
1

A Geography-Based P2P Overlay Network for Fast and
Robust Blockchain Systems

Haoran Qiu1,2, Tao Ji1,3, Shixiong Zhao1, Xusheng Chen1, Ji Qi1, Heming Cui1, and Sen Wang4

1University of Hong Kong, 2University of Illinois, Urbana-Champaign, 3University of Texas, Austin, 4Huawei
Technologies Co. Ltd, China

Abstract—Numerous blockchain systems with various consensus protocols have emerged to achieve high transaction rates (2∼10K
tps). However, their underlying P2P network primitives constrain further improvements due to two problems (i) high message redundancy
and (ii) long broadcast convergence time. The first problem is caused by the excessive robustness of the dominant broadcast approach
Gossip. All state-of-the-art blockchain systems only tolerate 20-50% node failure while Gossip can withstand up to 90%. The reason for
(ii) is that existing broadcast topologies ignore geographical distances among nodes and incur paths with unnecessarily high latency.
We present FRING, a geography-based P2P overlay network for fast and robust broadcast in blockchain systems. FRING has three main
features: sufficient robustness, low message redundancy, and fast convergence. To reduce convergence time, FRING forms the network
topology by considering geographical proximity. A novel broadcast algorithm based on FRING topology is proposed to lower message
redundancy while maintaining sufficient robustness. One major challenge is to eliminate the risk of topology inference by traffic pattern
analysis. FRING leverages Intel SGX to guarantee nodes’ behavior integrity and incorporates pattern obfuscation to prevent traffic
pattern analysis. The evaluation shows that FRING improved the throughput of EOS by 220% and Hyperledger Fabric by 210%.
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1 INTRODUCTION

A FTER the popularity of Bitcoin [1], numerous block-chain
systems [2], [3], [4], [5] appeared to support both cryp-

tocurrency and general applications (e.g. smart contracts [2]).
Conceptually, a blockchain system is divided into three layers.
From top to bottom, the first layer is the application layer, which
can be cryptocurrencies or smart contracts. The second layer
is the consensus layer, where nodes agree on a chain of blocks
via consensus protocols (e.g. Proof-of-Work [1]). The third layer
is the P2P overlay network layer. It handles broadcasting data
packets (e.g. consensus messages, newly generated blocks or
transactions) and discovering peers.

To measure the blockchain system performance, a crucial
metric is the transaction rate, i.e., the number of transactions
confirmed by the system per second [6]. Benefiting from the
evolution of the consensus layer [4], [5], [7], [8], the transaction
rate of blockchain systems has increased significantly. Some
public [5] and private [9] blockchain systems have claimed to
achieve 2∼10K tps transaction rates.

Unfortunately, recent studies [9], [14], [15] show that the
underlying P2P network layer has become the bottleneck for
transaction rate. Blockchain systems form random P2P net-
works and predominantly use Gossip [13] as the broadcast
mechanism for robustness. For each hop in the broadcast pro-
cess, a node pushes the message to a randomly chosen subset of
its neighbors or pulls from the message sender. There are two
notorious problems associated with this network solution.

The first problem is that Gossip [13] generates excessive
redundant messages because Gossip is designed for extreme
robustness (can tolerate up to 90% node failure [16]). Such
redundant messages lead to traffic congestion under high
transaction rates. Although several works reduce the message
redundancy of Gossip, they are either not scalable [17] or incur-
ring huge performance overhead [18]. ByzCoin [12] leverages
tree-based broadcast, which is efficient in the number of mes-
sages generated (O(N)) but criticized for low robustness (only
tolerating leaf node failure) [10]. This problem is exacerbated as
the network or the number of broadcast events scales up. Old

messages on the flight may accumulate and gradually cause
cascading traffic congestion.

We argue that Gossip is overly robust for blockchain sys-
tems. All state-of-the-art blockchain systems only tolerate 20–
50% node failure (Table 2) while Gossip can tolerate nearly 90%.
For instance, the robustness of Gossip is meaningless when a
60% node failure rate already crashes the consensus protocol.

The second problem is that random network topology
causes unnecessarily long broadcast convergence time (i.e. time
used for a message to cover all nodes in the network). Since
the peer discovery process and peer selection on broadcast are
essentially random (§2.2, §2.3), the broadcast graph formation
ignores per-hop latency between peers. The consequence is
that high-latency hops are often incurred when broadcasting
a message, which leads to frequent jumping between two
components that are far away from each other. In the end,
a broadcast process might take an excessively long time to
converge in the network.

We present FRING, a geography-based P2P overlay network
for blockchain systems with a high transaction rate. It addresses
the above two problems with three features:

(i) Sufficient robustness: a broadcast operation can tolerate at
least the same portion of node failure as the blockchain
consensus protocol;

(ii) Low message redundancy: the messages generated in each
broadcast is efficient (O(N)); and

(iii) Fast convergence: the convergence time is minimized so
that the message accumulation is reduced effectively;

Conceptually, the network topology of FRING is a self-
maintained fractal ring structure, where lower level rings (typ-
ically formed by inner-region nodes) reside on higher level
rings (typically formed by cross-region nodes) in a recursive
way. To form this topology, FRING groups all nodes based
on their geographical proximity (per-hop latency) at the bottom
level. Each group forms a fully-connected ring. FRING selects
multiple nodes from each ring to serve as representatives and
they form a new ring in the higher level recursively. Finally,
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TABLE 1: Comparison among different broadcast approaches.
Broadcast Approaches Msg Redundancy Convergence Time Robustness
Tree-based [10], [11], [12] O(N), optimal Medium (non geo-based, deterministic) Low, tolerate only leaf node failure
Gossip-based [2], [13] O(NlogN) Slow (non geo-based, probabilistic) Extremely high, tolerate up to 90% node failure

FRING O(N), optimal Fast (geo-based, deterministic) Sufficient for all blockchain systems (Tab. 2), tolerate
over 50% node failure

there is only one global ring remaining at the top level and all
nodes are connected through representatives.

To broadcast a message, FRING introduces a new two-
phase broadcast mechanism. In phase one, a node first sends
the message to a random subset of its representatives in the
ring. Recursively, the representative then sends the message to
a random subset of the representatives at the upper level. Each
representative who sends the message to the upper level will
initiate an in-ring broadcast, other representatives will stop the
broadcast-up process. In the second phase, after the message
reaches one of the representatives at the top level, the message
is broadcast downwards. Each representative will receive the
message from its peers in the ring at the upper level. It then
initiates a distributed k-ary broadcast method in the ring at the
next lower level. It is inspired by the distributed k-ary search
method [19] which provides O(N) message efficiency.

Although adopting geographical proximity reduces conver-
gence time, representative nodes are more vulnerable to targeted
attacks. The reason is that attackers can eclipse-attack a node by
setting up malicious nodes near to it. To mitigate the problem,
we run FRING program in Intel SGX [20], which guarantees
code execution integrity and provides privacy protection.

One major challenge is that attackers can infer the structure
of FRING by observing I/O patterns at each node so that the
representatives are at high risk of being attacked. We will show
in §8 that the pattern difference between normal nodes and
representatives is negligible with pattern obfuscation.

We implemented FRING as a library in C++. We evaluated
EOS with FRING (i.e., EOS-FRING) and HLF with FRING (i.e.,
HLF-FRING) on Amazon AWS, and compared them with EOS
and HLF. We also evaluated FRING against Gossip in terms
of time and message efficiency, as well as fault tolerance.
Evaluation shows that:

• The throughput of EOS-FRING and HLF-FRING are greater
than EOS-Gossip and HLF-Gossip by up to 2.2× and 2.1×
respectively (see Fig. 1). Specifically, the advantage of FRING
becomes bigger when transaction generation rate grows.

• FRING converges faster. Our broadcast algorithm on FRING
network is six to ten times much faster than Gossip on
random networks in blockchain systems under reasonable
convergence rate requirements.

• FRING is network-efficient. FRING reduces 52%∼77% redun-
dant messages of Gossip when the total number of nodes in
the network scales from 2000 up to 8000.

• FRING has sufficient robustness. FRING can tolerate over
50% node failure, higher than the portion of nodes that all
blockchain system consensus protocols can tolerate. In addi-
tion, traffic analysis shows that the traffic pattern difference
between normal nodes and representatives is negligible.

