
SmartOClock: Workload- and Risk-Aware
Overclocking in the Cloud

Jovan Stojkovic, Pulkit Misra, Íñigo Goiri, Sam Whitlock, Esha Choukse,
Mayukh Das, Chetan Bansal, Jason Lee, Zoey Sun, Haoran Qiu,

Reed Zimmermann, Savyasachi Samal, Brijesh Warrier, Ashish Raniwala, Ricardo Bianchini

Microsoft

Abstract—Operating server components beyond their voltage
and power design limits (i.e., overclocking) enables improving
performance and lowering cost for cloud workloads. However,
overclocking can significantly degrade component lifetime, in-
crease power consumption, and cause power capping events,
eventually diminishing the performance benefits.

In this paper, we characterize the impact of overclocking
on cloud workloads by studying their profiles from production
deployments. Based on the characterization insights, we propose
SmartOClock, the first distributed overclocking management
platform specifically designed for cloud environments. SmartO-
Clock is a workload-aware scheme that relies on power predic-
tions to heterogeneously distribute the power budgets across its
servers based on their needs and then enforce budget compliance
locally, per-server, in a decentralized manner.

SmartOClock reduces the tail latency by 9%, application cost
by 30% and total energy consumption by 10% for latency-
sensitive microservices on a 36-server deployment. Simulation
analysis using production traces show that SmartOClock reduces
the number of power capping events by up to 95% while
increasing the overclocking success rate by up to 62%. We also
describe lessons from building a first-of-its-kind overclockable
cluster at a cloud provider for production experiments.

I. INTRODUCTION

Motivation. Cloud services provision resources to meet their
peak performance requirements [21], [25], [39], [62], [81].
For example, many services need to keep their high-percentile
latency (e.g., P99) below a predetermined Service-Level Ob-
jective (SLO) [24]. These services incur high operating costs to
reserve enough resources for handling infrequent load spikes
and leave a substantial portion underutilized or even idle for
the majority of time when their load is below its peak.

As an example, Figure 1 illustrates the aggregate load
pattern on a typical weekday of three services that are part
of a communication and collaboration workload operated by
a first-party customer of a major cloud provider. Collectively,
these services use ∼1M virtual cores (across regions) to handle
peaks that last for a few hours per day - between 10 am to
noon for Service A and 5 minutes at the top and bottom of the
hour for the other two services.

Emerging cloud paradigms, such as autoscaling [6], [35],
[72] and serverless computing [4], [34], [45], [70], can be
used to dynamically remove and add Virtual Machine (VM)
instances for managing cost. However, these solutions (1) can

Fig. 1: Load pattern on a typical weekday in one region.
Utilization normalized to the peak of each service.

increase the application’s tail latency as booting up a new
VM can take up to a few minutes [1], and (2) cannot be
easily applied for stateful services [46], [69]. Hence, many
applications still statically provision for infrequent load spikes.

On the other hand, recent advances in processing and
datacenter cooling technologies have enabled component (e.g.,
CPU, GPU) overclocking, i.e., operation beyond typical volt-
age and power design limits [51]. Overclocking boosts a
workload’s performance and, thus, provides an opportunity to
handle transient load spikes in a cost-efficient manner. For
example, overclocking the CPU during a service’s peak time
can keep the tail latency below the required SLO and save
cost by reducing provisioned resources.

However, overclocking is not free. If used naively, it in-
creases power consumption and can cause frequent power
capping events that diminish the performance benefits. Worse,
overclocking impacts component lifetime by increasing wear-
out and, thus, cannot be used indefinitely. The limited amount
of overclocking needs to be used smartly as it may not
benefit all workloads at all times: (1) overclocking the CPU
of a memory-bound workload, or (2) overclocking a workload
while experiencing a low load, will not provide much benefit.

Finally, providers need to protect workload SLOs when
overclocking is unavailable. For example, a workload might
have under-provisioned due to reliance on overclocking, but
it would miss its SLOs under peak load if its VMs cannot
be overclocked. Therefore, providers must use overclocking
carefully while managing the associated risks.

Our work. For efficient use of overclocking in the cloud, we
analyze cloud workloads and production traces, including the
three services from Figure 1. We observe the following. First,

1



overclocking improves the performance of popular cloud ap-
plications. However, a workload-agnostic overclocking scheme
is suboptimal and often leads to missed SLOs or wasted
overclocking cycles. Second, power and lifetime headroom
exists to overclock most of the times without triggering power
capping or compromising on reliability. Third, resource utiliza-
tion history can be used to predict the availability of power
and lifetime impact from overclocking. Fourth, servers’ power
draw within a power delivery unit (e.g., a rack) is diverse,
but the limit is still evenly distributed which disproportion-
ately hurts the performance of power-hungry servers during a
capping event. However, predictability in power consumption
enables assigning heterogeneous power limits. Finally, a de-
centralized approach for local power draw enforcement during
overclocking enables servers to find an efficient limit in case
of initial assignment mispredictions.

We use the characterization insights to design SmartOClock,
the first distributed overclocking management platform for the
cloud. It enables a wide variety of cloud workloads to run with
high performance at a lower cost. SmartOClock achieves its
goals by introducing four novel design principles.

First, SmartOClock uses bidirectional communication be-
tween the application and the overclocking system to maxi-
mize an application’s benefits from overclocking. Applications
can use metrics (e.g., latency, CPU utilization) or schedule-
based policies to trigger overclocking, and the decisions can
be made based on instance- and deployment-level monitoring.
Second, it uses admission control to reserve power (from the
available headroom) and overclocking budget for workloads.
This step provides a predictable overclocking experience for
workloads because SmartOClock can take corrective actions,
such as scale-out, if it is unable to honor a reservation (e.g.,
due to a change in available power for overclocking). Third,
it leverages the predictability in power draw for assigning
heterogeneous power budgets to servers. Heterogeneous as-
signments provide better performance while overclocking for
power-hungry servers, without compromising on power safety.
Finally, SmartOClock makes decentralized overclocking de-
cisions for improved fault tolerance. Each server can make
local decisions for granting overclocking requests based on
assigned power and overclocking budgets. A server can also
perform explorations to revise inefficient assignments (e.g.,
due to incorrect or stale predictions).

We evaluate SmartOClock on a real server cluster and
through simulations by using production traces. The cluster
evaluation is performed on 36 overclockable servers (across
2-racks) running latency-sensitive microservices as candidates
for overclocking and throughput-optimized power hungry
machine learning (ML) training workloads, which are not
overclocked. Our results show that SmartOClock reduces the
P99 tail latency by 8.9% and application cost by 30.4% for
latency-sensitive microservices, and total cluster energy con-
sumption by 10% over state-of-the-art autoscaling solution. To
validate our findings at scale, we use traces from hundreds of
production racks and simulate SmartOClock. When compared
to all practical policies, SmartOClock reduces the number

of power capping events by up to 94.7% while increasing
the overclocking success rate by up to 61.8%. We have
also created a 2-rack overclockable cluster for production
experimentation and share some lessons in Section VI.

