies the “critical paths,” and
then uses per-critical-path and per-microservice-instance
performance variability metrics (e.g., sojourn time [1]) to
output a binary decision on whether or not a microservice
instance is responsible for SLO violations.

• Reinforcement learning (RL) driven mitigation of SLO vio-
lations that reduces contention on shared resources. FIRM
then uses resource utilization, workload characteristics, and
performance metrics to make dynamic reprovisioning deci-
sions, which include (a) increasing or reducing the partition
portion or limit for a resource type, (b) scaling up/down,
i.e., adding or reducing the amount of resources attached to
a container, and (c) scaling out/in, i.e., scaling the number
of replicas for services. By continuing to learn mitigation
policies through reinforcement, FIRM can optimize for
dynamic workload-specific characteristics.
Online Training for FIRM. We developed a performance

anomaly injection framework that can artificially create re-
source scarcity situations in order to both train and assess the
proposed framework. The injector is capable of injecting re-
source contention problems at a fine granularity (such as last-
level cache and network devices) to trigger SLO violations.
To enable rapid (re)training of the proposed system as the un-
derlying systems [67] and workloads [40,42,96,98] change in
datacenter environments, FIRM uses transfer learning. That
is, FIRM leverages transfer learning to train microservice-
specific RL agents based on previous RL experience.

Contributions. To the best of our knowledge, this is the
first work to provide an SLO violation mitigation framework
for microservices by using fine-grained resource management
in an application-architecture-agnostic way with multilevel
ML models. Our main contributions are:
1. SVM-based SLO Violation Localization: We present (in

§3.2 and §3.3) an efficient way of localizing the microser-
vice instances responsible for SLO violations by extracting
critical paths and detecting anomaly instances in near-real

time using telemetry data.
2. RL-based SLO Violation Mitigation: We present (in §3.4)

an RL-based resource contention mitigation mechanism
that (a) addresses the large state space problem and (b)
is capable of tuning tailored RL agents for individual mi-
croservice instances by using transfer learning.

3. Online Training & Performance Anomaly Injection: We
propose (in §3.6) a comprehensive performance anomaly
injection framework to artificially create resource con-
tention situations, thereby generating the ground-truth data
required for training the aforementioned ML models.

4. Implementation & Evaluation: We provide an open-source
implementation of FIRM for the Kubernetes container-
orchestration system [20]. We demonstrate and vali-
date this implementation on four real-world microservice
benchmarks [34, 116] (in §4).
Results. FIRM significantly outperforms state-of-the-art

RM frameworks like Kubernetes autoscaling [20, 55] and
additive increase multiplicative decrease (AIMD) based meth-
ods [38, 101].
• It reduces overall SLO violations by up to 16× compared

with Kubernetes autoscaling, and 9× compared with the
AIMD-based method, while reducing the overall requested
CPU by as much as 62%.

• It outperforms the AIMD-based method by up to 9× and
Kubernetes autoscaling by up to 30× in terms of the time
to mitigate SLO violations.

• It improves overall performance predictability by reducing
the average tail latencies up to 11×.

• It successfully localizes SLO violation root-cause microser-
vice instances with 93% accuracy on average.
FIRM mitigates SLO violations without overprovisioning

because of two main features. First, it models the dependency
between low-level resources and application performance in
an RL-based feedback loop to deal with uncertainty and noisy
measurements. Second, it takes a two-level approach in which
the online critical path analysis and the SVM model filter
only those microservices that need to be considered to miti-
gate SLO violations, thus making the framework application-
architecture-agnostic as well as enabling the RL agent to be
trained faster.

2 Background & Characterization

The advent of microservices has led to the development and
deployment of many web services that are composed of “mi-
cro,” loosely coupled, intercommunicating services, instead
of large, monolithic designs. This increased popularity of
service-oriented architectures (SOA) of web services has been
made possible by the rise of containerization [21, 70, 92, 108]
and container-orchestration frameworks [19, 20, 90, 119] that
enable modular, low-overhead, low-cost, elastic, and high-
efficiency development and production deployment of SOA
microservices [8,9,33,34,46,68,77,89,104]. A deployment of
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Figure 2: Microservices overview: (a) Service dependency graph of Social Network from the DeathStarBench [34] benchmark;
(b) Execution history graph of a post-compose request in the same microservice.
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(a) Social network service.
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(b) Media service.
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(c) Hotel reservation service.
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(d) Train-ticket booking service.

Figure 3: Distributions of end-to-end latencies of different microservices in the DeathStarBench [34] and Train-Ticket [116]
benchmarks. Dashed and solid lines correspond to the minimum and maximum critical path latencies on serving a request.

such microservices can be visualized as a service dependency
graph or an execution history graph. The performance of a
user request, i.e., its end-to-end latency, is determined by the
critical path of its execution history graph.

Definition 2.1. A service dependency graph captures
communication-based dependencies (the edges of the graph)
between microservice instances (the vertices of the graph),
such as remote procedure calls (RPCs). It tells how requests
are flowing among microservices by following parent-child
relationship chains. Fig. 2(a) shows the service dependency
graph of the Social Network microservice benchmark [34].
Each user request traverses a subset of vertices in the graph.
For example, in Fig. 2(a), post-compose requests traverse
only those microservices highlighted in darker yellow.

Definition 2.2. An execution history graph is the space-
time diagram of the distributed execution of a user request,
where a vertex is one of send_req, recv_req, and compute,
and edges represent the RPC invocations corresponding to
send_req and recv_req. The graph is constructed using the
global view of execution provided by distributed tracing of
all involved microservices. For example, Fig. 2(b) shows the
execution history graph for the user request in Fig. 2(a).

Definition 2.3. The critical path (CP) to a microservice m
in the execution history graph of a request is the path of
maximal duration that starts with the client request and ends

with m [64, 125]. When we mention CP alone without the
target microservice m, it means the critical path of the “Service
Response” to the client (see Fig. 2(b)), i.e., end-to-end latency.

To understand SLO violation characteristics and study
the relationship between runtime performance and the un-
derlying resource contention, we have run extensive perfor-
mance anomaly injection experiments on widely used mi-
croservice benchmarks (i.e. DeathStarBench [34] and Train-
Ticket [116]) and collected around 2 TB of raw tracing data
(over 4.1×107 traces). Our key insights are as follows.

Insight 1: Dynamic Behavior of CPs. In microservices,
the latency of the CP limits the overall latency of a user request
in a microservice. However, CPs do not remain static over
the execution of requests in microservices, but rather change
dynamically based on the performance of individual service
instances because of underlying shared-resource contention
and their sensitivity to this interference. Though other causes
may also lead to CP evolution at real-time (e.g., distributed
rate limiting [86], and cacheability of requested data [2]),
it can still be used as an efficient manifestation of resource
interference.

For example, in Fig. 2(b), we show the existence of three
different CPs (i.e., CP1–CP3) depending on which microser-
vice (i.e., V , U , T ) encounters resource contention. We ar-
tificially create resource contention by using performance



Table 1: CP changes in Fig. 2(b) under performance anomaly
injection. Each case is represented by a <service,CP> pair.
N, V , U , I, T , and C are microservices from Fig. 2.