Our main contribution is FRING, the first geography-based
P2P overlay network that achieves fast and robust blockchain
broadcast. On top of the FRING network, we also propose a
novel broadcast algorithm for blockchain system context. Table
1 shows a qualitative comparison between our approach of
broadcast and the conventional ones. FRING is orthogonal to
the consensus layer and can be adopted in general blockchain
systems by replacing their network layers. FRING has the
potential to enable the development of blockchain consensus
protocols for even higher transaction rates. An implemen-
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Fig. 1: End-to-End performance comparison between EOS, HLF
and EOS-FRING, HLF-FRING. The total number of nodes in the
network is 200. Two corresponding network settings are 100
Mbps and 200 Mbps for each node.

tation of FRING and evaluation scripts are open-sourced at
https://github.com/tsc19/fring.

The rest of this paper is organized as follows. §2 introduces
the background of the problem we focus on and related works.
§3 presents the motivation, design guidance, and an overview
of FRING design. §4, §5, and §6 elaborate the remaining de-
tails of FRING design. §7 gives theoretical proof for time and
message complexity of broadcast and analyzes the robustness
of FRING with respect to node failures. §8.1 describes the im-
plementation details. §8 presents and discusses the evaluation
results. §10 concludes the paper.

2 BACKGROUND AND RELATED WORK

2.1 Blockchain Systems
Conceptually, as shown in Figure 2, the components of a
blockchain system can be categorized into three layers on top
of the OS layer. The highest layer is the application layer which
can be cryptocurrency applications or smart contracts. In the
middle layer, all nodes in the blockchain systems agree on a
consistent chain of blocks through consensus protocols. The
model of transactions and blocks are also defined here. Below is
the P2P overlay network layer which has two major functions:
peer discovery, maintaining the table of peered nodes to com-
municate with; and information dissemination, broadcasting
the events such as consensus messages, membership updates,
new transactions or newly generated blocks.

The earliest blockchain systems such as Bitcoin and
Ethereum use the Proof-of-Work (PoW) consensus protocols
to support the valuation of the cryptocurrency in a socioe-
conomic sense [1], [2], which results in poor efficiency and
low transaction rate. Different techniques and blockchain sys-
tems [21], [22], [23] have been proposed to increase the scal-
ability and transaction rate (throughput), including sharding,
off-chain transactions, consensus protocols, and so on. To facil-
itate general-purpose applications in a more efficient manner,
other PoX protocols have been presented in different scenarios
such as Proof-of-Stake [7], Proof-of-Luck [8], and Proof-of-
Membership [12]. Non-PoX-based protocols are also proposed
such as DPoS [5] and DBFT [24]. Hyperledger Sawtooth [4]
utilizes Intel Software Guard eXtentions (SGX, introduced in
2.4) to provide integrity guarantee to nodes and proposes Proof-
of-Elapsed Time (PoET), which is believed to be highly efficient.
Additionally, EOS [5] based on DPoS, NEO [24] based on DBFT,
Conflux [15], Omniledger [25], and Hyperledger Fabric (HLF)
[9] all claim to achieve 2K to 10K tps transaction rate [26], [27],
[28] (300X to 1500X higher than Ethereum [2]). We further

https://github.com/tsc19/fring
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Fig. 2: A layered conceptual model of blockchain systems on top
of the host OS. In FRING, shaded modules are executed in the
Intel SGX enclave, i.e. peer discoverer module, peer manager
module, broadcaster module.

improve the transaction throughput of blockchain systems from
the overlay network layer (as shown in §8.3).

Current blockchain systems cannot serve for higher trans-
action rates, mainly because their network layer constrains im-
provements. EOS technical report [14] claims that poor network
latency caused by high bandwidth utilization can undermine
its transaction throughput (50 ms network latency leads to a
75% transaction rate drop). HLF [9] also blames the current
broadcast solutions for being the cap of improving its trans-
action throughput. As more and more blockchain systems are
deployed in commodity servers and geo-located datacenters
connected together, blockchain-powered ledger can be used
in broader cases (application layer in Figure 2). With the
transaction rate of state-of-the-art blockchain systems being 2-
10k txns/s, we envision that it will keep increasing (e.g., [29]
proposes a blockchain system that already achieves 40k txns/s).

2.2 P2P Overlay Networks
Many of the existing P2P overlay networks are tailor-made
for various applications. We categorize the mainstream P2P
applications into four types: i) On-demand streaming (e.g..
BASS [30], Peer-Assisted [31], LiveBT [32] and Give-To-Get
[33]); ii) high-throughput multicast (e.g.. SplitStream [34], Bullet
[35] and ChainSaw [36]); iii) Audio/video conferencing (e.g..
Skype [37]); and iv) P2P file sharing (e.g.. Napster [38], Gnutella
[39] and KaZaA [40]).

However, none of them are suitable for blockchain systems.
i) is designed for single-destination persistent data streaming,
while the blockchain system network demands broadcast. ii)
and iii) are optimized for high-bandwidth persistent multi-cast,
whereas the blockchain system network mostly broadcasts rel-
atively small blocks of data with high concurrency (numerous
broadcast operations simultaneously in progress) and needs
to be bandwidth-friendly. iv) is leveraged for distributed file
indexing and searching, while the retrieval is mostly point-
to-point without the involvement of the P2P network, which
makes it irrelevant to our problem.

There is no P2P overlay network designed for blockchain
systems with high transaction rates. By looking into the doc-
umentation and the code of open-source blockchain system
implementations, we discover that the network topology of
most blockchain systems is randomly generated, resulting in
the network topology being a random graph. This approach is
preferred for simplicity. Bitcoin nodes, for instance, retrieve the
information of active nodes in the network from DNS seeds
or the designated nodes [41], and randomly peer up with a
subset of nodes. Perigee [42] proposes a scoring algorithm and
adaptively decides which neighbors to connect to purely based
on the network measurements between a node and its neighbor
nodes in the network topology graph.

Ethereum, on the contrary, uses a Kademlia-like distributed
hash table (DHT) to store the peer information [2], [43]. Each
node ID is a public key randomly generated from the elliptic
curve secp256k1. However, the ID to geographical locality
mapping is still random. The node table stores up to 16 nodes
of distances {2i, 2i + 1, ..., 2i+1 − 1}, ∀i ∈ {0, 1, ..., 255}, where
the distance is determined by the bitwise XOR of two node
IDs. Compared to random neighbor selection, the schema used
in Kademlia network is deterministic. Such a schema makes
the node table in each node predictable so that properties can
be formally proved [44]. Function mapping has high efficiency
on peer discovery. Kademlia contacts only O(log(N)) nodes
during the search out of a total of N nodes in the system.

Other DHTs include Chord [45], Pastry [46] and Tapestry
[47]. These DHTs are also promising choices for the node table.
Nonetheless, it is worth mentioning that simply adopting such
a schema does not make the broadcast performance superior
to the randomly generated network topologies, since the ID
distance has nothing to do with the geographical locality, not
to mention the latency between two nodes, which has led us to
design a novel network that takes the latency into account.

2.3 Dissemination Algorithms
Apart from the network topology, the algorithm that broadcasts
the data over the network is also critical for a blockchain
system. We find that all the blockchain systems that we looked
into use Gossip [48] as the fundamental broadcast algorithm.
Gossip-based algorithms are developed for high reliability and
scalability of information delivery [49]. They are widely used
for reducing control message overhead [50] and are scalable
because they do not require as much synchronization as tradi-
tional reliable multi-cast algorithms. With Gossip, nodes push
the messages to a randomly chosen subset of known peers if
there are new messages (push-version Gossip) or pull from
the message sender (pull-version Gossip). The dynamics of the
gossip-like behavior and redundant messages lead to high fault
tolerance. Such algorithms usually do not require error recovery
mechanisms, hence possess a large advantage in simplicity,
often incurring only moderate overhead compared to optimal
deterministic algorithms.

The drawback of the Gossip algorithms, though, lies in their
inherent redundant messages [13], which may lead to traffic
congestion as broadcast frequency grows. There are several
improvements made on Gossip. Directional Gossip [17] uses a
Gossip server to construct a spanning tree but it is not scalable.
Intelligent Gossip [18] selects directional children based on
intelligent heuristics to build a tree. However, it does not work
if nodes do not have an overview of the whole network. Other
improvements include the adoption of time to live (TTL) [51],
and the use of unique message identifier (UMID) to reduce
redundancy [13], but they hardly mitigate the essential redun-
dancy that exists in the algorithm.