Related work. There is a rich body of work on using
CPU turbo-boost [16], [18], [30], [55], [74], [79], [100] and
datacenter power management [37], [57], [59], [80], [84], [93],
[96]. However, overclocking introduces unique challenges not
addressed by prior work. First, CPU vendors design turbo
to meet a cloud provider’s performance and lifetime require-
ments. Cloud CPUs operate in performance mode [7], [36],
[71], which makes cores always run at the highest turbo
frequency within constraints (e.g., power, thermal) [18], [82].
CPU vendors do not specify any timing limitations nor advise
software-level wear leveling under their warranty terms for
turbo [8], [47], and non-judicious use of turbo does not impact
CPU reliability based on a recent study [76]. Generally, CPU
failure is amongst the lowest types of failure in datacenter
servers [65], [90]. Consequently, a provider, currently, does
not need to manage reliability. Second, the oversubscription
policies factor the higher power demand from turbo. Although
this approach increases the total cost of ownership (TCO), it
is necessary to meet the performance Service-Level Agree-
ments (SLAs) with the customers [7], [36], [71]. In contrast,
overclocking (beyond turbo) further improves performance but
has a reliability impact not covered at design time by CPU
vendors. Furthermore, a provider does not provision power for
overclocking since turbo is sufficient to meet its performance
SLAs. Therefore, overclocking is completely opportunistic -
a provider needs to manage the power and reliability impact,
while protecting workload SLOs when overclocking is unavail-
able; a problem setting not explored by prior work.

Summary. We make the following main contributions:
• We characterize the opportunities and challenges of over-

clocking cloud workloads, including the impact on power
and component lifetime.

• We propose SmartOClock, a distributed overclocking man-
agement platform specifically designed for the cloud.

• We evaluate SmartOClock in a real system running latency-
critical workloads, and using large-scale production traces.

• We share lessons from overclocking production workloads.

II. BACKGROUND

Power management in cloud datacenters. The power de-
livery system in a cloud datacenter is organized in a hierar-
chy [57], [84], [93], [96]; the power budget of each parent node
is split equally among its children. As providers oversubscribe
power to improve datacenter utilization, the sum of the peak
power draw of children nodes can exceed the budget of the
parent (e.g., servers in a rack) [57], [84], [93]. Under normal
operation, child nodes can draw more than their even share
if the cumulative power is below the limit of the parent.
When it exceeds a threshold, power capping mechanisms
(e.g., Intel RAPL [22], prioritized capping [57], [59]) are
used for safety. These mechanisms hurt performance as they

2



reduce CPU frequency and can even throttle memory to restrict
server power draw. To meet their performance SLAs, providers
carefully oversubscribe to minimize/avoid capping events.

Component overclocking. Prior work shows the feasibility
of overclocking in the cloud [51]. Overclocking operates
components (e.g., CPUs, GPUs) beyond their specifications
to get frequencies even higher than turbo [10], [50].

A large fraction of cloud workloads, such as search or
video conferencing [21], [88], are user-facing applications with
transient load spikes. These workloads collectively consume
millions of virtual cores to handle peak load. For the commu-
nication and collaboration workload at the provider, although
chat and conference calls occur throughout the day, the peak
(maximum simultaneous calls) that governs resource provi-
sioning lasts for a few hours each day (Figure 1). Overclocking
can be used during these peaks to save costs. However, a
provider needs to manage the risks from overclocking. For
example, for reliability management, the peak duration needs
to be within the daily overclocking budget (e.g., 10% per day)
that satisfies a provider’s server lifetime goals. Overclocking
impacts reliability [3] due to three main reasons: (1) gate oxide
breakdown, (2) electro-migration, and (3) thermal cycling.
These processes are time-dependent and accelerate the lifetime
reduction. Prior work has showed that there is an exponential
relationship between temperature, voltage, and component
lifetime [27], [51], [66], [92], [95].

III. CHALLENGES AND OPPORTUNITIES

A successful overclocking management scheme needs to
(1) satisfy application overclocking requirements, (2) use the
available power efficiently, and (3) manage the impact of
overclocking on component lifetime. To design such a scheme,
we answer the following questions.

Q1: When do workloads benefit from overclocking? To effi-
ciently use overclocking, a cloud platform needs to understand
the applications’ needs and behavior. Treating VMs as opaque
and using workload performance proxies (e.g., instructions
per cycle (IPC) or CPU utilization) for overclocking decision-
making can be suboptimal as the relationship between proxies
and target performance metric is not always clear. Without
knowing a workload’s performance goals, the platform may
overclock prematurely (i.e., when the load is low and the tail
performance is not impacted) and, due to the lifetime impact,
lose the ability to overclock later when the tail is impacted.
Combining IPC sensitivity with CPU utilization as a proxy for
load can be inefficient too because the performance of some
workloads can be impacted at a moderate CPU utilization
while others may show no impact even under high utilization.
Finally, operators can even have deployment-level goals for
resource provisioning (number of VMs) and overclocking
based on instance-level monitoring only will be inefficient.

To illustrate these scenarios, we profile two classes of
popular cloud workloads: (1) microservices from the largest
open-source benchmark suite, DeathStarBench [32], and (2) a
proprietary web conferencing application called WebConf.

0 5
0

10
20
30
40

Ta
il 

[m
s]

Baseline Overclock ScaleOut

0 5
0

10
20
30
40

Ta
il 

[m
s]

Usr SGraph Text UsrMnt UrlShort PstStr CPost HomeT0
10
20
30
40

Ta
il 

[m
s]

Low Load
M

edium
 Load

High Load

Fig. 2: Tail latency of SocialNet microservices with different
loads in Baseline, Overclock, and ScaleOut environments.

0

15

30

45

60

C
PU

 [
%

] Baseline Overclock ScaleOut

0

15

30

45

60

C
PU

 [
%

]

Usr SGraph Text UsrMnt UrlShort PstStr CPost HomeT
0

15

30

45

60

C
PU

 [
%

]

Lo
w

 Lo
a
d

M
e
d
iu

m
 Lo

a
d

H
ig

h
Lo

a
d

Fig. 3: CPU utilization of SocialNet microservices with differ-
ent loads in Baseline, Overclock, and ScaleOut environments.

Microservices. We run eight SocialNet microservices [32]
under varying loads (low, medium, and high) in three envi-
ronments: Baseline, Overclock, and ScaleOut. Baseline and
Overclock run a single VM at turbo (3.3 GHz) and overclocked
(4.0 GHz) frequency. ScaleOut has two VMs running at turbo.
Figure 2 shows the tail latency of the microservices. The
red horizontal line indicates SLO, where the SLO for each
service is set to be 5 times its execution time on an unloaded
system [26], [60], [73]. Figure 3 shows their CPU utilization.