Case Average Individual Latency (ms) Total (ms)
N V U I T C

<V,CP1> 13 603 166 33 71 68 614 ± 106
<U,CP2> 14 237 537 39 62 89 580 ± 113
<T,CP3> 13 243 180 35 414 80 507 ± 75

40 60 80 100

Individual Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F

Text

Compose

100 125 150

Total Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F Before

Text

Compose

Figure 4: Improvement of end-to-end latency by scaling
“highest-variance” and “highest-median” microservices.

anomaly injections.1 Table 1 lists the changes observed in the
latencies of individual microservices, as well as end-to-end la-
tency. We observe as much as 1.2–2× variation in end-to-end
latency across the three CPs. Such dynamic behavior exists
across all our benchmark microservices. Fig. 3 illustrates the
latency distributions of CPs with minimum and maximum
latency in each microservice benchmark, where we observe
as much as 1.6× difference in median latency and 2.5× dif-
ference in 99th percentile tail latency across these CPs.

Recent approaches (e.g., [3,47]) have explored static identi-
fication of CPs based on historic data (profiling) and have built
heuristics (e.g., application placement, level of parallelism)
to enable autoscaling to minimize CP latency. However, our
experiment shows that this by itself is not sufficient. The re-
quirement is to adaptively capture changes in the CPs, in
addition to changing resource allocations to microservice
instances on the identified CPs to mitigate tail latency spikes.

Insight 2: Microservices with Larger Latency Are Not
Necessarily Root Causes of SLO Violations. It is impor-
tant to find the microservices responsible for SLO violations
to mitigate them. While it is clear that such microservices
will always lie on the CP, it is less clear which individual
service on the CP is the culprit. A common heuristic is to
pick the one with the highest latency. However, we find that
that rarely leads to the optimal solution. Consider Fig. 4. The
left side shows the CDF of the latencies of two services (i.e.,
composePost and text) on the CP of the post-compose re-
quest in the Social Network benchmark. The composePost
service has a higher median/mean latency while the text ser-
vice has a higher variance. Now, although the composePost

1Performance anomaly injections (§3.6) are used to trigger SLO vio-
lations by generating fine-grained resource contention with configurable
resource types, intensity, duration, timing, and patterns, which helps with
both our characterization (§2) and ML model training (§3.4).
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Figure 5: Dynamic behavior of mitigation strategies: Social
Network (top); Train-Ticket Booking (bottom). Error bars
show 95% confidence intervals on median latencies.

service contributes a larger portion of the total latency, it
does not benefit from scaling (i.e., getting more resources),
as it does not have resource contention. That phenomenon is
shown on the right side of Fig. 4, which shows the end-to-
end latency for the original configuration (labeled “Before”)
and after the two microservices were scaled from a single to
two containers each (labeled “Text” and “Compose”). Hence,
scaling microservices with higher variances provides better
performance gain.

Insight 3: Mitigation Policies Vary with User Load and
Resource in Contention. The only way to mitigate the ef-
fects of dynamically changing CPs, which in turn cause dy-
namically changing latencies and tail behaviors, is to effi-
ciently identify microservice instances on the CP that are
resource-starved or contending for resources and then provide
them with more of the resources. Two common ways of doing
so are (a) to scale out by spinning up a new instance of the
container on another node of the compute cluster, or (b) to
scale up by providing more resources to the container via
either explicitly partitioning resources (e.g., in the case of
memory bandwidth or last-level cache) or granting more re-
sources to an already deployed container of the microservice
(e.g., in the case of CPU cores).

As described before, recent approaches [23, 38, 39, 56, 65,
84, 94, 101, 127]) address the problem by building static poli-
cies (e.g., AIMD for controlling resource limits [38, 101],
and rule/heuristics-based scaling relying on profiling of his-
toric data about a workload [23, 94]), or modeling perfor-
mance [39, 56]. However, we found in our experiments with
the four microservice benchmarks that such static policies
are not well-suited for dealing with latency-critical workloads
because the optimal policy must incorporate dynamic contex-
tual information. That is, information about the type of user
requests, and load (in requests per second), as well as the crit-
ical resource bottlenecks (i.e, the resource being contended
for), must be jointly analyzed to make optimal decisions. For
example, in Fig. 5 (top), we observe that the trade-off be-



tween scale-up and scale-out changes based not only on the
user load but also on the resource type. At 500 req/s, scale-out
has a better payoff (i.e, lower latency) than scale-up for both
memory- and CPU-bound workloads. However, at 1500 req/s,
scale-up dominates for CPU, and scale-out dominates for
memory. This behavior is also application-dependent because
the trade-off curve inflection points change across applica-
tions, as illustrated in Fig. 5 (bottom).

3 The FIRM Framework

In this section, we describe the overall architecture of the
FIRM framework and its implementation.
1. Based on the insight that resource contention manifests as

dynamically evolving CPs, FIRM first detects CP changes
and extracts critical microservice instances from them. It
does so using the Tracing Coordinator, which is marked
as 1 in Fig. 6.2 The tracing coordinator collects tracing
and telemetry data from every microservice instance and
stores them in a centralized graph database for processing.
It is described in §3.1.

2. The Extractor detects SLO violations and queries the Trac-
ing Coordinator with collected real-time data (a) to extract
CPs (marked as 2 and described in §3.2) and (b) to local-
ize critical microservice instances that are likely causes of
SLO violations (marked as 3 and described in §3.3).

3. Using the telemetry data collected in 1 and the critical in-
stances identified in 3 , FIRM makes mitigation decisions
to scale and reprovision resources for the critical instances
(marked as 4 ). The policy used to make such decisions
is automatically generated using RL. The RL agent jointly
analyzes contextual information about resource utilization
(i.e., low-level performance counter data collected from
the CPU, LLC, memory, I/O, and network), performance
metrics (i.e, per-microservice and end-to-end latency distri-
butions), and workload characteristics (i.e., request arrival
rate and composition) and makes mitigation decisions. The
RL model and setup are described in §3.4.

4. Finally, actions are validated and executed on the under-
lying Kubernetes cluster through the deployment module
(marked as 5 and described in §3.5).

5. In order to train the ML models in the Extractor as well
as the RL agent (i.e., to span the exploration-exploitation
trade-off space), FIRM includes a performance anomaly
injection framework that triggers SLO violations by gener-
ating resource contention with configurable intensity and
timing. This is marked as 6 and described in §3.6.

3.1 Tracing Coordinator
Distributed tracing is a method used to profile and monitor
microservice-based applications to pinpoint causes of poor

2Unless otherwise specified, * refers to annotations in Fig. 6.
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performance [111–115]. A trace captures the work done by
each service along request execution paths, i.e., it follows the
execution “route” of a request across microservice instances
and records time, local profiling information, and RPC calls
(e.g., source and destination services). The execution paths
are combined to form the execution history graph (see §2).
The time spent by a single request in a microservice instance
is called its span. The span is calculated based on the time
when a request arrives at a microservice and when its response
is sent back to the caller. Each span is the most basic single
unit of work done by a microservice.