This problem is exacerbated as the network or the number
of broadcast events scales up. In such cases, data packet trans-
portation is slowed down and the blockchain system through-
put is reduced. Worse, to cover as many nodes as possible,
Gossip retransmits messages for more times [13]. Therefore,
to reach the entire network, the number of message retrans-
missions must be set to a value equal to or higher than the
network diameter [10]. With broadcast frequency increasing,
old messages on the flight may accumulate and gradually cause
cascading traffic congestion. If the network fails to achieve
super majority agreement on validations, consequently the
consensus process is hard to produce consistent proposals. In
this case, the servers repeat the consensus process [52].

Although such redundancy is arguably necessary to guar-
antee the robustness [13], the level of fault-tolerance is much
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TABLE 2: Consensus algorithms, blockchain system examples
and their tolerated percentages

Consensus Protocols Max # of Failures Examples
Proof-of-Work N/2− 1 Ethereum [2]
Proof-of-Stake N/2− 1 PeerCoin [53]
Practical BFT N/3− 1 HyperLedger Fabric [9]
Distributed PoS N/2− 1 Bitshares [54], EOS [5]
Ripple N/5− 1 Ripple [52]
Tendermint N/3− 1 Tendermint [55]

higher than what is required by consensus protocol. Table 2 lists
the maximum number of failed nodes that can be tolerated for
popular consensus protocols. Typically, a consensus protocol
cannot bear more than half of the nodes being failed, while
some Gossip-based algorithms such as HyParView can stand
as much as 90% node failure [13]. The actual implemented
version of Gossip in different blockchain systems is hard to
extract (as mentioned in §8.2) and based on our observation
on the Kademlia-based Gossip used in Ethereum, HLF and
EOS, the actual percentage highly depends on the topology
of the network. Since in Gossip nodes select their peers to
broadcast randomly, the percentage of the node failures that
can be tolerated ranges from 50% to around 90%. Therefore, it
is possible to exchange the surplus margin for better efficiency.

Some blockchain systems and P2P applications use Tree-
based broadcast algorithms, which are well-known for their
low redundancy. For instance, there are tree-based broadcast/-
multicast algorithms leveraged by video streaming and file
sharing applications [56]. Tree-based broadcast approaches like
SplitStream [34] and CoopNet [57] are efficient but the structure
needs to be maintained. ByzCoin [12] also creates communi-
cation trees for broadcast. However, this approach introduces
overhead since each node will create a communication tree
covering all nodes when a new block is created. Despite low
message complexity and broadcast efficiency, tree-based broad-
cast algorithms are notorious for their vulnerability of node
failure and high overhead of tree maintenance [10]. Therefore,
ByzCoin uses Gossip instead of the tree-based broadcast when
the liveness of nodes is low.

Data-driven broadcast approaches in ChainSaw [36], Bullet
[35], and CoolStream [58] have also significantly reduced the
redundancy compared to Gossip. However, the model of single-
source persistent broadcast/multicast streaming model does
not fit in the context of blockchain systems, where small data
blocks are broadcast and multiple sources should be able to
broadcast simultaneously. Therefore, it turns out that no exist-
ing broadcast algorithm can be regarded as a perfect solution
for current or future blockchain systems, especially with high
transaction rates and global availability.

2.4 Intel SGX

Intel SGX is a set of extensions to the Intel architecture that aims
to provide integrity and confidentiality guarantees to security-
sensitive computation performed on a computer where all the
privileged software (kernel, hypervisor, etc.) is potentially ma-
licious [20]. Intel SGX provides two kinds of attestations, local
and remote, to enable the verification such that a particular
piece of code is running in an enclave of a genuine SGX-enabled
CPU [20], [59], [60]. Enclaves are isolated memory regions of
code and data. One part of physical memory (RAM) is re-
served for enclaves. During a remote attestation, the challenger
establishes a secure communication channel with the help of
key-exchange protocols (Diffie-Hellman Key Exchange [61]).
In addition to the attestation, Intel SGX provides a trustwor-
thy source of random numbers via its sgx_read_rand API
[62] which calls the hardware-based pseudo-random generator
(PRNG) through RDRAND on Intel CPUs [20]. Previous studies
show that this random number generator is safe and cannot be

altered from outside the enclave [63], [64], [65].
In general, Intel SGX is a powerful tool that can be leveraged

to establish trust among the nodes in a distributed system. It
has been leveraged by some consensus protocols to eliminate
the overhead of byzantine fault-tolerance [66], [67]. Later, we
will also illustrate how FRING uses such techniques to miti-
gate potential attacks. Apart from Intel SGX, other commodity
hardwares also provide similar protection or trusted execution
environments. For instance, AMD has its Secure Virtual Ma-
chine (SVM) architecture [68] and memory region encryption
technology [69]; ARM has the TrustZone technique [70].

3 DESIGN MOTIVATION
By studying the blockchain systems and their underlying
P2P networks, we summarized three key requirements from
blockchain systems with high transaction rates (they are also
three features of FRING, see §1). These three requirements
motivate us to come up with the following four guidances of
FRING design. In each subsection, we first elaborate the design
motivation in each particular aspect of three requirements and
then discuss how it serves as a guide for the design of FRING.

3.1 Fast Convergence
There are two factors that could affect the convergence time
of broadcasting a message in a P2P network, the first is the
number of rounds needed to complete the broadcast process,
and the other is the communication delay which is the time
consumed in one hop of transmission. Gossip-based broadcast
approaches are criticized for their probabilistic broadcast and
”long tail” [71] (as mentioned in Section §1). The randomization
in selecting the neighbor nodes increases the likelihood of a
node remaining isolated for several broadcast rounds. Besides,
the ignorance of geographical location leads to longer tail
latencies. A tree-based broadcast approach achieves O(logN)
rounds in a deterministic way. However, the robustness of tree-
based broadcast approaches needs to be improved. All internal
nodes in the broadcast tree are fragile in the sense that once an
internal node fails then all its descendants would not get the
broadcast message.

Therefore, FRING uses a tree-based broadcast mechanism
but with multiple internal nodes connected with a sub-tree.
In this way, the number of rounds to broadcast a message
in the network would still be O(logN) deterministically. The
robustness of such a network topology will be discussed in
§3.3. §3.2 will discuss how FRING could be designed to deal
with the issue that every node in the network should be able to
initiate the broadcast process instead of only the root node.

To reduce the communication delay, the construction of
a P2P network should also consider geographical proximity.
When a node requests to join the network, FRING will recur-
sively introduce the node to the representative node which has
the lowest network latency with it. In the end, the node will
join a group where it has a node table containing all neighbors
which are geographically proximate to it. Therefore, by consid-
ering geographical locality and using structured broadcast, a
broadcast operation could achieve fast convergence.

3.2 Low Message Redundancy
Gossip algorithms do not fit in the context of blockchain sys-
tems where the transaction generation rate is high enough to
cause traffic congestion in the network. Tree-based broadcast
approaches can reduce message redundancy since pushing
messages from the root to all leaves in the tree results in
O(N) message complexity. However, as mentioned in §3.1,
tree-based broadcast approaches have two main problems: (i)
the robustness is low; and (ii) there will be N trees if any
node can be the source node, otherwise, it is time-consuming
to construct broadcast-tree before each broadcast operation.
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Problem (i) can be addressed together with providing sufficient
robustness (§3.3). Problem (ii) can be solved by a novel two-
phase broadcast mechanism (§5.1, §5.2) in FRING so that neither
does the network need to store N broadcast trees, nor does
it need to construct a broadcast-tree before each broadcast
operation.

3.3 Sufficient Robustness
A tree-based broadcast approach has low robustness and all
internal nodes in a tree are quite important. In addition, the
higher level a node is at, the more important role it plays in
a broadcast process. Consequently, it would be easier to be
the attack target by hackers outside the network. Fault-tolerant
replication of such nodes can improve the robustness and a
blockchain system needs sufficient robustness in a way that a
message should reach enough number of nodes.