ScaleOut is provisioned to handle the peak load, like many
services at the provider, and always operates 2 VMs that
run at turbo. It achieves the best performance, but has the
highest cost. On the other hand, Overclock works with a
single server and can still keep the tail latency below the
SLO in many cases, thereby avoiding the need to scale out.
However, some services (e.g., Usr) can tolerate higher CPU
utilization without violating their SLO while other services
(e.g., UrlShort) violate their SLO even under low CPU uti-
lization. Therefore, a workload-agnostic policy that uses CPU
utilization for overclocking will make suboptimal decisions.
These observations hold for any cloud workload with similar
characteristics: bursty load with tail latency as the key metric.
For example, ML inference servers [60], [97], serverless
computing [86], and key-value stores [61] amongst others.

WebConf. The application hosts conferences in a VM. For
fault-tolerance, operators provision VMs across availability
zones (AZ) in a region. In an AZ, provisioning keeps the
average deployment-level CPU utilization below 50% to handle

3



0 10 20 30 40 50
Time [s]

0

25

50

75

100

C
PU

 U
ti
l [

%
]

VM
VM -OC

VM
VM -OC

Avg
Avg-OC

Target

Fig. 4: CPU utilization timeline with and without overclocking
for two WebConf VMs.

10 20 30 40 50 60 70 80 90 100
Power Utilization [%]

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Avg
P50
P99

Fig. 5: Average, median (P50), and peak (P99) power utiliza-
tion of 7,100 racks over 6 weeks in three regions.

load from another failed AZ. Overclocking can save cost for
WebConf through deployment-level decisions. Individual VMs
can have high utilization, but overclocking them is suboptimal
since the deployment-level utilization may be below the target.

To illustrate, we execute WebConf on two VMs. VM1

has low load (10% CPU utilization), while VM2 has high
(80%). Figure 4 shows VM and deployment-level average CPU
utilization. Overclocking provides benefit, but is unnecessary
since the baseline already meets the application-level goal.

Q2: Are there enough resources for overclocking? Since
overclocking increases power consumption and component
wear out, we need headroom for these resources.

Power headroom. We analyze the power consumption of a
major first-party customer of the provider running distinct
power-hungry services (>100), including those from Figure 1,
across 7.1k dedicated racks. The racks span all major regions
(e.g., United States, Europe, Asia) and each rack has 24-32
servers. The analysis period is 6 weeks (April 10th – May
12th, 2023). Figure 5 shows the CDF of average, median
(P50), and P99 rack power utilization. Half the racks have an
average utilization lower than 66%. Importantly, 50% and 90%
of the racks have P99 lower than 73% and 89%, respectively.
We observe similar power patterns on non-dedicated racks at
the provider with a mix of first- and third-party workloads.

However, naively overclocking the racks’ servers can cause
power capping events. To estimate the power impact from
overclocking, we use the overclocking requirements of critical
user-facing workloads which represent 45% of deployed cores
by the first-party customer. The requirements vary – some
require overclocking for several minutes per hour, while others
for multiple contiguous hours during a weekday. Figure 6
shows the power consumption of a rack with and without
overclocking for the week of April 24th, 2023; the red line

Mon-9am Tue-9am Wed-9am Thu-9am Fri-9am0.7

0.8

0.9

1.0

No
rm

 R
ac

k 
Po

we
r Baseline Overclock Limit

Fig. 6: Example of rack power consumption over 5 weekdays

shows the rack power limit. Each server hosts VMs of many
distinct services and captures a typical datacenter environment
with multi-tenant servers. The rack power draw is below the
limit in the baseline case, but overclocking exceeds the limit
and causes capping. More generally, overclocking the selected
workloads will result in no power capping events for 85% of
the time. For the remaining 15%, naive overclocking results
in power capping events that cause 30-50% degradation in
performance (core frequency) for workloads. There is still
headroom available on these power-constrained racks, but it is
insufficient to overclock to the highest frequency; the available
headroom is 75% of the requisite at the 99th percentile.

Therefore, most of the time (85%) racks have the needed
power headroom to support overclocking. However, a power-
aware policy is needed for constrained scenarios.

These findings are with the default VM scheduler that uses a
set of resource-centric rules for placement [40], [89]. Providers
can add power-aware scheduling policies to aid overclocking,
but this exploration is future work. Nonetheless, even with
optimized placement, there will still be power-constrained
scenarios where overclocking has to be performed carefully.

Component lifetime headroom. Prior work shows that ad-
vanced cooling (e.g., wax, immersion) is needed for en-
abling sprinting/overclocking [30], [78], [79] and not de-
grading expected lifetime [51]. However, there is opportunity
to overclock even in air-cooled server deployments. Cloud
server cooling is designed for operating components at their
rated thermal design power (TDP). However, servers rarely
consume their TDP due to low resource utilization in the
cloud [21]. Several factors contribute to the low utilization.
First, over-provisioning and diurnal workload patterns result
in low VM utilization. Second, workload heterogeneity on
servers results in low server utilization. Each server hosts
many small VMs (2-8 cores). For resiliency, operators spread
their VMs across servers and racks. Consequently, the VMs
on any given server belong to different workloads. This
heterogeneity results in low server utilization as the workloads
have different peak times. Consequently, components are not
thermally constrained for overclocking. However, advanced
cooling can be used to enhance the capability (e.g., duration)
as lower operating temperatures reduce ageing [51]. Finally,
since overclocking does not exceed TDP nor the rack limit, it
will not cause additional cooling-related failures.

In fact, under-utilization enables overclocking in air. Ven-
dors assume near-100% usage for determining frequencies/-
voltage (e.g., turbo) that satisfy the lifetime goals. Under-

4



0 1 2 3 4 5
Time (days)

0

20

40

60

80
C
PU

 u
ti
liz

a
ti
o
n
 (

%
)

VM
P75

Non-overclocked
Expected ageing

Always overclocked 
Overclock-aware

0

3

6

9

12

Life
tim

e
 co

n
su

m
e
d
 (d

a
ys)

Fig. 7: CPU ageing for a VM running a workload with a
diurnal pattern under multiple overclocking policies.

utilization accumulates lifetime credits that can be consumed
via overclocking. To understand the overclocking opportunity,
we use a 7nm composite processor model from TSMC. The
model faithfully represents CPU transistor logic and is used
for design and compliance with reliability goals. It uses a
complex relation between overclocking (voltage scaling), CPU
utilization (time period for which cores run at the specified
voltage), and aging from wear-out in the form of gate oxide
failure [23], [58]. It predicts that a CPU ages by 2.5 years
over a 5-year period for a conservative fleet usage. The
remaining 2.5 years can be used for overclocking. But naively
overclocking for 50% of the time ages the CPU by 5 years in
less than a year use due to accelerated wearout. A smart system
can constrain overclocking so that the part ages according to
the reference (i.e., 1 year ageing over a 1-year period).