The FIRM tracing module’s design is heavily inspired
by Dapper [95] and its open-source implementations, e.g.,
Jaeger [112] and Zipkin [115]. Each microservice instance is
coupled with an OpenTracing-compliant [75] tracing agent
that measures spans. As a result, any new OpenTracing-
compliant microservice can be integrated naturally into the
FIRM tracing architecture. The Tracing Coordinator, i.e., 1 ,
is a stateless, replicable data-processing component that col-
lects the spans of different requests from each tracing agent,
combines them, and stores them in a graph database [72]
as the execution history graph. The graph database allows
us to easily store complex caller-callee relationships among
microservices depending on request types, as well as to effi-
ciently query the graph for critical path/component extraction
(see §3.2 and §3.3). Distributed clock drift and time shifting
are handled using the Jaeger framework. In addition, the Trac-
ing Coordinator collects telemetry data from the systems run-
ning the microservices. The data collected in our experiments
is listed in Table 2. The distributed tracing and telemetry col-
lection overhead is indiscernible, i.e., we observed a <0.4%
loss in throughput and a <0.15% loss in latency. FIRM had a



Table 2: Collected telemetry data and sources.

cAdvisor [13] & Prometheus [82]
cpu_usage_seconds_total, memory_usage_bytes,
fs_write/read_seconds, fs_usage_bytes,
network_transmit/receive_bytes_total, processes

Linux perf subsystem [79]
offcore_response.*.llc_hit/miss.local_DRAM,
offcore_response.*.llc_hit/miss.remote_DRAM

maximum CPU overhead of 4.6% for all loads running in our
experiments on the four benchmarks [34, 116]. With FIRM,
the network in/out traffic without sampling traces increased
by 3.4%/10.9% (in bytes); the increase could be less in pro-
duction environments with larger message sizes [63].

3.2 Critical Path Extractor

The first goal of the FIRM framework is to quickly and ac-
curately identify the CP based on the tracing and telemetry
data described in the previous section. Recall from Def. 2.3
in §2 that a CP is the longest path in the request’s execution
history graph. Hence, changes in the end-to-end latency of an
application are often determined by the slowest execution of
one or more microservices on its CP.

We identify the CP in an execution history graph by using
Alg. 1, which is a weighted longest path algorithm proposed
to retrieve CPs in the microservices context. The algorithm
needs to take into account the major communication and com-
putation patterns in microservice architectures: (a) parallel,
(b) sequential, and (c) background workflows.
• Parallel workflows are the most common way of processing

requests in microservices. They are characterized by child
spans of the same parent span that overlap with each other
in the execution history graph, e.g., U , V , and T in Fig. 2(b).
Formally, for two child spans i with start time sti and end
time eti, and j with st j,et j of the same parent span p, they
are called parallel if (st j < sti < et j) ∨ (sti < st j < eti).

• Sequential workflows are characterized by one or more
child spans of a parent span that are processed in a seri-
alized manner, e.g., U and I in Fig. 2(b). For two of p’s
child-spans i and j to be in a sequential workflow, the time
ti→p≤ tp→ j, i.e., i completes and sends its result to p before
j does. Such sequential relationships are usually indicative
of a happens-before relationship. However, it is impossible
to ascertain the relationships merely by observing traces
from the system. If, across a sufficient number of request
executions, there is a violation of that inequality, then the
services are not sequential.

• Background workflows are those that do not return values to
their parent spans, e.g., W in Fig. 2(b). Background work-
flows are not part of CPs since no other span depends on
their execution, but they may be considered responsible
for SLO violations when FIRM’s Extractor is localizing

Algorithm 1 Critical Path Extraction

Require: Microservice execution history graph G
Attributes: childNodes, lastReturnedChild

1: procedure LONGESTPATH(G, currentNode)
2: path←∅
3: path.add(currentNode)
4: if currentNode.childNodes == None then
5: Return path
6: end if
7: lrc← currentNode.lastReturnedChild
8: path.extend(LONGESTPATH(G, lrc))
9: for each cn in currentNode.childNodes do

10: if cn.happensBefore(lrc) then
11: path.extend(LONGESTPATH(G, cn))
12: end if
13: end for
14: Return path
15: end procedure

Algorithm 2 Critical Component Extraction

Require: Critical Path CP, Request Latencies T
1: procedure CRITICALCOMPONENT(G, T )
2: candidates←∅
3: TCP← T.getTotalLatency() . Vector of CP latencies
4: for i ∈CP do
5: Ti← T.getLatency(i)
6: T99← Ti.percentile(99)
7: T50← Ti.percentile(50)
8: RI← PCC(Ti,TCP) . Relative Importance
9: CI← T99/T50 . Congestion Intensity

10: if SV M.classi f y(RI,CI) == True then
11: candidates.append(i)
12: end if
13: end for
14: Return candidates
15: end procedure

critical components (see §3.3). That is because background
workflows may also contribute to the contention of under-
lying shared resource.

3.3 Critical Component Extractor

In each extracted CP, FIRM then uses an adaptive, data-driven
approach to determine critical components (i.e., microservice
instances). The overall procedure is shown in Alg. 2. The
extraction algorithm first calculates per-CP and per-instance
“features,” which represent the performance variability and
level of request congestion. Variability represents the single
largest opportunity to reduce tail latency. The two features are
then fed into an incremental SVM classifier to get binary deci-
sions, i.e., on whether that instance should have its resources



re-provisioned or not. The approach is a dynamic selection
policy that is in contrast to static policies, as it can classify
critical and noncritical components adapting to dynamically
changing workload and variation patterns.

In order to extract those microservice instances that are
potential candidates for SLO violations, we argue that it is
critical to know both the variability of the end-to-end latency
(i.e., per-CP variability) and the variability caused by con-
gestion in the service queues of each individual microservice
instances (i.e., per-instance variability).

Per-CP Variability: Relative Importance. Relative im-
portance [62, 110, 122] is a metric that quantifies the strength
of the relationship between two variables. For each critical
path CP, its end-to-end latency is given by TCP = ∑i∈CP Ti,
where Ti is the latency of microservice i. Our goal is to de-
termine the contribution that the variance of each variable
Ti makes toward explaining the total variance of TCP. To
do so, we use the Pearson correlation coefficient [12] (also
called zero-order correlation), i.e., PCC(Ti,TCP), as the mea-
surement, and hence the resulting statistic is known as the
variance explained [31]. The sum of PCC(Ti,TCP) over all mi-
croservice instances along the CP is 1, and the relative impor-
tance values of microservices can be ordered by PCC(Ti,TCP).
The larger the value is, the more variability it contributes to
the end-to-end CP variability.

Per-Instance Variability: Congestion Intensity. For
each microservice instance in a CP, congestion intensity is
defined as the ratio of the 99th percentile latency to the me-
dian latency. Here, we chose the 99th percentile instead of the
70th or 80th percentile to target the tail latency behavior. The
chosen ratio explains per-instance variability by capturing
the congestion level of the request queue so that it can be
used to determine whether it is necessary to scale. For exam-
ple, a higher ratio means that the microservice could handle
only a subset of the requests, but the requests at the tail are
suffering from congestion issues in the queue. On the other
hand, microservices with lower ratios handle most requests
normally, so scaling does not help with performance gain.
Consequently, microservice instances with higher ratios have
a greater opportunity to achieve performance gains in terms
of tail latency by taking scale-out or reprovisioning actions.

Implementation. The logic of critical path extraction is
incorporated into the construction of spans, i.e., as the al-
gorithm proceeds (Alg. 1), the order of tracing construction
is also from the root node to child nodes recursively along
paths in the execution history graph. Sequential, parallel, and
background workflows are inferred from the parent-child re-
lationships of spans. Then, for each CP, we calculate fea-
ture statistics and feed them into an incremental SVM classi-
fier [29,58] implemented using stochastic gradient descent op-
timization and RBF kernel approximation by scikit-learn
libraries [91]. Triggered by detected SLO violations, both
critical path extraction and critical component extraction are
stateless and multithreaded; thus, the workload scales with

RL Agent

CPU

Utilization

Memory

Bandwidth

LLC

Bandwidth

LLC

Capacity

Disk I/O

Bandwidth

Network

Bandwidth

Microservices 
Managed by FIRM

Actions (at)

Performance & Resource Measurements

States (st)

Te
le

m
et

ry

Rewards (rt)
SLO

Utilization

Actor

Critic

Vt

SLO

Violation

Arrival

Rate

Figure 7: Model-free actor-critic RL framework for estimat-
ing resources in a microservice instance.

the size of the microservice application and the cluster. They
together constitute FIRM’s extractor (i.e., 2 and 3 ). Exper-
iments (§4.2) show that it reports SLO violation candidates
with feasible accuracy and achieves completeness with §3.4
by choosing a threshold with a reasonable false-positive rate.