FRING replaces a single node at the connection point to a
sub-tree with a ring of nodes (illustrated in §4.1). To be more
specific: all nodes in FRING that reside in the bottom level are
grouped into rings according to geographical locality (§3.1).
There will be representative nodes elected from each ring. All
representative nodes elected are seen as normal nodes in the
upper level. Such an election process is done recursively to form
a tree-like recursive ring structured network topology.

In this fractal-ring ”tree”, instead of having one node con-
nected with a sub-tree, there is a ring of representative nodes
connected with the sub-trees having the representative nodes as
the root nodes. In a broadcast process, the same message will
be pushed to all representative nodes of a sub-tree. Only one
alive message will be broadcast further in the sub-tree. By using
this approach, the robustness is improved and sufficiency can
be adjusted by setting the parameter of how many representa-
tive nodes should be elected from a ring, in order to satisfy
blockchain systems’ needs.

3.4 Handling Targeted Attacks
Grouping nodes that are geographically proximate with each
other together in a ring may cause eclipse attacks [72]. In other
words, if a victim node joins a group that only contains bad
nodes, an eclipse attack could be conducted easily. In addition,
a structured P2P network is different from an unstructured one
in the sense that structured overlays are not secure; even a small
fraction of malicious nodes can prevent correct message deliv-
ery throughout the overlay [73]. Especially when a malicious
node plays an important role in the network, its misbehavior
may cause the whole FRING network to malfunction. For
routing algorithms that use network proximity information to
improve routing efficiency, attackers may fake proximity to
increase the fraction of bad routing table entries.

Intel SGX can be leveraged to avoid eclipse attacks by
protecting the confidentiality of routing information and to
make sure the integrity of node behavior (§6). Running code in
Intel SGX enclaves can avoid node misbehavior so that secure
message forwarding can be guaranteed though packets could
still be dropped (which is addressed in §6.2). Apart from using
Intel SGX to improve security, FRING periodically elects new
representative nodes and equalizes all nodes in the structured
network to remove the existence of super peers. All nodes have
equal opportunities to be rotated into representative nodes at
different levels in the network.

4 NETWORK DESIGN

In this section, we present the structure-wise design details
of FRING which include the topology of the network (§4.1),
how the structure is formed (§4.2), how node failure is detected
(§4.3), the maintenance of FRING network (§4.4), and represen-
tative node election (§4.5).
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Fig. 3: Recursive step of FRING network structure construction.
Three representatives are selected from each ring (zone) in level
1 to be normal nodes in level 0. Recursively, three representa-
tives in Zone 0 will be selected.

Before diving into the details of FRING design, we define
several key terminologies here:
• Normal Node/Node: one instance of servers or VMs in the

FRING network;
• Representative Node: the node in a ring who is in charge

of membership updates, connecting to the ring at the upper
level, initiating representative node election, and broadcasting
downwards messages;

• Ring: a group of nodes connected in a ring-like structure,
which have the list of nodes in the same ring as their routing
table;

• Predecessor & Successor: the node ahead and behind a node
(clock-wise) in a ring, e.g., the predecessor and successor of
node 1 are node 9 and node 2, respectively (as in Fig. 3);

• Level: all nodes reside at the bottom level, representative nodes
for level n are elected to be normal nodes in level n − 1 (the
network topology is recursively formed in this way until the
top level).

4.1 Topology
Conceptually, the network topology of FRING is a fractal-ring
structure, where lower level rings reside on higher level rings in
a recursive way. At the top level resides the largest ring where
several sub-rings reside on. Each nested ring is formed all the
way to the bottom level at which resides the smallest rings. To
form such a structure, all nodes in FRING network reside at the
bottom level, grouped in rings according to their geographical
locality (§3.1). In each ring, multiple nodes are elected to be the
representative nodes for this ring. These representative nodes in
level n become the normal nodes in level n − 1. Recursively,
all levels of nodes are connected through representative nodes to
form this fractal-ring structured topology.

Fig. 3 illustrates how rings at two consecutive levels (level 0
and level 1) are connected and the relationship between them.
At level 1, there are three rings and the nodes colored in shadow
(which are also numbered from 1 to 9) are the representative
nodes elected for each ring at this level. They are also the
normal nodes at level 0. Three sub-rings at level 1 form a ring at
level 0 with the connection points being the representative nodes
for rings at level 1. Recursively, multiple nodes will be elected
to be the representative nodes at level n and they are going to be
the normal nodes at level n − 1. The recursion will stop when
reaching level 0 which is also the top level.

4.2 Node Join
When a new node wants to join the network, it will first send
ping-messages to each of the representative nodes of the largest
ring at the top level maintained by a seed node network [74].
The new node will pick the representative node with the shortest
response time to send a join-message. The representative node



6

will then decide which sub-ring it should add this new node to,
by sending the representative information of representative nodes
of each sub-ring back to the new node. Recursively, the new
node will then choose the sub-ring which is optimal in terms of
response time. And the representative node of the sub-ring will
then introduce the new node to the sub-sub-ring. In the end,
the representative node of a ring at the bottom level will then
add the new node to the ring.

If the number of nodes on the ring that the new node joins
exceeds the threshold MAX_THRESHOLD, then this ring will
be split up into two rings evenly. The transformation will be
further elaborated in §4.4. After a new node joins the network,
the representative node of this ring will broadcast within the
ring this node’s information. Other peers in this ring will then
tell their node information by sending welcome-messages to
the new node. At the end of the bootstrap process for the new
node, a routing table will be formed to contain all its peers in
the ring.

4.3 Node Leave
A node in the network may intentionally leave the network
or go through network failure or machine failure. We treat
node failure the same as node leave and use a heartbeat-style
detection mechanism to handle this. Since all nodes exist at the
bottom level and all nodes in the upper levels above the bottom
level are only roles, detection is only needed at the bottom level.
Each node on any ring in the bottom level will send heartbeat
messages periodically to its successor and predecessor. Once a
node does not receive any heartbeat message for a predefined
timeout value, the node will double-check the aliveness of the
heartbeat sender with its direct neighbor.

For example, there are nodes D → B → A → C → E
which are a subset of the node ring in Zone 1 on L1 in Fig. 3. if
node A’s predecessor B does not respond, A will check with the
predecessor of B (similarly if A’s successor C does not respond,
A will check with the successor of C). If they agree that this
node left the network (either intentionally or accidentally), the
information will be disseminated in the ring (broadcast within-
ring described in §5.3) and this node will be officially removed
from the network. If the missing node is the representative node,
then the next generation of representative nodes will be elected.
If the number of nodes on the ring is smaller than the lower
limit MIN_THRESHOLD, two rings will be merged into a larger
ring. Merge steps will be elaborated in §4.4.

4.4 Structure Maintenance
FRING structure maintenance consists of two parts: ring split
and ring merge. Each ring has two thresholds limiting the
number of nodes in that ring, i.e., MAX_THRESHOLD and
MIN_THRESHOLD. After a node-join, if the number of nodes
exceeds the MAX_THRESHOLD, then a ring split process will be
performed. Similarly, after a node-leave, if the number of nodes
is smaller than the MIN_THRESHOLD, a ring merge process will
be performed. An appropriate number of nodes in a ring will
lead to an optimal performance in terms of the time used to
broadcast a message. Having too many and too few nodes in
a ring would have nearly linear time complexity in extreme
cases (i.e., all nodes in one ring or one node in one ring). In our
experiments (i.e., §8), we choose MIN_THRESHOLD to be 10 and
MAX_THRESHOLD to be 20 to maintain the number of within-
ring hops to be under 3 (based on the broadcast algorithm
described later in §5.2) which yields the optimal performance.
Both two processes are initiated by one of the representative
nodes of the ring.

After a ring split process is initiated, the peer list of this
ring is split randomly into two halves, each of which forms a
new ring. Representative node election will be initiated by the
first node on the new peer list. One of the representative nodes

L2 Normal Nodes L2 Representatives & L1 Normal Nodes L1 Representatives & L0 Normal Nodes

L0 Representatives Msg Route Within Ring BroadcastRepeated Msg
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L2
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(a) Broadcast upwards

L0

L1

L2

①
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②
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Repeated

(b) Broadcast downwards to the second top layer
Fig. 4: Illustration of a broadcast upwards process (a) and
a broadcast downwards process (b) in a three-layer FRING
network.

from the last term will multicast the election result notification
message to the representative nodes in the upper level ring. After
a ring merge process is initiated, the representative node of this
ring will find another ring randomly to merge with through
the common ring at the upper level. Two peer lists are merged
together and a representative node election will be initiated by
one of the representative nodes. One of the representative nodes
from the last term will multi-cast the election result notification
message to the representative nodes in the upper level ring. In
addition, after the ring split, the rings in the upper level rings
may also need to be split into two rings. Similarly, after the ring
merge, the new ring may need to be split into two rings. The
chain processes will be done recursively.