Figure 7 illustrates the effect of overclocking policies. It
shows the 5-day CPU utilization of a production workload
with a diurnal pattern of daily midday peaks above 50%
and valleys lower than 20% at night. The expectation is that
the processor ages 5 days over the same period (“Expected
ageing”). However, the actual ageing is less than 2-days
for the “Non-overclocked” baseline. “Always overclock” ages
the CPU over 10 days, indicating that, for the same CPU
utilization, overclocking significantly increases wearout. On
the other hand, an “Overclock-aware” policy can consume the
accumulated credits by overclocking for 25% of the time and
not exceed the expected ageing. Offline modeling assumes
CPU utilization is unchanged while overclocking for worst-
case analysis. However, overclocking’s ageing impact will be
less if the utilization reduces. To address this limitation, we are
working with CPU vendors on “wearout counters” for online
calculation of the ageing impact (see §VI).

Therefore, overclocking is enabled due to under-utilization
and can be improved with advanced cooling. A system must
carefully manage overclocking to comply with lifetime goals.
Q3: Can we predict the availability of resources? An
efficient overclocking system must perform admission control
based on available power and lifetime. We observe that a
prediction-based approach can yield high accuracy.
Power predictability. A system needs to predict how much
power can be used by overclocking without triggering capping.
Figure 6 shows the baseline power consumption of a rack and
gives us insights that historical observations of power profiles
can be leveraged for prediction. The rack hosts multiple

0 2 4 6 8 10
Per-Rack RMSE

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Region 1
Region 2
Region 3
Region-4

Fig. 8: CDF of RMSE with the power consumption patterns
of our predictions across 7.1k racks in four regions.

services, where each service can have a distinct power profile.
However, due to statistical multiplexing, the combined power
consumption of the rack with heterogeneous services shows
a repeatable pattern. We analyzed the power predictability of
7.1K racks and thousands of servers in these racks that collec-
tively run >100 services. Although the racks are dedicated for
a first-party customer, this dataset accounts the fact that racks
and servers on a public cloud host heterogeneous workloads.
Furthermore, the dynamicity of cloud platforms (e.g., VM
churn according to a workload’s needs) is also reflected.

Figure 8 shows the CDF of Root Mean Squared Error
(RMSE) of rack power predictions in four regions of the
provider. The RMSE is low even at high percentiles indicating
high predictability across thousands of racks. For example, in
Region 3, 50% and 99% of the racks have an RMSE lower than
1.95W and 5.11W, respectively. The findings are similar in the
other regions. Furthermore, an analysis of 20K non-dedicated
racks in the three most popular regions of the provider yielded
similar results; these racks run a mix of first- and third-party
workloads. A major reason for rack power predictability is
long-lived VMs that govern resource utilization. Prior work
shows that long-lived VMs (or jobs) account for >95% of
allocated resources [21], [81], [85].

Component lifetime impact predictability. To remain within
the overclocking lifetime budget, an overclocking management
system needs to predict how much overclocked CPU cycles
a given workload will consume. As a server’s power draw
depends on CPU utilization, predictability in power draw
indicates predictability in CPU utilization. Using the afore-
mentioned methodology for a rack’s power, our analysis shows
that power consumption and CPU utilization of servers are also
predictable: more than 50% and 90% of the servers have an
RMSE lower than 3.13W and 7.82W, respectively.

Therefore, historical observations of power draw and CPU
utilization can be used to predict the available power and
component lifetime headroom for overclocking.

Q4: How to assign power budgets? A server’s power budget
for “safe” overclocking depends on the power consumption
of the other servers in the hierarchy (e.g., a rack). Under fair
share, the rack power budget is split equally across all servers
and each server can locally ensure that its power draw stays
below the limit to avoid capping while overclocking. However,
this approach is inefficient since some servers may not be able
to overclock even while the rack is not power-constrained.

5



Mon-9am Tue-9am Wed-9am Thu-9am Fri-9am
0.6
0.7
0.8
0.9
1.0

No
rm

. P
ow

er
ServerA ServerB ServerC ServerD ServerE ServerF

Fig. 9: Normalized power consumption over time of six
randomly chosen servers within the same rack.

Figure 9 shows the normalized power consumption over
time during the week of April 24th, 2023, for six randomly
chosen servers in a rack. Each server is a different color. We
can see that servers have very different power consumption
profiles. Some servers may use even 30% less power than
others. In addition, servers that consume the most power in a
rack change over time. For example, at different timestamps,
ServerC, ServerD, or ServerF may be the power dominant one.

Therefore, an efficient overclocking system needs to split
the rack power budget heterogeneously across servers. His-
torical observations of server power demand and rack-level
headroom can be used for the heterogeneous attribution.

Q5: How to efficiently use the power? The power headroom
for overclocking in a rack is consumed by all servers in
that rack. Thus, to grant or reject an overclocking request,
each server should contact a centralized entity that has the
global view of the rack’s total remaining power headroom.
Unfortunately, this approach is expensive and limits the sys-
tem’s fault-tolerance – if the centralized entity fails, then
all overclocking requests would be rejected. Making local
overclocking decisions using assigned server power budgets
improves fault tolerance. However, overclocking requests may
still be rejected due to inefficient assignments. For example,
a scheme that uses power predictions for budget assignments
can be suboptimal due to mispredictions.

Therefore, a high-performance and fault-tolerant overclock-
ing system needs to be decentralized and should allow servers
to explore beyond their potentially stale power limits.

IV. SMARTOCLOCK

Driven by the characterization insights, we propose Smar-
tOClock: a distributed overclocking management platform for
the cloud. It is readily integrated with existing platforms and
enables a wide variety of workloads to run with high perfor-
mance at lower cost. SmartOClock responds to the outlined
questions for an efficient overclocking scheme through four
novel features. First, it is workload-intelligent as it uses hints
provided by workloads to extract the most benefits from over-
clocking. Second, SmartOClock performs prediction-based
admission control of overclocking requests to avoid power
capping and premature component wearout. Third, it uses
predictions to split the rack power limit heterogeneously across
servers. Finally, SmartOClock uses a decentralized scheme for
budget enforcement while overclocking and allows controlled
exploration to revise inefficient assignments.

Server Power Agent

VM Serv A

WI Monitor

WI Agent 
Service A

WI Agent 
Service B

Server-1

Rack 1 Rack Power 
Agent

VM Serv A

WI Monitor

Server Power Agent

VM Serv A

WI Monitor

Server-2

VM Serv B

WI Monitor

Rack N

Service A Setting Service B Setting

Server Overclocking Agent

Server-1

Rack 1

Rack N

VM 1A

Local WI Agent … …
VM 2A

Local WI Agent

Server Overclocking Agent

Server-2

VM 3A

Local WI Agent …
VM 1B

Local WI Agent

Global Workload Intelligence Agent

Rack 1Global Overclocking Agent Rack 2 … Rack N

Fig. 10: Overview of the SmartOClock overclocking system.