3.4 SLO Violation Mitigation Using RL
Given the list of critical service instances, FIRM’s Resource
Estimator, i.e., 4 , is designed to analyze resource contention
and provide reprovisioning actions for the cluster manager
to take. FIRM estimates and controls a fine-grained set of
resources, including CPU time, memory bandwidth, LLC ca-
pacity, disk I/O bandwidth, and network bandwidth. It makes
decisions on scaling each type of resource or the number of
containers by using measurements of tracing and telemetry
data (see Table 2) collected from the Tracing Coordinator.
When jointly analyzed, such data provides information about
(a) shared-resource interference, (b) workload rate variation,
and (c) request type composition.

FIRM leverages reinforcement learning (RL) to optimize
resource management policies for long-term reward in dy-
namic microservice environments. We next give a brief RL
primer before presenting FIRM’s RL model.

RL Primer. An RL agent solves a sequential decision-
making problem (modeled as a Markov decision process) by
interacting with an environment. At each discrete time step
t, the agent observes a state of the environment st ∈ S, and
performs an action at ∈ A based on its policy πθ(s) (param-
eterized by θ), which maps state space S to action space A.
At the following time step t + 1, the agent observes an im-
mediate reward rt ∈ R given by a reward function r(st ,at);
the immediate reward represents the loss/gain in transitioning
from st to st+1 because of action at . The tuple (st ,at ,rt ,st+1) is
called one transition. The agent’s goal is to optimize the pol-
icy πθ so as to maximize the expected cumulative discounted
reward (also called the value function) from the start distri-
bution J = E[G1], where the return from a state Gt is defined



to be ∑
T
k=0 γkrt+k. The discount factor γ ∈ (0,1] penalizes the

predicted future rewards.
Two main categories of approaches are proposed for policy

learning: value-based methods and policy based methods [5].
In value-based methods, the agent learns an estimate of the
optimal value function and approaches the optimal policy by
maximizing it. In policy-based methods, the agent directly
tries to approximate the optimal policy.

Why RL? Existing performance-modeling-based [23, 38,
39,56,94,101,127] or heuristic-based approaches [6,7,37,65,
84] suffer from model reconstruction and retraining problems
because they do not address dynamic system status. Moreover,
they require expert knowledge, and it takes significant effort to
devise, implement, and validate their understanding of the mi-
croservice workloads as well as the underlying infrastructure.
RL, on the other hand, is well-suited for learning resource
reprovisioning policies, as it provides a tight feedback loop
for exploring the action space and generating optimal policies
without relying on inaccurate assumptions (i.e., heuristics
or rules). It allows direct learning from actual workload and
operating conditions to understand how adjusting low-level re-
sources affects application performance. In particular, FIRM
utilizes the deep deterministic policy gradient (DDPG) algo-
rithm [59], which is a model-free, actor-critic RL framework
(shown in Fig. 7). Further, FIRM’s RL formulation provides
two distinct advantages:
1. Model-free RL does not need the ergodic distribution of

states or the environment dynamics (i.e., transitions be-
tween states), which are difficult to model precisely. When
microservices are updated, the simulations of state transi-
tions used in model-based RL are no longer valid.

2. The Actor-critic framework combines policy-based and
value-based methods (i.e., consisting of an actor-net and
a critic-net as shown in Fig. 8), and that is suitable for
continuous stochastic environments, converges faster, and
has lower variance [41].
Learning the Optimal Policy. DDPG’s policy learning is

an actor-critic approach. Here the “critic” estimates the value
function (i.e., the expected value of cumulative discounted
reward under a given policy), and the “actor” updates the
policy in the direction suggested by the critic. The critic’s
estimation of the expected return allows the actor to update
with gradients that have lower variance, thus speeding up the
learning process (i.e., achieving convergence). We further as-
sume that the actor and critic are represented as deep neural
networks. DDPG also solves the issue of dependency between
samples and makes use of hardware optimizations by intro-
ducing a replay buffer, which is a finite-sized cache D that
stores transitions (st ,at ,rt ,st+1). Parameter updates are based
on a mini-batch of size N sampled from the reply buffer. The
pseudocode of the training algorithm is shown in Algorithm
3. RL training proceeds in episodes and each episode consists
of T time steps. At each time step, both actor and critic neural
nets are updated once.

Algorithm 3 DDPG Training

1: Randomly init Qw(s,a) and πθ(a|s) with weights w & θ.
2: Init target network Q′ and π′ with w′← w & θ′← θ

3: Init replay buffer D←∅
4: for episode = 1, M do
5: Initialize a random process N for action exploration
6: Receive initial observation state s1
7: for t = 1,T do
8: Select and execute action at = πθ(st)+Nt
9: Observe reward rt and new state st+1

10: Store transition (st ,at ,rt ,st+1) in D
11: Sample N transitions (si,ai,ri,si+1) from D
12: Update critic by minimizing the loss L(w)
13: Update actor by sampled policy gradient ∇θJ
14: w′← γw+(1− γ)w′

15: θ′← γθ+(1− γ)θ′

16: end for
17: end for

In the critic, the value function Qw(st ,at) with parameter
w and its corresponding loss function are defined as:

Qw(st ,at) = E[r(st ,at)+ γQw(st+1,π(st+1))]

L(w) =
1
N ∑

i
(ri + γQ′w′(si+1,π

′
θ′(si+1))−Qw(si,ai))

2.

The target networks Q′w′(s,a) and π′
θ′(s) are introduced in

DDPG to mitigate the problem of instability and divergence
when one is directly implementing deep RL agents. In the
actor component, DDPG maintains a parametrized actor func-
tion πθ(s), which specifies the current policy by deterministi-
cally mapping states to a specific action. The actor is updated
as follows:

∇θJ =
1
N ∑

i
∇aQw(s = si,a = π(si))∇θπθ(s = si).

Problem Formulation. To estimate resources for a mi-
croservice instance, we formulate a sequential decision-
making problem which can be solved by the above RL
framework. Each microservice instance is deployed in a
separate container with a tuple of resource limits RLT =
(RLTcpu,RLTmem,RLTllc,RLTio,RLTnet), since we are consid-
ering CPU utilization, memory bandwidth, LLC capacity,
disk I/O bandwidth, and network bandwidth as our resource
model.3 This limit for each type of resource is predetermined
(usually overprovisioned) before the microservices are de-
ployed in the cluster and later controlled by FIRM.

At each time step t, utilization RUt for each type of resource
is retrieved using performance counters as telemetry data
in 1 . In addition, FIRM’s Extractor also collects current

3The resource limit for the CPU utilization of a container is the smaller
of R̂i and the number of threads × 100.
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latency, request arrival rate, and request type composition
(i.e., percentages of each type of request). Based on these
measurements, the RL agent calculates the states listed in
Table 3 and described below.
• SLO maintenance ratio (SMt ) is defined as SLO_latency/
current_latency if the microservice instance is deter-
mined to be the culprit. If no message arrives, it is assumed
that there is no SLO violation (SMt = 1).