4.5 Representative Node Election
Representative node election will be done first when forming
a new ring, and periodically afterward. Each generation of
representative nodes have their term of service. At the end of
the term, one of the representative nodes will generate ran-
dom IDs from all member node IDs by using Intel SGX API
sgx_read_rand() (§6). This election result will be dispersed
within the ring, and multi-casted to the representative nodes of
the upper level ring and the lower level rings.

5 BROADCAST ALGORITHM

In this section, the broadcast algorithm is stated which contains
three parts: broadcast upwards (§5.1), broadcast downwards
(§5.2), and broadcast within-ring (§5.3).

5.1 Broadcast Upwards
Broadcast is the process of disseminating a message from any
node to the whole network. A broadcast process contains
two phases: broadcast upwards (this section) and broadcast
downwards (§5.2). When a node wants to send a message to
the whole network, it will first send the broadcast-message to
one of the representative nodes of the ring it resides on. The
representative node will then send broadcast-message to one of
the representative nodes of the upper level ring. Recursively, the
broadcast-message will be received by one of the representative
nodes of the largest ring. Then the representative node will start
to broadcast within-ring (§5.3) and broadcast downwards (§5.2).
To further optimize performance, whenever a representative
node in the upwards path receives the message, it will also
broadcast the message in the ring and recursively in the sub-
rings in the same way as broadcast downwards.
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Fig. 4(a) illustrates a broadcast upwards process in a three-
layer FRING network. A node at the bottom level (level 2)
wants to broadcast a message to the whole network. It will
first send the message to the representative node in the same
ring (step 1 ). Then the representative node at level 2 will send
the message to multiple representative nodes at level 1 (step 2 ).
Each representative who sends the message to the upper level
will initiate an in-ring broadcast (§5.3), other representatives
will stop the broadcast-up process. Finally, the representative
node at the top level will receive the message (step 3 ) and
the broadcast upwards process ends.

The distributed k-ary broadcast method inspired by a search
method [19] is used to disseminate a message in a ring. Details
will be presented in §5.3. Based on this method, the time
complexity of a whole broadcast operation will be O(logN) and
message complexity will be O(N), which are currently the best
among related works.
5.2 Broadcast Downwards
The broadcast downwards process happens when an internal
node in the FRING tree-like structure receives a message to
broadcast downwards. This process is done in a recursive way
in all rings at all levels (excepts the bottom level). Any normal
nodes at level n are the representative nodes for a sub-ring at
level n + 1. To broadcast downwards, the node at level n will
initiate a within-ring broadcast in the sub-ring at level n + 1
(§5.3) after it receives the message to broadcast. Recursively till
the bottom level, all nodes in the fractal ring will receive this
message. Fig. 4(b) illustrates a broadcast downwards process
happening in the ring at level 0. After the message is dispersed
within the ring, three L0 representative nodes (highlighted with
bold borders) initiate broadcast-down process to their sub-rings
at level 1 respectively.
5.3 Broadcast Within-Ring
In-ring broadcast is based on the distributed k-ary broadcast
method. It is inspired by the distributed k-ary search method
proposed by El-Ansary S. [19] etc.. The basic idea is that the
broadcast starter will first generate a random number k by us-
ing Intel SGX API sgx_read_rand(), and then a k-ary broad-
cast spanning tree can be constructed in a distributed manner
within the ring. The broadcast will then be triggered from the
root node and messages are pushed down to every node in
the tree. The parameter k is randomly chosen by the root node
(within-ring broadcast initiator) via API sgx_read_rand().
The reason we choose to randomize the parameter k is that the
network should be hidden from the attacker. If it keeps using
the same parameter k, the routing pattern will be known easily
by watching the network activities for a long time.

The spanning trees are formed by using the broadcaster
(which is numbered 0) as the root node. Node 0 will connect
to node 0 + k0, 0 + k1, 0 + k2, and so on. Similarly, node 1 will
connect to 1+ k0, 1+ k1, 1+ k2, and so on. The pattern is: node
i will connect to i + k0, i + k1, i + k2, and so on. The overall
time complexity of this method will be O(logN), where N is
the number of nodes in the ring. Fig. 5 shows that a ring of ten
nodes in (a) forms a 2-ary spanning tree in (b) (k = 2).

6 ATTACK HANDLING
In this section, we will first present the threat model we
considered in the design of FRING. We then argue how Intel
SGX is used and why it is necessary in FRING to ensure
security under the threat model. Besides, we introduce two
mechanisms to achieve pattern obfuscation in FRING network.
The effectiveness is evaluated in §8.7.
6.1 Threat Model
We adopt a common threat model of using SGX in the network
layer [75]. SGX assumes that an adversary can compromise any
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Fig. 5: Broadcast within-ring using distributed k-ary broadcast
method. A spanning tree is constructed in a distributed way
and the process starts from the broadcast initiator which is node
0 (the root node).

software components including the operating system, hypervi-
sor, and firmware. Also, hardware components (e.g., memory
and I/O devices) can be inspected by an attacker except for
the CPU package itself. However, denial-of-service [76] is out
of scope of this paper; a malicious privilege software could
easily crash or halt the system. Thus in FRING’s network, we
assume that an attacker can obtain full control of the software
and hardware (except the CPU package) of any node.

6.2 Use of Intel SGX
FRING uses Intel SGX attestations to build a trust base among
blockchain nodes. The routing information is well saved by
Intel SGX enclaves. The behavior of each node after receiv-
ing a message or when sending a message is protected by
the enclaved execution. In addition, the parameter k used in
within-ring broadcast and the IDs of the representative nodes are
randomly generated by using the sgx_read_rand API [77].

Although grouping nodes that are geographically proximate
with each other may lead to eclipse attacks, relying on Intel
SGX, FRING could avoid eclipse attacks by removing misbe-
havior. In designing our protocols, we first perform a setup
phase where each peer connects to every other peer in the
network and then performs a series of steps. Every enclave first
uses remote attestation to verify the correctness of the protocol
executing on other peers. Next, they generate public/private
key pairs inside the enclaves and exchange the public keys
with each other. Then all the messages transmitted between any
two enclaves can be signed to ensure integrity and authenticity.
Moreover, the internal states of the program are also protected
using enclaved execution. Outside the enclave, the hackers do
not know the content of the intercepted messages. Therefore,
the integrity of all messages including input/output/inter-
mediate states is guaranteed. In this case, it is clear that an
adversary cannot forge valid messages to bias the victims.

A malicious hacker can also intercept consensus messages,
transactions or blocks directed to a victim. However, since he
cannot identify heartbeat messages from other messages, he
needs to intercept all messages. Missing heartbeat messages
will kick the hacker out of the network. Therefore, an eclipsed
attack can be avoided. Sybil attacks [78] could be potentially
conducted by controlling all nodes from a city where an at-
tacker subverts the blockchain system by creating a large num-
ber of pseudonymous identities and uses them to gain a large
influence. However, there has been a line of work [78], [79],
[80], [81] preventing such attacks which can be complementary
to our work. Besides, taking control of the whole city is not an
easy task; even if the attack succeeded, he can only subvert
a ring in the city-level while at the upper level (state-level)
the attacker only subverted one normal node. Taking control
of the whole state or upper levels is much harder, attributing to
the geographical locality-aware fractal ring structure of FRING.
Since the nodes are structured in terms of location, an attacker
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needs to control all nodes in a state or even in a country to
compromise the whole system.