Architecture. Figure 10 shows the architecture of SmartO-
Clock. The system is organized hierarchically where each con-
troller manages the components on its level and communicates
with the controllers from the upper and lower levels. First,
when deploying their services, the workload owners configure
the Global Workload Intelligence Agent for their service. They
specify the conditions under which the workload needs to be
overclocked. As workloads are composed of one or more VMs,
each VM is deployed with its own Local Workload Intelligence
Agent. Like conventional auto-scaling, the local agent collects
the metrics of interest from the VM and sends them to the
service’s global agent. Thus, this setup does not introduce new
security or privacy challenges. The global agent decides if any
VM needs to be overclocked using the metrics aggregated
at a service-level and sends signals to the local agents of
such VMs. On receiving a signal, a local agent sends an
overclocking request to the Server Overclocking Agent (sOA).
The request can be submitted via a local interface, such as a
hypervisor-specific shared memory implementation [68], [83],
[94] or locally-terminated network endpoint [5], [33], [67].
The sOA predicts if there are enough resources to satisfy the
request. Based on the prediction, the sOA grants or rejects the
request. If the request is rejected, the local agents inform the
global agent which takes the corrective actions (e.g., request
scaling-out or redistribute the load towards the overclocked
VMs). In the background, each sOA monitors the power and
overclocking needs, and creates the server’s profile to be
periodically sent to the Global Overclocking Agent (gOA). The
gOA uses the profiles to split its power budget into efficient
per-server budgets. The sOA uses the assigned budget for the
admission control until the budget gets updated.

A. Workload-Aware Overclocking

Overview. SmartOClock extends the existing autoscaling in-
terface with overclocking. A workload specifies the scale-up
(start) and scale-down (stop) thresholds for overclocking. The
overclocking hints can be inserted by developers after profiling
or they can be automated using the existing tools for automatic
instance scaling [11], [31], [64], [87], [98]. Like conventional
autoscaling, the overclocking thresholds can be: metrics-based
or schedule-based. Under metrics-based overclocking, work-
loads can use application metrics (e.g., tail latency, queue
length) or resource utilization (e.g., CPU, network) to trigger

6



overclocking. The granularity of application hints can be per-
function in the case of tail latency or per-VM in the case
of resource utilization. These metrics can then be monitored
per- and across-VM instances for specified time intervals to
meet an application’s goals. Additionally, workloads that have
predictable times for high traffic (e.g., 9-10 AM local time) can
use schedule-based thresholds. Finally, workloads can also use
a combination of metrics- and schedule-based. Importantly,
extending the autoscaling interface for overclocking enables
using scaling out (creating new VMs) as a fallback mech-
anisms for when overclocking is not possible. The scale-out
signal can also be triggered proactively by SmartOClock using
predictions for the ability to overclock (see Section IV-D).

Adopting WI by cloud users. Although workload owners
already carefully tune the metrics and thresholds for horizontal
scaling, there is overhead in repeating the process for vertical
scaling (overclocking). To ease adoption, SmartOClock can be
extended to infer the overclocking thresholds. It can leverage
workload historical data to determine scale-up values. The
lifetime impact of overclocking can be factored in this analy-
sis. For example, use P90 of historical value if overclocking
can be performed for 10% of the time only to comply with
lifetime goals. The overclocking impact needs to be estimated
to determine the scale-down value. An inaccurate estimate can
either cause dithering if it is too close to the scale-up threshold
or waste precious overclocking time if the estimate is too low.
Performance models using low-level architectural counters can
be used for the estimation. Workload owners can also leverage
the inferred thresholds as an initial estimation.

B. Overclocking Admission Control

Overview. Naively granting all overclocking requests (1)
increases the chance of power capping events deteriorating
performance of all VMs, and (2) wears out the server’s
components causing premature server decommission. Instead,
SmartOClock performs admission control for the overclocking
requests based on power and component lifetime predictions.
It (1) predicts the rack’s power consumption and assesses if
an overclocking request will result in power capping, and (2)
predicts the CPU utilization of cores requesting overclocking
and assesses if cores will exceed the allowed overclocking
lifetime budget. Based on these predictions, SmartOClock de-
cides (1) if the requested power and overclocking budgets can
be reserved for overclocking a schedule-based workload, or
(2) for how long a given VM with metrics-based overclocking
can be overclocked before taking the corrective actions. Note
that the power reservation is soft, the power can be taken by
workloads outside of the system that do not need overclocking
and SmartOClock needs to adjust.

Managing power. As observed in Section III, power draw of
racks and servers in those racks is highly predictable. Hence,
the Global and Server Overclocking Agents in SmartOClock
continuously monitor the server and rack power consumption
and use the data gathered during monitoring to periodically
(e.g., weekly) recompute the per-rack and per-server power

templates. The templates are used to predict if the additional
power of overclocking will trigger a power capping event.

SmartOClock creates a power template using per-day aggre-
gation of power draws across all weekdays in the prior week.
The template represents a single day and the same template
is used for predictions for all days in the following week.
For example, the template’s value at 9AM is the median of
rack’s power consumption at 9AM across all five weekdays.
A separate template is used for weekends. The intuition for
this approach is that (1) using a coarse-grained measurement
(e.g., the maximum over a week) is too conservative (i.e.,
it unnecessarily rejects many overclocking request) and (2)
using fine-grained measurements (i.e., all power measurements
from the prior week) is insufficiently robust to outliers (e.g.,
holidays during the prior week). Section V-B compares the
accuracy of several template-creation strategies.

Managing lifetime impact from overclocking. A max time
to overclock a component is obtained through an offline
analysis with the vendors (e.g., 10% over a 5-year period).
This analysis uses realistic, yet conservative, utilization of
cloud components to determine the opportunity. The duration
of individual overclockings can vary, but SmartOClock needs
to honor the total overclocking time assumption to comply
with component lifetime goals. This requirement is the same
as for using turbo-boost on non-overclockable CPUs.

To get uniform overclocking over a component’s expected
lifetime, SmartOClock divides the overall budget into epochs.
The definition of an epoch is configurable (e.g., a day, week).
Using a longer epoch, such as a week, enables assigning
unused budgets from the weekend to the weekdays. Hence,
SmartOClock defines an epoch to be a week and calculates
per-weekday max overclocking time.

Each sOA ensures that the overclocked time-in-state of a
component (e.g., per-core of a CPU) does not exceed limit.
Tracking and enforcement is per-server; an sOA uses mecha-
nisms like Intel PMT [48] for the time-in-state tracking and
denies overclocking requests if the budget is exhausted. Due to
hardware heterogeneity, vendor-specific APIs are needed for
tracking, calling such APIs is already supported by operating
systems (e.g., Intel PMT [49] and AMD HSMP [9] on Linux),
and enforcement is via standard interfaces (e.g., CPPC [2]
for CPU cores). For a predictable overclocking experience,
an sOA reserves overclocking budgets for scheduled requests.
Unused budgets can be used by unscheduled (metrics-based)
overclocking and also carried over to the next epoch.

C. Heterogeneous Power Budgets

Overview. SmartOClock splits the rack power budget hetero-
geneously amongst servers. The sOAs collect their server’s
power draw and overclocking needs over time to create power
and overclocking templates. The power template specifies a
server’s draw at a given timestamp. The overclock template
specifies the number of cores that requested and were granted
overclocking. The sOAs periodically (e.g., weekly) exchange
their templates with the gOA. The gOA combines power and

7



overclocking templates of all sOAs and computes individual
power budgets. It grants power credits to servers for periods
when VMs are overclocked, per the reported template.