• Workload changes (WCt) is defined as the ratio of the ar-
rival rates at the current and previous time steps.

• Request composition (RCt) is defined as a unique value
encoded from an array of request percentages by using
numpy.ravel_multi_index() [74].
For each type of resources i, there is a predefined resource

upper limit R̂i and a lower limit
ˇ
Ri (e.g., the CPU time limit

cannot be set to 0). The actions available to the RL-agent is
to set RLTi ∈ [R̂i,

ˇ
Ri]. If the amount of resource reaches the

total available amount, then a scale-out operation is needed.
Similarly, if the resource limit is below the lower bound, a
scale-in operation is needed. The CPU resources serve as one
exception to the above procedure: it would not improve the
performance if the CPU utilization limit were higher than the
number of threads created for the service.

The goal of the RL agent is, given a time duration t, to deter-
mine an optimal policy πt that results in as few SLO violations
as possible (i.e., minπt SMt ) while keeping the resource utiliza-
tion/limit as high as possible (i.e., maxπt RUt/RLTt). Based
on both objectives, the reward function is then defined as
rt = α · SMt · |R |+(1−α) ·∑|R |i RUi/RLTi, where R is the
set of resources.

Transfer Learning. Using a tailored RL agent for every
microservice instead of using the shared RL agent should im-
prove resource reprovisioning efficiency, as the model would
be more sensitive to application characteristics and features.
However, such an approach is hard to justify in practice (i.e.,
for deployment) because of the time required to train such tai-
lored models for user workloads, which might have significant
churn. FIRM addresses the problem of rapid model training
by using transfer learning in the domain of RL [14, 105, 106],
whereby agents for SLO violation mitigation can be trained
for either the general case (i.e., any microservices) or the

Table 3: State-action space of the RL agent.

State Space (st )
SLO Maintenance Ratio (SMt ), Workload Changes (WCt ),
Request Composition (RCt ), Resource Utilization (RUt )

Action Space (at )
Resource Limits RLTi(t), i∈ {CPU, Mem, LLC, IO, Net}

Table 4: RL training parameters.

Parameter Value

# Time Steps × # Minibatch 300 × 64
Size of Replay Buffer 105

Learning Rate Actor (3×10−4), Critic (3×10−3)
Discount Factor 0.9
Soft Update Coefficient 2×10−3

Random Noise µ (0), σ (0.2)
Exploration Factor ε (1.0), ε-decay (10−6)

specialized case (i.e., “transferred” to the behavior of indi-
vidualized microservices). The pre-trained model used in the
specialized case is called the base model or the source model.
That approach is possible because prior understanding of a
problem structure helps one solve similar problems quickly,
with the remaining task being to understand the behavior of
updated microservice instances. Related work on base model
selection and task similarity can be found in [105, 106], but
the base model that FIRM uses for transfer learning is always
the RL model learned in the general case because it has been
shown in evaluation to be comparable with specialized mod-
els. We demonstrate the efficacy of transfer learning in our
evaluation described in §4. The RL model that FIRM uses
is designed to scale since both the state space and the action
space are independent of the size of the application or the
cluster. In addition to having the general case RL agent, the
FIRM framework also allows for the deployment of special-
ized per-microservice RL agents.

Implementation Details. We implemented the DDPG
training algorithm and the actor-critic networks using
PyTorch [83]. The critic net contains two fully connected
hidden layers with 40 hidden units, all using ReLU activation
function. The first two hidden layers of the actor net are fully
connected and both use ReLU as the activation function while
the last layer uses Tanh as the activation function. The actor
network has 8 inputs and 5 outputs, while the critic network
has 23 inputs and 1 output. The actor and critic networks
are shown in Fig. 8, and their inputs and outputs are listed
in Table 3. We chose that setup because adding more layers
and hidden units does not increase performance in our ex-
periments with selected microservice benchmarks; instead,
it slows down training speed significantly. Hyperparameters
of the RL model are listed in Table 4. We set the time step
for training the model to be 1 second, which is sufficient for
action execution (see Table 6). The latencies of each RL train-



Table 5: Types of performance anomalies injected to mi-
croservices causing SLO violations.

Performance Anomaly Types Tools/Benchmarks

Workload Variation wrk2 [123]
Network Delay tc [107]
CPU Utilization iBench [24], stress-ng [100]
LLC Bandwidth & Capacity iBench, pmbw [80]
Memory Bandwidth iBench [24], pmbw [80]
I/O Bandwidth Sysbench [102]
Network Bandwidth tc [107], Trickle [117]

ing update and inference step are 73 ± 10.9 ms and 1.2 ± 0.4
ms, respectively. The average CPU and memory usage of the
Kubernetes pod during the training stage are 210 millicores
and 192 Mi, respectively.

3.5 Action Execution
FIRM’s Deployment Module, i.e., 5 , verifies the actions
generated by the RL agent and executes them accordingly.
Each action on scaling a specific type of resource is limited
by the total amount of the resource available on that physical
machine. FIRM assumes that machine resources are unlimited
and thus does not have admission control or throttling. If
an action leads to oversubscribing of a resource, then it is
replaced by a scale-out operation.
• CPU Actions: Actions on scaling CPU utilization are ex-

ecuted through modification of cpu.cfs_period_us and
cpu.cfs_quota_us in the cgroups CPU subsystem.

• Memory Actions: We use Intel MBA [49] and Intel
CAT [48] technologies to control the memory bandwidth
and LLC capacity of containers, respectively.4

• I/O Actions: For I/O bandwidth, we use the blkio subsys-
tem in cgroups to control input/output access to disks.

• Network Actions: For network bandwidth, we use the Hi-
erarchical Token Bucket (HTB) [45] queueing discipline
in Linux Traffic Control. Egress qdiscs can be directly
shaped by using HTB. Ingress qdiscs are redirected to the
virtual device ifb interface and then shaped through the
application of egress rules.

3.6 Performance Anomaly Injector
We accelerate the training of the machine learning models
in FIRM’s Extractor and the RL agent through performance
anomaly injections. The injection provides the ground truth
data for the SVM model, as the injection targets are con-
trolled and known from the campaign files. It also allows the
RL agent to quickly span the space of adverse resource con-
tention behavior (i.e., the exploration-exploitation trade-off

4Our evaluation on IBM Power systems (see §4) did not use these actions
because of a lack of hardware support. OS support or software partitioning
mechanisms [60, 85] can be applied; we leave that to future work.

in RL). That is important, as real-world workloads might not
experience all adverse situations within a short training time.
We implemented a performance anomaly injector, i.e., 6 , in
which the injection targets, type of anomaly, injection time,
duration, patterns, and intensity are configurable. The injector
is designed to be bundled into the microservice containers as a
file-system layer; the binaries incorporated into the container
can then be triggered remotely during the training process.
The injection campaigns (i.e., how the injector is configured
and used) for the injector will be discussed in §4. The injec-
tor comprises seven types of performance anomalies that can
cause SLO violations. They are listed in Table 5 and described
below.

Workload Variation. We use an HTTP benchmarking tool
wrk2 as the workload generator. It performs multithreaded,
multiconnection HTTP request generation to simulate client-
microservice interaction. The request arrival rate and distribu-
tion can be adjusted to break the predefined SLOs.