6.3 Pattern Obfuscation

To hide the existence of FRING representative nodes from out-
siders, there are two mechanisms leveraged in FRING. First,
fake messages are used to make the behavior of a representative
node the same as that of a normal node. For a representative
node, it will send messages of the same size to both one of the
representative nodes and some of the past representative nodes in
the upper level ring. For a normal node, it will send messages
of the same size to both one of the representative nodes and some
of its peers in the same level ring. When broadcasting messages
within the ring, the random parameter k will hide the relative
orders of each node. Apart from broadcasting to its children in
the constructed distributed k-ary spanning tree, each node will
randomly choose a node to send fake messages. As a result,
the number of fake messages is linear to the number of nodes.
All fake messages are of the same size as the real messages.
Hackers may watch the packets being sent out from a node and
being sent to the node for a long time. However, during one
representative node service term, no difference can be discovered
from the data collected.

Second, representative nodes of a ring will be elected for
every service term. One representative node of the last ser-
vice term will generate random IDs by using Intel SGX’s
sgx_read_rand() function [20], and then broadcast the nom-
ination result within the ring and to the ring at the upper level.
Due to both the limited representative node service term period
and the same behavior during one service term, an outsider
cannot differentiate representative nodes from normal nodes.
Our evaluation shows that FRING’s network topology and
structure are well hidden from the outsiders. Packet analysis is
done by using WireShark and the evaluation result is discussed
in section §8.7.

7 PROOF AND ANALYSIS

In order to show that FRING effectively reduces the mes-
sage complexity and achieves fast broadcast convergence, we
present the proof of the message complexity (§7.1) and the time
complexity (§7.2) of broadcasting a message in FRING. Then we
analyze the robustness (§7.3) of FRING to prove its sufficiency
for blockchain systems.

7.1 Broadcast Message Complexity

Since FRING is a structured network and its neighbor selection
is also deterministic, the number of hops needed is formally
provable. Consider a network of size N . All nodes in the
network are geographically distributed evenly. In FRING, every
r nodes that are geographically near to each other will be gath-
ered into a ring at the bottom level. If there are c representative
nodes in each ring at the bottom level, then the number of nodes
elected to be the normal nodes at the second level will be:

L(1) =
cN

r
(1)

Then according to the protocol of FRING, the number of
nodes elected to be the normal nodes at the first level will be the
number of rings at the second level multiplied with parameter
c, which is:

L(2) =
c2N

r2
(2)

Recursively, the number of nodes L(h) and the number of
rings R(h) at level h will be:

L(h) =
chN

rh
, R(h) =

chN

rh+1
(3)

Let there be T nodes in the top level (which are DNS seeds
for a networked system), let C = c/r be the representative

node/normal node ratio at each ring, then the number of levels
will be:

l = logC
T

N
(4)

To broadcast a message from a node in any ring at the bot-
tom level, the message will first be disseminated upwards until
it reached the ring at the top level. The number of messages
used to reach any representative nodes at the top level is:

M1(N) = 1 + l = 1 + logC
T

N
(5)

The number of messages used to broadcast from the top
level rings recursively to all nodes in each ring at each level is:

M2(N) =

l∑
i=0

N
c

r

i
= N

1− Cl−1

1− C
=

CN − T

C(1− C)
(6)

Hence the message complexity of a broadcast operation
is O(N), which is better than the current message complex-
ity of both push Gossip (O(NlogN)) and push-pull Gossip
(O(NloglogN)) [82].

7.2 Broadcast Time Complexity
Considering that the cost to transmit a data packet between
two nodes in any two different continents is far larger than the
cost to transmit between two nodes in the same city, let the
cost of transmitting data packets in different rings at level h be
C(h), which is a mapping from levels to time cost constants.
To broadcast a message from a node in any ring at the bottom
level, the going-up path of the message to broadcast takes at
most:

T1(N) =

l∑
i=1

C(i) (7)

After the message reaches any of the representative nodes
at the top level, the message starts to broadcast downwards
recursively in each ring (in parallel) from the top level to the
bottom level. The time it takes to touch each individual node at
the bottom level is:

T2(N) =

l∑
i=0

C(i) logk
L(i)

R(i)
R(i) =

l∑
i=0

C(i) logk C
iN (8)

Hence the time complexity of a broadcast operation is
O(logN), which is also the complexity of the number of rounds
in the broadcast process. Although the time complexity of the
Gossip algorithm is also O(logN), more hops with high latency
are incurred as the geographical locality is not considered
and long tail latency issues can occur (as mentioned in §3.1).
Besides, in the worst case, if each node only connects to those
nodes that have the smallest proximity in the geographical
locality, the total time complexity will be O(N) [83], [84].

7.3 Fault Tolerance for Node Failure
In a blockchain system, individual machines are often under the
control of a large number of heterogeneous users who may join
or leave the network at any time. The dynamic of large-scale
distributed systems and link failures cause problems to the
message dissemination. Since the dissemination of membership
information, transactions or blocks requires to reach all nodes,
even the consensus protocol requires the message to reach at
least half (PoW, PoS, DPoS, Ripple) or two-thirds (BFT, PBFT,
Tendermint, Algorand BA*) [85], the P2P network under a
blockchain system should try its best to reach as many nodes as
possible. Under dynamic node joining/leaving and link failure,
the network should be robust enough to cover as many as
possible the remaining working nodes.

To analyze the robustness of FRING, we define reliability
metric to be the ratio of covered nodes and remaining nodes.
Let the probability of node failure be p, therefore, the number
of nodes that cannot be reached is:

F (N) =

l∑
i=1

l∑
j=i+1

(1− p)jpcR(i)ri (9)
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As defined in §8.4, c is the number of representative nodes in a
ring, r is the number of nodes in a ring, and R(i) is the number
of rings at level i.

Thus the reliability of FRING will be:

Reliability =
N − F (N)

(1− p)N
(10)

In the context of geographically distributed blockchain sys-
tems, a 7-level FRING will reach 1/2 of all nodes on broad-
casting a message if the node failure rate is less than 13.8%,
and will reach 2/3 of all nodes if the failure rate is less than
13.3%. The number of levels is chosen to draw an analogy
between the network topology and the geography notions (i.e.,
global, countries, states, cities, districts, etc.) because FRING is
a geography-based overlay network taking inter-node latency
into consideration. In the evaluation, we set the fault rate of
all nodes to be from 10% to 70%, the reliability of FRING can
reach the same level with Gossip when the fault rate is below
30%. And we found that in blockchain system context, Gossip is
overly strong in terms of robustness. As the consensus protocol
of a blockchain system only needs responses from half or two-
thirds of all nodes to be honest, we could trade fault-tolerance
off to gain efficiency.

8 EVALUATION
This section demonstrates the evaluation results of the im-
plementation of FRING. Our evaluation aims to answer the
following six key questions:
§8.3 How effective can FRING improve the end-to-end

throughput of blockchain systems?
§8.4 How effective can FRING reduce the message complexity

to complete a broadcast operation?
§8.5 Can FRING improve the convergence time compared with

state-of-the-art P2P networks?
§8.4 Can FRING scale with respect to the number of nodes in

the network?
§8.6 Can FRING provide sufficient fault tolerance to blockchain

systems?
§8.7 Can FRING protect each node well so that representative

nodes can not be easily differentiated from normal nodes?
Our evaluation is done on the AWS cloud [86]. We started

30 c4.4xlarge instances (VMs) running in the same region, each
of which has 16 cores and 30 GB memory. Our FRING topol-
ogy setting is 5∼7 layers (i.e., global, countries, states, cities,
districts, etc.), which is enough for 2000 to 8000 nodes in the
evaluation. The nodes are evenly distributed to each VM and
the number of cities considered is different to achieve a 2000 to
8000 range of nodes in the FRING topology. For example, the
total number of cities included is 40 and 60 when the number
of nodes is 4000 and 6000, respectively. We refer readers to
our open-source repository for more evaluation setup details.
To simulate the real traffic, we simulate the network latency
by delaying each received packet according to the distance
of the sender and receiver. Since all VMs are located at the
same datacenter region in AWS and we simulate the network
latency between two FRING nodes on any VMs according to
their distance on FRING’s topology (because the distance is
not real distance) by monitoring the distance-latency mapping
across global AWS datacenters. Because AWS does not provide
SGX hardware, we ran FRING in the SGX simulation mode [77].
The Intel SGX SDK provides simulation libraries to run ap-
plication enclaves in simulation mode (Intel SGX hardware
is not required). Although simulation mode does not require
the Intel SGX support in the CPU, the applications developed
in the simulation environment can be directly ported to the
SGX hardware environment. We use typical Ethereum packets
(measured from Etherscan [87]) as the data to broadcast: the
size of one block is randomly chosen between 15 KB and 19KB,

and the size of a transaction or consensus message is randomly
chosen between 190 bytes and 210 bytes (in §8.3, §8.4, §8.5).