Power budget computation. The power budget computation
happens in three phases. First, the gOA uses its power model
to separate the server’s power into the regular and overclock
power; the number of cores from the server’s overclocking
template enable the gOA to discriminate the two portions. Sec-
ond, the gOA assigns to each sOA the initial power budget that
is equal to the server’s regular power consumption. Finally,
the gOA splits the remaining power headroom based on the
overclocking requirements, i.e., servers with more overclocked
cores in the past get larger extra power budgets for the future.

For example, a rack has two servers (X and Y) and 1.3kW
power limit. Typical power consumption without overclocking
of Server-X and Server-Y at 9AM is 400W and 300W, respec-
tively. Thus, the unused power is 600W. In addition, at 9AM,
Server-X and Server-Y typically need to overclock 5 cores
(extra 50W) and 10 cores (extra 100W), respectively. Based
on this history, the gOA computes the power budgets for 9AM
for the two servers: for Server-X 400W + 50×600

50+100W = 600W ,
and for Server-Y 300W + 100×600

50+100 W = 700W .

D. Decentralized Budgets Enforcement

Overview. SmartOClock takes decentralized overclocking de-
cisions. It allows servers to locally process overclocking
requests from their VMs. An sOA uses the server’s power
profile to predict if overclocking will exceed the server’s power
budget. As the budget computations rely on predictions, they
may become suboptimal. Thus, SmartOClock allows sOAs to
explore beyond their initial assignments. Similarly, an sOA
tracks the overclocking time budget of VMs and predicts if a
VM will run out.Then, to avoid missed SLOs, the sOA informs
the WI agent of the inability to overclock; the global WI
agent can take corrective actions using the configured scale-
out policies. Enabling local decisions is key for reactively
handling activity bursts under metrics-based overclocking. The
overclocking trigger by a WI agent is conveyed to the (local)
sOA that can start/stop overclocking in order of a few millisec-
onds. Furthermore, if the assigned power budget is insufficient
(e.g., due to change in load), then the sOA can independently
explore a higher budget to maximize overclocking.

Power budget enforcement. The gOA periodically sends the
heterogeneously assigned power budgets to each sOA. Then,
each sOA uses a prioritized feedback loop to control the power
draw while overclocking. For example, scheduled overclock-
ing VMs can be of higher priority compared to unscheduled
(metrics-based) overclocking requests. In the feedback loop,
an sOA changes the frequency of the overclocked VMs per
priority in discrete steps (e.g., 100 MHz). Based on the impact
of the last frequency change on the power draw, the sOA (1)
maintains the VMs at the current frequency (if threshold ≤
draw < limit, where threshold = limit - buffer), (2) increases
frequency by step size (if draw < threshold), or (3) reduces
frequency by step size (if draw > limit). Prioritization enables

overclocking the more important VMs to the maximum extent
before less important VMs are overclocked.
Exploring beyond the local budgets. Due to occasional
mispredictions, the initial power allotment may become
suboptimal—some servers consume less than predicted while
other servers are limited by their budget and cannot overclock
VMs to the maximum extent. Thus, SmartOClock allows sOAs
to explore beyond their allocated power budgets. Specifically,
on constrained servers, the sOA tries to gradually exceed the
limit through two phases: exploration and exploitation.
Exploration. The sOA conditionally increases budget by a
step size (e.g., 20W) that causes the feedback loop to start
increasing the frequency of the overclocked VMs. If within a
short timespan (e.g., 30 seconds), the sOA does not receive any
warning messages from the rack power capping system (run
in the rack manager on each rack), then it further increases
the budget. The sOA stops when all VMs are overclocked to
the highest frequency or when it receives a warning message.
The rack manager sends a warning message to all sOAs when
the rack’s power draw reaches a warning threshold (e.g., 95%
of the rack’s power limit). An sOA ignores the message if it is
not exploring. Otherwise, it reduces its budget by the step size
and uses exponential back-off for the next exploration phase.
Exploitation. After establishing a safe power budget (i.e., no
warning messages), the sOA stops exploring and enters the
exploitation phase. In this phase, the sOA uses the new power
budget to grant the overclocking requests until either the
time to exploit expires or upon receiving a power capping
event. When the time to exploit expires, the sOA starts a new
exploration phase if needed. On a power capping event, the
sOA goes back to its initial power budget.

Similarly, an sOA can explore beyond the local per-core
overclocking budget. If a VM requires overclocking for longer
than its assigned cores can sustain, an sOA can still start
overclocking a VM on those cores until their budget is
exhausted. Then, the sOA explores if any other cores on a
server have enough budget to support the VM’s overclocking.
In that case, the sOA reschedules the VM on those cores.
Managing resource exhaustion. When an overclocking re-
quest is rejected, the global WI agent takes corrective actions
per an operator-chosen policy. A simple policy is to scale out
while factoring the number of VMs that cannot be overclocked
across a deployment (e.g., create x new if y existing VMs can-
not be overclocked). Figure 11 shows the operations performed
by SmartOClock for managing power exhaustion. First, sOA
predicts when it will run out of power for overclocking. For
this check, it first predicts the extra power from overclocking
a given VM (at a given core frequency and worst-case CPU
utilization). Next, via the template, it finds the time when
the predicted extra power exceeds the server’s budget. It then
sends a signal to the global WI agent if the time to exhaustion
is within a configurable window (e.g., 15 minutes). To mini-
mize performance impact from lack of overclocking, the length
of the window should be greater than the time to scale out, so
that overclocking is still available for the time it takes to scale

8



Server Overclocking Agent (sOA)

O
C

-R
eq

Power 
Model

WI Local 
Agent

Server 
P-Template

Server 
P-Budget Need action

Predict Power

WI Global 
Agent

Fig. 11: Server Overclocking Agent in SmartOClock.

out. Finally, this operation can be performed ahead of time for
scheduled overclocking requests to protect workload SLOs.
For metrics-based overclocking, the scale-up (overclocking)
threshold can be set before scale-out, where SLOs would
be missed if resources are inadequately provisioned after the
scale-out threshold is exceeded. Setting an earlier scale-up
threshold allows using overclocking to handle load spikes and
enables reverting to scale-out if overclocking is not possible.
Like power, an sOA also predicts the time to exhaustion of
the overclocking budget and informs the global WI agent.

V. EVALUATION

To evaluate SmartOClock, we perform real-system experi-
ments running cloud applications in an overclockable server
cluster, and large-scale analysis using production-level traces.

A. Cluster-Level Experiments

Methodology. We implement SmartOClock and conduct the
experiments on 36 overclockable servers (all 28 from one rack,
and 8 from another during scale-out). Each server has an AMD
CPU with 64 cores (128 threads). The CPU is configured
to operate in performance mode [82]. Its max turbo and
overclocking frequency are 3.3 and 4.0GHz. The active cores
steadily run at these frequencies while TDP-unconstrained.