Network Delay. We use Linux traffic control (tc) to add
simulated delay to network packets. Given the mean and
standard deviation of the network delay latency, each network
packet is delayed following a normal distribution.

CPU Utilization. We implement the CPU stressor based
on iBench and stree-ng to exhaust a specified level of CPU
utilization on a set of cores by exercising floating point, inte-
ger, bit manipulation and control flows.

LLC Bandwidth & Capacity. We use iBench and pmbw
to inject interference on the Last Level Cache (LLC). For
bandwidth, the injector performs streaming accesses in which
the size of the accessed data is tuned to the parameters of the
LLC. For capacity, it adjusts intensity based on the size and
associativity of the LLC to issue random accesses that cover
the LLC capacity.

Memory Bandwidth. We use iBench and pmbw to generate
memory bandwidth contention. It performs serial memory
accesses (of configurable intensity) to a small fraction of the
address space. Accesses occur in a relatively small fraction
of memory in order to decouple the effects of contention in
memory bandwidth from contention in memory capacity.

I/O Bandwidth. We use Sysbench to implement the file
I/O workload generator. It first creates test files that are larger
than the size of system RAM. Then it adjusts the number of
threads, read/write ratio, and sleeping/working ratio to meet
a specified level of I/O bandwidth. We also use Tricle for
limiting the upload/download rate of a specific microservice
instance.

Network Bandwidth. We use Linux traffic control (tc) to
limit egress network bandwidth. For ingress network band-
width, an intermediate function block (ifb) pseudo interface
is set up, and inbound traffic is directed through that. In that
way, the inbound traffic then becomes schedulable by the
egress qdisc on the ifb interface, so the same rules for egress
can be applied directly to ingress.



4 Evaluation

4.1 Experimental Setup

Benchmark Applications. We evaluated FIRM on a set of
end-to-end interactive and responsive real-world microservice
benchmarks: (i) DeathStarBench [34], consisting of Social
Network, Media Service, and Hotel Reservation microservice
applications, and (ii) Train-Ticket [128], consisting of the
Train-Ticket Booking Service. Social Network implements a
broadcast-style social network with unidirectional follow rela-
tionships whereby users can publish, read, and react to social
media posts. Media Service provides functionalities such as
reviewing, rating, renting, and streaming movies. Hotel Reser-
vation is an online hotel reservation site for browsing hotel
information and making reservations. Train-Ticket Booking
Service provides typical train-ticket booking functionalities,
such as ticket inquiry, reservation, payment, change, and user
notification. These benchmarks contain 36, 38, 15, and 41
unique microservices, respectively; cover all workflow pat-
terns (see §3.2); and use various programming languages
including Java, Python, Node.js, Go, C/C++, Scala, PHP, and
Ruby. All microservices are deployed in separate Docker
containers.

System Setup. We validated our design by implementing
a prototype of FIRM that used Kubernetes [20] as the under-
lying container orchestration framework. We deployed the
four microservice benchmarks with FIRM separately on a
Kubernetes cluster of 15 two-socket physical nodes without
specifying any anti-colocation rules. Each server consists of
56–192 CPU cores and RAM that varies from 500 GB to
1000 GB. Nine of the servers use Intel x86 Xeon E5s and E7s
processors, while the remaining ones use IBM ppc64 Power8
and Power9 processors. All machines run Ubuntu 18.04.3
LTS with Linux kernel version 4.15.

Load Generation. We drove the services with various
open-loop asynchronous workload generators [123] to rep-
resent an active production environment [17, 97, 118]. We
uniformly generated workloads for every request type across
all microservice benchmarks. The parameters for the work-
load generators were the same as those for DeathStarBench
(which we applied to Train-Ticket as well), and varied from
predictable constant, diurnal, distributions such as Poisson, to
unpredictable loads with spikes in user demand. The work-
load generators and the microservice benchmark applications
were never co-located (i.e., they executed on different nodes
in the cluster). To control the variability in our experiments,
we disabled all other user workloads on the cluster.

Injection and Comparison Baselines. We used our per-
formance anomaly injector (see §3.6) to inject various types of
performance anomalies into containers uniformly at random
with configurable injection timing and intensity. Following the
common way to study resource interference, our experiments
on SLO violation mitigation with anomalies were designed to

be comprehensive by covering the worst-case scenarios, given
the random and nondeterministic nature of shared-resource
interference in production environments [22, 78]. Unless oth-
erwise specified, (i) the anomaly injection time interval was
in an exponential distribution with λ = 0.33s−1, and (ii) the
anomaly type and intensity were selected uniformly at ran-
dom. We implemented two baseline approaches: (a) the Ku-
bernetes autoscaling mechanism [55] and (b) an AIMD-based
method [38,101] to manage resources for each container. Both
approaches are rule-based autoscaling techniques.

4.2 Critical Component Localization

Here, we use the techniques presented in §3.2 and §3.3 to
study the effectiveness of FIRM in identifying the microser-
vices that are most likely to cause SLO violations.

Single anomaly localization. We first evaluated how well
FIRM localizes the microservice instances that are responsi-
ble for SLO violations under different types of single-anomaly
injections. For each type of performance anomaly and each
type of request, we gradually increased the intensity of in-
jected resource interference and recorded end-to-end latencies.
The intensity parameter was chosen uniformly at random be-
tween [start-point, end-point], where the start-point is the in-
tensity that starts to trigger SLO violations, and the end-point
is the intensity when either the anomaly injector has consumed
all possible resources or over 80% of user requests have been
dropped or returned time. Fig. 9(a) shows the receiver oper-
ating characteristic (ROC) curve of root cause localization.
The ROC curve captures the relationship between the false-
positive rate (x-axis) and the true-positive rate (y-axis). The
closer to the upper-left corner the curve is, the better the per-
formance. We observe that the localization accuracy of FIRM,
when subject to different types of anomalies, does not vary
significantly. In particular, FIRM’s Extractor module achieved
near 100% true-positive rate, when the false-positive rate was
between [0.12,0.16].

Multi-anomaly localization. There is no guarantee that
only one resource contention will happen at a time under
dynamic datacenter workloads [40, 42, 96, 98] and therefore
we also studied the container localization performance under
multi-anomaly injections and compared machines with two
different processor ISAs (x86 and ppc64). An example of the
intensity distributions of all the anomaly types used in this ex-
periment are shown in Fig. 9(c). The experiment was divided
into time windows of 10 s, i.e., Ti from Fig. 9(c)). At each time
window, we picked the injection intensity of each anomaly
type uniformly at random with range [0,1]. Our observations
are reported in Fig. 9(b). The average accuracy for localiz-
ing critical components in each application ranged from 92%
to 94%. The overall average localization accuracy was 93%
across four microservice benchmarks. Overall, we observe
that the accuracy of the Extractor did not differ between the
two sets of processors.
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Figure 9: Critical Component Localization Performance: (a) ROC curves for detection accuracy; (b) Variation of localization
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Figure 10: Learning curve showing total reward during train-
ing and SLO mitigation performance.