8.1 Implementation Details
We have implemented FRING in C++ with the only exter-
nal dependence being Protobuf [88]. Protobuf is Google’s
language-neutral, platform-neutral, extensible mechanism for
serializing structured data. It is used by FRING to serialize
packet data. The FRING implementation contains roughly 3800
lines of code, not including tests, configuration on docker,
comments, and blank lines.

A FRING application running on a server (node) mainly
consists of four modules (Fig. 2), a PeerDiscoverer mod-
ule, a PeerManager module, a Broadcaster module, and
a socket API module. A PeerDiscoverer is responsible for
bootstrapping the node. After the bootstrap, the PeerManager
service and the Broadcaster service will be created and ini-
tiated for the node. The PeerManager stores peer information
at each level of FRING and maintains the network structure by
periodically sending heartbeat messages within the ring at the
bottom level. The Broadcaster deals with incoming messages
and is responsible for broadcasting messages. All modules are
executed in SGX enclaves except the socket API module, which
will send and receive data packets to and from the OS kernel
network subsystem (Fig. 2).

The API of FRING simply contains two entries: (i) Join-
Network: given IP address and listening port number, a node
will join the network and start to work; and (ii) Broadcast: given
the message to broadcast, a broadcast process is initiated. We
open-source the prototype of FRING at https://github.com/
tsc19/fring.

8.2 Comparison Baseline
As mentioned in §2, many blockchain systems are based on ran-
domly generated P2P networks, which is difficult to compare
with since the graph of the network can significantly vary in
different instances. We choose a Kademlia-based P2P network
and the Gossip broadcast algorithm as our comparison baseline,
as it is used by the popular blockchain Ethereum. The baseline
approaches are deployed and evaluated in AWS as well.

However, Ethereum’s code is coupled with complex func-
tions such as serialization and encryption that incur unclear
overhead, making it potentially unfair to directly compare with
FRING. Also, no isolated Gossip network layer can be used to
compare FRING with. Thus, we implement our own version
of Kademlia-based Gossip based on Ethereum’s codebase. It
is easier to be integrated with blockchain systems such as
EOS and HLF. To validate our implementation, we test it
with Ethereum’s workload (with block size, message size, and
transaction rate sampled from Etherscan [87] measurements
between Jan.–July 2019) and then compare the behaviors and
performances.

We run Ethereum with 200 nodes for six hours in our cluster.
In our cluster, each machine has Linux 3.13.0, 40Gbps NIC,
2.60GHz Intel E3-1280 V6 CPU with SGX, 64GB memory, and
1TB SSD. On each node, we record the timestamps and node
IDs of all broadcast operations as well as the timestamps of
all sent and received messages. We then bootstrap a 200-node
Kademlia-based network and let each node perform Gossip
broadcast using the same broadcast timestamps recorded in the
Ethereum case. In addition, we recorded the same information
as in Ethereum for all nodes.

We count the total number of messages generated in the net-
work in every ten minutes as a function of elapsed time. Statis-
tics show that two implementations generate approximately the
same amount of messages with the same input. The difference
is smaller than 3%. We also discover that the average message
complexity and average time complexity for broadcasting a

https://github.com/tsc19/fring
https://github.com/tsc19/fring
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Fig. 6: Comparison of convergence time between Gossip and FRING.

message are almost the same (4% variance). More rigorously,
we conduct the one-tailed Fisher’s statistical hypothesis testing
with the null hypothesis being that the two overlay networks
have the same behavior in terms of the time-indexed message
complexity, which refers to the number of messages generated
per ten minutes and covers both message complexity and the
time complexity. We observed a p-value higher than 0.0782 that
is higher than 0.05 (with significant level alpha 5%), indicating
strong evidence for the null hypothesis. Thus, we are certain
that it is reasonable to use the self-implemented Kademlia-
based Gossip instead of Ethereum’s code to compare with the
implementation of FRING. Therefore in the following sections,
we refer to Gossip as our implementation of Kademlia-based
Gossip, which is our comparison baseline.

8.3 End-to-end Throughput Comparison

We leverage EOS [5] and HLF [3] as two representative exam-
ples and evaluate the performance improvement that FRING
can bring to the blockchain system as a whole. EOS is a
proof-of-stake-based public blockchain system and HLF is a
private blockchain system using Raft to achieve consensus.
Two network settings (100Mbps and 200Mbps) are used at
each node. In Fig. 1, it shows that by using FRING as the
underlying P2P network, the throughputs of EOS and HLF
are increased by up to 2.2× and 2.1× respectively. Specifically,
when the transaction generation rate grows or the network is
more crowded, the advantage of FRING becomes bigger. The
throughputs of EOS-FRing and HLF-Fring at 100 Mbps are even
nearly the same as the throughputs of EOS-Gossip and HLF-
Gossip at 200 Mbps. Low bandwidth settings and numerous
client input transactions limit the throughput of EOS and HLF.
However, we owe the benefits to FRING’s fast convergence
and low message redundancy (they are evaluated in §8.4 and
§8.5 respectively). FRING reduces traffic congestion and thus
improves the end-to-end throughput.

There is a fundamental trade-off of performance and ro-
bustness in distributed systems [89], [90] which we found that
also exists in blockchain systems. Blockchain systems aim at
achieving an acceptable trade-off between the conflicting goals
of broadcast convergence performance versus robustness to
uncertainty or faults. We found that the lower requirement
to fault tolerance in blockchain systems yields a richer de-
sign space. The state-of-the-art P2P network and its broadcast
algorithm Gossip provide extremely high robustness and can
tolerate up to 90% node failure, at the cost of higher message
complexity and slower convergence especially under conges-
tion. By lowering the robustness to node failures (sufficient
fault tolerance in blockchain systems), FRING generates lower
message redundancy and provides faster convergence and thus
higher end-to-end throughput.
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Fig. 7: Comparison of message complexity between Gossip and
FRING in terms of scalability on both the number of nodes and
broadcast operation rate.

8.4 Message Complexity
In this section, we show that the average number of messages
generated in the whole FRING network to broadcast a message
increases linearly. FRING and the baseline overlay network
are evaluated in isolation and the workload is exactly the
configuration described in §8 evaluation setup. As shown in
Fig. 7a, with the number of nodes in the network increasing,
the total number of messages generated in the whole FRING
network increases linearly. Also, the difference between FRING
and Gossip is enlarging as the number of nodes increases.

Fig. 7b shows that when the number of nodes is fixed, the
average number of messages FRING generates to broadcast
a message is around half of the Gossip generates. With the
broadcast operation rate increasing, Gossip generates more
messages to deal with packet loss due to traffic congestion. This
inherent redundancy in turn leads to cascading accumulated
on-flight messages. However, the fast convergence of FRING
makes traffic congestion harder to happen. Consequently, the
advantage of FRING is increasing with the broadcast operation
rate growing.

8.5 Time Complexity (Latency)
In this section, we show that although the time complexities
of FRING and Gossip are both logarithm, yet the average time
used by FRING to broadcast a message is still far lower than
Gossip. The reason is that Gossip does not take geographical lo-
cality into consideration. In addition, under different conditions
of convergence (1/2, 2/3, 5/6, 95%), it takes Gossip signifi-
cantly more time to converge. Since Gossip is non-deterministic,
it has a long ”tail” to cover all nodes in the network.

Fig. 6a and Fig. 6b show that the average convergence time
of FRING is six to ten times shorter than Gossip when the
number of nodes is 6k. Fig. 6c shows that both Gossip and
FRING are scalable with respect to the number of nodes in the
network. However, FRING has a lower average convergence
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TABLE 3: Broadcast hop analysis for Gossip and FRING.
Hop Type FRING Gossip
0∼40 ms (Within District) 75.49% (4194) 29.50% (3026)
40∼80 ms (Between District) 19.94% (1108) 26.10% (2677)
80∼120 ms (Between City) 4.250% (236) 18.07% (1853)
120∼160 ms (Between State) 0.289% (16) 15.30% (1569)
160∼200 ms (Between Country) 0.054% (3) 11.03% (1131)
Total # of Hops 5557 10256
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Fig. 8: Fault tolerance comparison between FRING and Gossip.
FRING is sufficient for all blockchain systems.

time to broadcast a message compared with Gossip. In addition,
the more nodes there are in the network and the higher the
cover ratio is, the larger the advantage is. To conclude, FRING
has a lower convergence time than Gossip.