To set the load for each server, we take an example pro-
duction rack that has the same hardware and servers per rack
as our cluster. Based on the power traces of these production
servers, we select which application to run in each individual
server to mimic the same power profile. We run VMs hosting
two open-source applications: (1) the latency-critical social
network microservices (SocialNet) from DeathStarBench [32]
and, (2) the throughput-optimized machine learning training
(MLTrain) from FunctionBench [54]. In the power traces, 14
of the servers show constant high power while the other 14
show a diurnal pattern. For the first 14 servers, we use MLTrain
and SocialNet for the other 14. The load for each benchmark
instance is configured to mimic the power consumption of the
corresponding production server.

We define the per-server load in our experiments based on
the production traces. As the profiled production servers run
mostly different, independent, workloads, each server in the
experiments run independent set of SocialNet microservice
instances. Thus, there is no correlation in the power consump-
tion or loads across servers (i.e., the peak load on one server
does not affect the load on others). Auto-scaling is set for

Low Load Medium Load High Load Low Load Medium Load High Load0
100
200
300
400

La
te

nc
y 

[m
s] Tail Latency Average Latency

Baseline ScaleOut ScaleUp SmartOClock

Fig. 12: P99 tail and average latencies of SocialNet services.

SocialNet based on its tail latency (initial count is 14). As in
Section III, we set the SLO of each microservice to be 5 times
its execution time on an unloaded system [26], [60], [73]. We
will release and open-source the setup to deploy workloads in
public cloud VMs.

We compare SmartOClock with a Baseline system that
does not scale neither horizontally (number of instances)
nor vertically (core’s frequency), and ScaleOut and ScaleUp
systems that only scale out/in and up/down, respectively, the
number of SocialNet instances based on the observed tail.
In the evaluation we use a metric-based overclocking policy,
which is less predictable; experiments with the schedule-based
policy show slightly better results due to better predictability.

Application performance. Figure 12 shows the P99 tail and
average latency of SocialNet microservices in four environ-
ments. We group the 14 instances into three classes based on
their load: Low, Medium, and High Load. Bars in the figure
are the average across all instances with the same load level.

All systems perform equally well under low load. The
impact on tail latency becomes prominent with increased load.
In high load, SmartOClock reduces the tail latency of Baseline,
ScaleOut, and ScaleUp by 19.0%, 10.5%, and 8.9%.

The average latency of SmartOClock is lower than Baseline
and ScaleUp, but slightly higher than ScaleOut. The reason
is that, to reduce the application’s cost and prevent scaling
out, SmartOClock operates for a longer time with higher
latencies that are still below the SLO. However, SmartOClock
significantly reduces the number of missed SLOs. The total
number of missed SLOs at high load is reduced by 26×,
4.8×, and 2.3× over Baseline, ScaleOut, and ScaleUp, re-
spectively. These results show that overclocking (via ScaleUp
or SmartOClock) reduces missed SLOs compared to ScaleOut.
However, overclocking alone is insufficient at higher loads as
evidenced by the greater missed SLOs with ScaleUp, despite
it overclocking for 5x longer. A combination of ScaleUp and
ScaleOut via SmartOClock provides the best performance.
Finally, SmartOClock reacts fast to sudden workload shifts
and keeps application performance within its SLO: even on
servers that triggered overclocking for more than 140 times
within 5 minutes, SmartOClock did not miss any deadlines.

Cost. Performance improvements from SmartOClock result in
cost savings for the users as they need to pay for fewer VMs.
Figure 13 shows the average number of concurrently active
VM instances for each environment over the entire run. Under
high load, SmartOClock saves substantial cost by reducing the
number of required instances by 30.4% over ScaleOut.

9



Low Load Medium Load High Load0.0
0.5
1.0
1.5
2.0

Nu
m

 In
st

an
ce

s
Baseline ScaleOut ScaleUp SmartOClock

Fig. 13: Average number of SocialNet VMs varying load.

Per-Server Low Load Per-Server Med Load Per-Server High Load Total Cluster0.0

0.5

1.0

1.5

No
rm

. E
ne

rg
y

Baseline ScaleOut ScaleUp SmartOClock

Fig. 14: Normalized per-single-server energy.

Energy consumption. Figure 14 shows normalized (1) per-
single-server energy consumption under low, medium, and
high load, and (2) total energy consumption of the system.
Note that ScaleOut and SmartOClock are the only systems that
meet SLOs. As the load increases, SmartOClock frequently
overclocks cores, which increases the per-server energy con-
sumption. However, as it uses fewer instances, the total energy
consumption is reduced by 10% on average over ScaleOut. The
savings are larger if we only consider servers running latency-
critical microservices — 23% on average over ScaleOut.

Power-constrained environments. We evaluate SmartO-
Clock’s overclocking admission control and heterogeneous
power budgeting under constraints. We reduce the rack’s limit
and measure the performance in two systems: NaiveOClock
and SmartOClock. NaiveOClock grants all overclocking re-
quests and on a power capping event splits the rack’s budget
equally among the servers. SmartOClock reduces the Social-
Net tail latency by 6.7% and 8.4% for medium and high loads,
respectively, and improves the MLTrain throughput by 10.4%.

Overclocking-constrained environments. To evaluate Smar-
tOClock’s proactive scale-out, we restrict the overclocking
budget and measure the number of missed SLOs with and
without proactive scaling. As we reduce the budget to 75%,
50%, and 25% of its initial value, reactive scale-out misses the
SLO for 5.0%, 6.1%, and 7.2% of time, while SmartOClock’s
proactive approach eliminates all SLO violations.

B. Large-Scale Simulations

Methodology. We use production traces of the same first-
party customer of the provider (see Section III) from multiple
datacenters.Datacenters are composed of hundreds of racks
and a few thousand servers with either Intel or AMD CPUs.
Each workload’s VMs are spread across servers and racks.
The traces include rack and server power, and VM-level CPU
utilization. All data is collected for 6 weeks (April 10th - May
12th, 2023), at a 5-minute granularity. Overclocking require-
ments (e.g., time of day) are obtained from the operators.

We develop a discrete event simulator to evaluate Smar-
tOClock. Models are used to estimate the power impact of

TABLE I: Comparison of SmartOClock to different baselines.

System Norm. # of
Power Caps

Successful
OClock Reqs

Penalty on
Power Cap

Norm. Per-
formance

High-Power Clusters
Central 1.0 92% 21% 1.186
NaiveOClock 118.6 55% 34% 0.963
NoFeedback 5.5 72% 22% 1.122
NoWarning 27.4 81% 23% 1.081
SmartOClock 6.3 89% 22% 1.164

Medium-Power Clusters
Central 1.0 96% 11% 1.195
NaiveOClock 36.6 79% 19% 1.022
NoFeedback 3.4 83% 11% 1.163
NoWarning 7.2 87% 12% 1.160
SmartOClock 3.9 93% 11% 1.185

Low-Power Clusters
Central 1.0 99% 1% 1.208
NaiveOClock 14.0 99% 5% 1.172
NoFeedback 1.0 98% 1% 1.205
NoWarning 1.1 99% 2% 1.205
SmartOClock 1.0 99% 1% 1.208

overclocking; CPU utilization and core frequency are the
input. We validate the model for each server generation.