4.3 RL Training & SLO Violation Mitigation

To understand the convergence behavior of FIRM’s RL agent,
we trained three RL models that were subjected to the same
sequence of performance anomaly injections (described in
§4.1). The three RL models are: (i) a common RL agent for
all microservices (one-for-all), (ii) a tailored RL agent for
a particular microservice (one-for-each), and (iii) a transfer-
learning-based RL agent. RL training proceeds in episodes
(iterations). We set the number of time steps in a training
episode to be 300 (see Table 4), but for the initial stages, we
terminate the RL exploration early so that the agent could
reset and try again from the initial state. We did so because
the initial policies of the RL agent are unable to mitigate SLO
violations. Continuously injecting performance anomalies
causes user requests to drop, and thus only a few request traces
were generated to feed the agent. As the training progressed,
the agent improved its resource estimation policy and could
mitigate SLO violations in less time. At that point (around
1000 episodes), we linearly increased the number of time
steps to let the RL agent interact with the environment longer
before terminating the RL exploration and entering the next
iteration.

We trained the abovementioned three RL models on the
Train-Ticket benchmark. We studied the generalization of the
RL model by evaluating the end-to-end performance of FIRM
on the DeathStarBench benchmarks. Thus, we used Death-
StarBench as a validation set in our experiments. Fig. 10(a)
shows that as the training proceeded, the agent was getting

better at mitigation, and thus the moving average of episode
rewards was increasing. The initial steep increase benefits
from early termination of episodes and parameter exploration.
Transfer-learning-based RL converged even faster (around
2000 iterations5) because of parameter sharing. The one-for-
all RL required more iterations to converge (around 15000
iterations) and had a slightly lower total reward (6% lower
compared with one-for-each RL) during training.

In addition, higher rewards, for which the learning algo-
rithm explicitly optimizes, correlate with improvements in
SLO violation mitigation (see Fig. 10(b)). For models trained
in every 200 episodes, we saved the checkpoint of parameters
in the RL model. Using the parameter, we evaluated the model
snapshot by injecting performance anomalies (described in
§4.1) continuously for one minute and observed when SLO
violations were mitigated. Fig. 10(b) shows that FIRM with
either a single-RL agent (one-for-all) or a multi-RL agent
(one-for-each) improved with each episode in terms of the
SLO violation mitigation time. The starting policy at itera-
tion 0–900 was no better than the Kubernetes autoscaling
approach, but after around 2500 iterations, both agents were
better than either Kubernetes autoscaling or the AIMD-based
method. Upon convergence, FIRM with a single-RL agent
achieved a mitigation time of 1.7 s on average, which outper-
formed the AIMD-based method by up to 9× and Kubernetes
autoscaling by up to 30× in terms of the time to mitigate SLO
violations.

4.4 End-to-End Performance
Here, we show the end-to-end performance of FIRM and its
generalization by further evaluating it on DeathStarBench
benchmarks based on the hyperparameter tuned during train-
ing with the Train-Ticket benchmark. To understand the 10–
30× improvement demonstrated above, we measured the 99th
percentile end-to-end latency when the microservices were
being managed by the two baseline approaches and by FIRM.
Fig. 11(a) shows the cumulative distribution of the end-to-end

51000 iterations correspond to roughly 30 minutes with each iteration
consisting of 300 time steps.
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Figure 11: Performance comparisons (CDFs) of end-to-end latency, requested CPU limit, and the number of dropped requests.

latency. We observed that the AIMD-based method, albeit
simple, outperforms the Kubernetes autoscaling approach by
1.7× on average and by 1.6× in the worst case. In contrast,
FIRM:
1. Outperformed both baselines by up to 6× and 11×, which

leads to 9× and 16× fewer SLO violations;
2. Lowered the overall requested CPU limit by 29–62%, as

shown in Fig. 11(b), and increased the average cluster-level
CPU utilization by up to 33%; and

3. Reduced the number of dropped or timed out user requests
by up to 8× as shown in Fig. 11(c).

FIRM can provide these benefits because it detects SLO vio-
lations accurately and addresses resource contention before
SLO violations can propagate. By interacting with dynamic
microservice environments under complicated loads and re-
source allocation scenarios, FIRM’s RL agent dynamically
learns the policy, and hence outperforms heuristics-based ap-
proaches.

5 Discussion

Necessity and Challenges of Modeling Low-level Re-
sources. Recall from §2 that modeling of resources at a fine
granularity is necessary, as it allows for better performance
without overprovisioning. It is difficult to model the depen-
dence between low-level resource requirements and quantifi-
able performance gain while dealing with uncertain and noisy
measurements [76, 120]. FIRM addresses the issue by mod-
eling that dependency in an RL-based feedback loop, which
automatically explores the action space to generate optimal
policies without human intervention.

Why a Multilevel ML Framework? A model of the states
of all microservices that is fed as the input to a single large
ML model [81, 126] leads to (i) state-action space explosion
issues that grow with the number of microservices, thus in-
creasing the training time; and (ii) dependence between the
microservice architecture and the ML-model, which sacrifices
the generality. FIRM addresses those problems by incorporat-
ing a two-level ML framework. The first level ML model uses
SVM to filter the microservice instances responsible for SLO
violations, thereby reducing the number of microservices that
need to be considered in mitigating SLO violations. That en-

Table 6: Avg. latency for resource management operations.

Operation Partition (Scale Up/Down) Container Start

CPU Mem LLC I/O Net Warm Cold

Mean (ms) 2.1 42.4 39.8 2.3 12.3 45.7 2050.8
Std Dev (ms) 0.3 11.0 9.2 0.4 1.1 6.9 291.4

ables the second level ML model, the RL agent, to be trained
faster and removes dependence on the application architecture.
That, in turn, helps avoid RL model reconstruction/retraining.

Lower Bounds on Manageable SLO Violation Dura-
tion for FIRM. As shown in Table 6, the operations to scale
resources for microservice instances take 2.1–45.7 ms. Thus,
that is the minimum duration of latency spikes that any RM
approach can handle. For transient SLO violations, which last
shorter than the minimum duration, the action generated by
FIRM will always miss the mitigation deadline and can poten-
tially harm overall system performance. Worse, it may lead to
oscillations between scaling operations. Predicting the spikes
before they happen, and proactively taking mitigation actions
can be a solution. However, it is a generally-acknowledged
difficult problem, as microservices are dynamically evolving,
in terms of both load and architectural design, which is subject
to our future work.

Limitations. FIRM has several limitations that we plan
to address in future work. First, FIRM currently focuses on
resource interference caused by real workload demands. How-
ever, FIRM lacks the ability to detect application bugs or
misconfigurations, which may lead to failures such as mem-
ory leak. Allocating more resources to such microservice
instances may harm the overall resource efficiency. Other
sources of SLO violations, including global resource sharing
(e.g., network switches or global file systems) and hardware
causes (e.g., power-saving energy management), are also be-
yond FIRM’s scope. Second, the scalability of FIRM is lim-
ited by the maximum scalability of the centralized graph
database, and the boundary caused by the network traffic
telemetry overhead. (Recall the lower bound on the SLO vio-
lation duration.) Third, we plan to implement FIRM’s tracing
module based on side-car proxies (i.e., service meshes) [15]
that minimizes application instrumentation and has wider
support of programming languages.



6 Related Work

SLO violations in cloud applications and microservices are a
popular and well-researched topic. We categorize prior work
into two buckets: root cause analyzers and autoscalers. Both
rely heavily on the collection of tracing and telemetry data.

Tracing and Probing for Microservices. Tracing for
large-scale microservices (essentially distributed systems)
helps understand the path of a request as it propagates through
the components of a distributed system. Tracing requires ei-
ther application-level instrumentation [18,32,57,95,111–115]
or middleware/OS-level instrumentation [10,16,63,109] (e.g.,
Sieve [109] utilizes a kernel module sysdig [103] which pro-
vides system calls as an event stream containing tracing infor-
mation about the monitored process to a user application).