To understand why FRING reduces convergence time so
much, we counted the number of each type of hops (Table 3) for
broadcasting a message on both FRING and Gossip (with 4000
nodes and 200 tps). In FRING, most hops are those with low
latency. The higher the latency of the hop is, the less likely it
is chosen to be one of the broadcast paths. However in Gossip,
since geographical locality is not considered, more hops with
high latency are incurred.

8.6 Fault Tolerance

We evaluated the fault-tolerance of Gossip and FRING in the
AWS cloud as well. To simulate the node failure, we send a
signal to a randomly selected subset of nodes so that they do
not respond to broadcast requests. Then we perform broadcast
in the network and collect the logs for statistics.

Figure 8 shows that FRING has sufficient fault tolerance as
the underlying P2P network of all blockchain systems except
Ripple [52] whose consensus protocol requires at least 4/5
node reachability. The tolerance of node failure of well-known
blockchain consensus protocols are listed in Table 2. The most
common requirements are to reach at least 1/2 (e.g. Ethereum,
PeerCoin, EOS) and 2/3 (e.g. HLF, Tendermint) living nodes,
demonstrated in Fig. 8 as the red line and green line respec-
tively. Above such requirements, Fig. 8 shows that FRING
can reach nearly the same percentage of nodes as Gossip.
Specifically, the intersections of the curves of FRING and Gossip
with the red line are close to each other, which means that the
percentage of failed nodes that FRING can tolerate to satisfy the
requirement is not much lower than Gossip.

Below those requirements, although the FRING deteriorates
faster than Gossip, maintaining the fault tolerance of broadcast
is already meaningless since the consensus protocol that we
are supporting has failed already. An interesting point is that,
when the node failure rate is more than 70%, the reachability
of both Gossip and FRING is nearly the same. It’s because
the network graph is already broken into several sub-graphs.
Low connectivity leads to poor performance for both broadcast

TABLE 4: Receive-Packet Analysis of Node in FRING
Node Type ∼ 17KB ∼ 200B < 150B

Normal node in one term 33.10% 58.60% 5.90%
Representative node in one term 34.00% 61.20% 4.50%
Node at all time 33.70% 60.90% 4.60%

TABLE 5: Send-Packet Analysis of Node in FRING
Node Type ∼ 17KB ∼ 200B < 150B

Normal node in one term 35.50% 58.60% 5.60%
Representative node in one term 34.40% 59.20% 4.70%
Node at all time 34.60% 59.10% 5.10%

approaches. However, a 20% node failure is already an extreme
case for a normal functioning application. Previous work [91]
shows that 15% high packet loss rate already significantly
downgrades the quality of most Internet applications. Since
node failures potentially cause the loss of a large number of
small packets, the impact of 20 % node failure is considered
even worse than the same percentage of packet loss in previous
work [92]. Even under tough node failure scenarios (more than
20% node failures), FRING still maintained a similar high node
reachability rate as Gossip, which is sufficient for both EOS and
HLF’s consensus protocols.

8.7 Security
We use WireShark [93], [94] to watch the packet being sent
out from a node and received by the node. We count three
types of packets: around 17 KB, around 200 bytes, and less
than 150 bytes, since they represent three types of messages
correspondingly, i.e., the block, the transaction, and other mes-
sages including control messages or membership messages. We
found that during one service term of a representative node,
representative nodes of a ring cannot be differentiated from the
normal nodes.

By watching and recording for a long time, the overall
packet analysis statistics show that all nodes have the same
percentages of sent and received three types of messages (See
Table 5 and Table 4). Therefore, due to the short service term
of representative nodes and the similar percentages of all types
of messages, their traffic patterns are indistinguishable (E.g. in
Table 4, the packets sent from a normal node in one term, a
representative node in one term, and any node at all time are
33.1%, 34.0%, and 33.7% respectively.). Thus it is hard for an
outsider of the system to differentiate representative nodes from
normal nodes.

9 DISCUSSION

9.1 Threats to Validity
Threats to validity for the proposed approach and experiments
are discussed in this section which include internal validity,
external validity, and construct validity [95]. Threats to the in-
ternal validity concern about the internal factors of our research
experiment design. As the code base for any blockchain system
is highly coupled and monolithic (e.g., the overlay networking
module/layer is associated with serialization and encryption
that incur unclear overhead), we implemented our own version
of Gossip network (see §8.2) and use it to compare with FRING.
Although it is verified that our version of Gossip network
is statistically the same as the one implemented as part of
Ethereum in terms of both message and time complexity, it is
not theoretically proved. Other than that, we make sure that the
only difference in the experiments is caused by the substitution
of the overlay network to fairly compare FRING with the other
baseline approaches. External validity is concerned with the
generalization of the results. In our experiments, we evaluated
the end-to-end performance of two representative blockchain
systems, EOS and HLF, without implementing and running
all the other blockchain systems. We admit that the replicated
study is needed for generalization. However, we believe FRING
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is a general solution for all blockchain systems since they are all
based on the layered structure as mentioned in Fig. 2. On the
other hand, to generalize the evaluation results (§8.4, §8.5) using
Ethereum’s typical workload, we characterize the same experi-
ments by sweeping over the block size up to 1 MB (block size
limit) and found similar results. However, Ethereum’s work-
load could be random and bursty, which is a potential threats
to generalization. Construct validity is the other main threat re-
lated to the software engineering experimentation work which
is the relationship between theory and observations [95]. In the
context of this research, all performance-wise measurements
such as latency and throughput are measured based on the
output from the running FRING program (where we inserted
the code to print the timestamps of each event). We cannot ig-
nore that there could be time drift in asynchronous distributed
systems. The total message measurements are counted from the
message sender side to include lost messages as well.

9.2 Limitations
Maintainability. Although FRING is a self-managed overlay
network, network structure management is still required and
additional messages are needed compared to the Gossip net-
work where neighbor selection and node selection for relaying
the message can be simple and random. Besides, the pattern
obfuscation and representative node rotation techniques pro-
posed to improve the robustness of FRING also introduce more
management overhead. However, both theoretical analysis and
empirical experiments show that the overall message overhead
of FRING is still less than Gossip. Hence we argue that the ben-
efits of FRING’s structured topology overbear the compromised
maintainability problem compared to Gossip.

Deployment Feasibility. FRING can be adopted in general
blockchain systems by replacing their network layers but a
joining node is required to have an SGX device. We deem
this requirement reasonable because SGX is available on com-
modity hardware, and both academia and industry are actively
improving the security of SGX. Recent public blockchains [96]
and permissioned blockchains [4], [68], [97], [98], also use SGX.
Apart from Intel SGX, AMD has its Secure Virtual Machine
(SVM) architecture [68] and memory region encryption tech-
nology [69]; ARM has the TrustZone technique [70], which all
provide similar protection. In addition, FRING targets large-
scale, geo-distributed blockchain systems like a global payment
system [99]), while for small-scale deployments in a single
data center, existing overlay networks could be equally suitable
without the maintainability overhead.

Experiment Limitations. Large-scale experiments are done
in AWS datacenters at one region by simulating the per-hop
network latency variations based on the abstract distance be-
tween every two nodes. Realistic network simulation is known
to be a hard problem and we leave the actual deployment of a
FRING network to the future work.

10 CONCLUSION
This paper presented FRING, the first geography-based P2P
overlay network that achieves fast and robust broadcast for
blockchain systems. By trading off excessive robustness, FRING
improves the throughput of blockchain systems by increasing
broadcast message efficiency and convergence time. Evaluation
and analysis show that FRING is efficient, sufficiently robust,
and secure. Overall, FRING increases the overall throughput
of EOS and HLF by up to 2.2× and 2.1× respectively. An
implementation of FRING is open-sourced at https://github.
com/tsc19/fring.
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