Root Cause Analysis. A large body of work [16, 35, 50,
52, 61, 63, 93, 109, 121, 124] provides promising evidence
that data-driven diagnostics help detect performance anoma-
lies and analyze root causes. For example, Sieve [109] lever-
ages Granger causality to correlate performance anomaly
data series with particular metrics as potential root causes.
Pinpoint [16] runs clustering analysis on Jaccard similarity
coefficient to determine the components that are mostly corre-
lated with the failure. Microscope [61] and MicroRCA [124]
are both designed to identify abnormal services by construct-
ing service causal graphs that model anomaly propagation
and by inferring causes using graph traversal or ranking algo-
rithms [51]. Seer [35] uses deep learning to learn spatial and
temporal patterns that translate to SLO violations. However,
none of these approaches addresses the dynamic nature of
microservice environments (i.e., frequent microservice up-
dates and deployment changes), which require costly model
reconstruction or retraining.

Autoscaling Cloud Applications. Current techniques for
autoscaling cloud applications can be categorized into four
groups [65, 84]: (a) rule-based (commonly offered by cloud
providers [6, 7, 37]), (b) time series analysis (regression
on resource utilization, performance, and workloads), (c)
model-based (e.g., queueing networks), or (d) RL-based.
Some approaches combine several techniques. For instance,
Auto-pilot [88] combines time series analysis and RL al-
gorithms to scale the number of containers and associated
CPU/RAM. Unfortunately, when applied to microservices
with large scale and complex dependencies, independent scal-
ing of each microservice instance results in suboptimal so-
lutions (because of critical path intersection and insight 2
in §2), and it is difficult to define sub-SLOs for individual
instances. Approaches for autoscaling microservices or dis-
tributed dataflows [39,56,81,126,127] make scaling decisions
on the number of replicas and/or container size without con-
sidering low-level shared-resource interference. ATOM [39]
and Microscaler [127] do so by using a combination of queue-
ing network- and heuristic-based approximations. ASFM [81]
uses recurrent neural network activity to predict workloads

and translates application performance to resources by using
linear regression. Streaming and data-processing scalers like
DS2 [56] and MIRAS [126] leverage explicit application-level
modeling and apply RL to represent the resource-performance
mapping of operators and their dependencies.

Cluster Management. The emergence of cloud comput-
ing motivates the prevalence of cloud management platforms
that provide services such as monitoring, security, fault tol-
erance, and performance predictability. Examples include
Borg [119], Mesos [43], Tarcil [28], Paragon [25], Quasar [26],
Morpheus [54], DeepDive [73], and Q-clouds [71]. In this
paper, we do not address the problem of cluster orchestration.
FIRM can work in conjunction with those cluster manage-
ment tools to reduce SLO violations.

7 Conclusion

We propose FIRM, an ML-based, fine-grained resource man-
agement framework that addresses SLO violations and re-
source underutilization in microservices. FIRM uses a two-
level ML model, one for identifying microservices responsible
for SLO violations, and the other for mitigation. The com-
bined ML model reduces SLO violations up to 16× while
reducing the overall CPU limit by up to 62%. Overall, FIRM
enables fast mitigation of SLOs by using efficient resource
provisioning, which benefits both cloud service providers
and microservice owners. FIRM is open-sourced at https:
//gitlab.engr.illinois.edu/DEPEND/firm.git.
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A Artifact Appendix

A.1 Abstract
FIRM is publicly available at https://gitlab.engr.
illinois.edu/DEPEND/firm.git. We provide implemen-
tations for FIRM’s SVM-based critical component extraction,
RL-based SLO violation mitigation, and the performance
anomaly injection. In addition, we provide a tracing data set
of the four microservice benchmarks deployed on our dedi-
cated Kubernetes cluster of 15 physical nodes. The data set
was generated by running open-loop workload generation and
performance anomaly injection.

A.2 Artifact Check-list
• Algorithm: FIRM’s critical component extraction includes an

algorithm to find the weighted longest path (i.e., critical path
analysis) from the execution history graph of microservices.

• Model: FIRM’s two-level machine learning architecture includes
an SVM-based critical component extraction model and an RL-
based SLO violation mitigation model. The latter one is designed
based on deep deterministic policy gradient (DDPG).

• Data set: The artifact includes a tracing data set collected by
running four microservice benchmarks [34, 116] in a 15-node
Kubernetes cluster. The microservice benchmarks are driven by
workload generation and performance anomaly injection.

• Hardware: Experiments can run on a cluster of physical nodes
with Intel Cache Allocation Technology (CAT) [48] and Intel
Memory Bandwidth Allocation (MBA) [49] enabled.

• Required disk space: Neo4j [72] requires 10 GB minimum block
storage, and the storage size depends on the size of the database.

• Set-up instructions: Set-up instructions are available at the
README.md file in the repository.

• Public link: https://gitlab.engr.illinois.edu/DEPEND/
firm.git

• Code licenses: Apache License Version 2.0
• Data licenses: CC0 License

A.3 Description
A.3.1 How to Access

The artifact is publicly available at https://gitlab.engr.
illinois.edu/DEPEND/firm.git.

A.3.2 Hardware Dependencies

Experiments can be run on a cluster of physical nodes with
processors that have Intel CAT and MBA technologies en-
abled. They are required for last-level cache partitioning and
memory bandwidth partitioning respectively.

A.3.3 Software Dependencies

Software dependencies are specified at the README.md file,
which includes Kubernetes, Docker-Compose, and Docker.

A.3.4 Data Sets

The tracing data sets of four microservice benchmarks de-
ployed on our dedicated Kubernetes cluster consisting of 15
heterogeneous nodes are also available. The data sets are
not sampled and are from selected types of requests in each
benchmark, i.e., compose-posts in the social network applica-
tion, compose-reviews in the media service application, book-
rooms in the hotel reservation application, and reserve-tickets
in the train ticket booking application. A detailed description
is available at data/README.md.

A.4 Installation
Installation instructions are specified at the README.md file in
the repository.

A.5 Experiment Workflow
Experiments on physical clusters start from deploying the Ku-
bernetes with FIRM. Microservice applications instrumented
with the OpenTracing [75] standard are then deployed in the
Kubernetes cluster. One can also use the instrumented mi-
croservice benchmarks in the repository for experiments. To
drive the experiments, workload generators and performance
anomaly injectors should be configured and installed accord-
ingly. Then the training of FIRM’s ML models is divided into
two phases. In the first phase, the workflow stops at the SLO
violation localization. The SVM model is trained with the
feature data retrieved from the tracing coordinator and the
label data from the performance anomaly injection campaign.
In the second phase, the workflow continues and FIRM’s RL
agent is trained by interacting with the environment.

A.6 Experiment Customization
FIRM’s multilevel ML modeling provides the flexibility of
customizing the algorithms for both SLO violation localiza-
tion and mitigation. The SVM model can be replaced by other
supervised learning models or other heuristics-based meth-
ods. The DDPG algorithm used by the RL agent can also be
replaced by other RL algorithms. The repository consists of
the implementations of other alternative RL models such as
proximal policy optimization (PPO) and policy gradient.

In addition, different types of resources in control are also
configurable in the RL agent and the performance anomaly
injector. That pluggability allows one to add or remove re-
sources, and to change the actions associated with each type
of resource.

A.7 AE Methodology
Submission, reviewing and badging methodology:
• https://www.usenix.org/conference/osdi20/
call-for-artifacts
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