We compare SmartOClock to (1) Central – an oracle with
a global view of power draw that can precisely decide if an
overclocking request will result in capping, (2) NaiveOClock –
a system that grants all overclocking requests, (3) NoFeedback
– a system that adheres to the per-server power budgets with
no exploration beyond, and (4) NoWarning – a system that
allows exploring but with no warnings. The servers go back
to their initial power budget on a capping event.

Overclocking success and power capping. Table I shows
the results: (1) number of power capping events in each
system normalized to Central, (2) percentage of successful
overclocking requests, (3) performance penalty of capping on
non-overclocked VMs, and (4) normalized performance over
Baseline. We define the performance penalty and improvement
as reduction and increase in VM frequency compared to the
Baseline (max turbo), respectively. Clusters are split into three
groups based on power draw: High, Medium, and Low-Power.

First, naively granting overclocking requests causes many
power capping events. NaiveOClock causes 118.6×, 36.6×,
and 14.0× more events than Central in High, Medium, and
Low-Power clusters, respectively. In contrast, SmartOClock
lowers the events by 18.9× in High-Power clusters via pre-
diction for admission control. Adding the warning messages
efficiently controls overclocking beyond a server’s budget: it
reduces the number of events over NoWarning by up to 4.3×.

Second, SmartOClock successfully grants majority of over-
clocking requests. It is within 4%, 3%, and 1% of the success
rate of an oracle Central system in High, Medium, and Low-
Power clusters, respectively. The feedback-loop for exploring
beyond the per-server budget is important: SmartOClock has
up to 1.24× higher success rate than NoFeedback approach.

Finally, heterogeneous power distribution by SmartOClock
reduces the performance penalty from power capping events.
All systems bar NaiveOClock employ this optimization. The
heterogeneous power budgets reduce the performance penalty
due to power capping events over NaiveOClock by 1.62× and

10



−30 −25 −20 −15 −10 −5 0 5 10
Mean Power Prediction Error [%]

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

FlatMed
FlatMax
Weekly
DailyMax
DailyMed

Fig. 15: CDF of mean power prediction for each technique.

0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

C
P

U
 U
�

liz
a�

o
n

 (
%

)

Requests Per Second (1000s)

Baseline
Overclocked

Fig. 16: Impact of overclocking Service B.

0

20

40

60

80

100

C
P

U
 U
�

liz
a�

o
n

 (
%

)

Time

Baseline

Overclocked

Fig. 17: Impact of overclocking Service C.

1.72× in High and Medium-Power clusters, respectively.

Power predictions accuracy. Figure 15 shows the CDF
of prediction accuracy for computing the power templates.
FlatMed and FlatMax use a constant prediction: a median or
maximum of all prior measurements. FlatMed is opportunistic
and underpredicts power, leading to high P99 prediction errors.
Whereas, FlatMax is conservative and overpredicts power,
resulting in negative prediction errors at low percentiles.

Weekly uses a time series of power measurements from the
previous week for predictions in the following week. It is
impacted by outliers since it treats each day separately: a few
hours may behave differently due to the unexpected events.
Thus, at high percentiles, its prediction error can be significant.

Finally, DailyMed and DailyMax, aggregate the power mea-
surements across a week to represent a single, typical, day.
The templates are time series of median or maximum values.
DailyMed, used in SmartOClock, has the highest accuracy.

C. Experiments with Production Services

We evaluate overclocking Service B and C under production
load. Each service consumes hundreds of virtual cores across
tens of VMs. The deployment resource usage is similar to
Figure 1 and the SLOs are consistent with each service’s goals.

Figure 16 shows the average CPU utilization of Service
B’s VMs for different request rates (bucketized by 0.1 due
to live load variability). Overclocking reduces CPU utilization
of VMs by 23% at a peak of 1.8k requests per second (RPS);
the baseline operates at turbo (3.3 GHz). Alternatively, for
the same CPU utilization, baseline can service 1.4k RPS

vs 1.8k (28% higher) with overclocking. Figure 17 shows
that overclocking reduces Service C’s 5-minute peaks over a
weekday by 16%. The deployment load is similar on both
days. Both results show the opportunity to down-provision
while meeting the performance SLOs. Finally, overclocking
enables servicing 25% additional load by Service A VMs under
synthetic traffic; production experiments are being setup.

VI. LESSONS FROM PRODUCTION DEPLOYMENT

We built a first-of-its-kind 2-rack (56 servers) overclockable
cluster at a provider for CPU overclocking in production. Our
deployment does not yet include cluster-wide coordination.
Motivation for building a cluster. Although CPU overclock-
ing can provide substantial performance and cost benefits,
a comprehensive analysis (e.g., TCO reduction, revenue in-
crease) is needed for new hardware features at scale. Projecting
improvements is challenging due to workload-specific varia-
tions, as previous work shows [51]. Further, evaluating in a lab
environment is not possible for even first-party workloads due
to software dependencies (e.g., deployment framework) and
security concerns that prevent experimentation with production
traffic. Thus, building an overclockable cluster was imperative.
Using experimental hardware in production datacenters.
The provider has a rigid process for ensuring stability (e.g.,
thermal limitations), reliability (e.g., firmware errors), and
performance for hardware deployment at scale that adds
overhead for limited-scale experimentation. To address, we
retrofitted by installing overclockable CPUs and firmware
updates (e.g., BIOS) on already-deployed servers. We also
bypassed software checks that remove servers with unexpected
configuration. A drawback is that the platform (e.g., moth-
erboard, cooling) is not optimized for overclocking, leading
to thermal and max current throttling under heavy loads.
Additionally, we provisioned adequate power to avoid capping;
the limits are lowered for power management evaluations.
Experiments with first-party workloads. Since the cluster
contains experimental hardware, we enforce strict admission
control. However, this policy led to atypical workload place-
ments that impact overclocking. Typically servers house VMs
from various workloads due to dynamic cloud environments
and scheduler efforts to optimize resource utilization [40],
[89], but our policy caused VMs from the same workload
to occupy entire servers. Although this impacts overclocking
efficiency, it is useful for conservative benefit estimation.
Finer-grained overclocking. SmartOClock can overclock in-
dividual VMs but first-party operators want finer-grained over-
clocking (e.g., containers in VMs). Although overclocking
VMs still works, it is inefficient because of the higher power
and reliability impact. Since containers are scheduled inside a
guest VM without host visibility, we need guest participation
for finer-grained overclocking. However, unsupervised control
of frequency by guests can compromise reliability and power
management. We are exploring a safe and efficient solution.
Hardware support for overclocking. Overclocking lifetime
budgets can be improved with wear-out counters that indicate

11



how a component’s (e.g., CPU core) lifetime is impacted by
utilization (voltage) and operating temperatures. SmartOClock
can use wearout counters to upgrade from a conservative
offline model to a per-part online calculation for safety.

Furthermore, the prioritized feedback loop for managing
power while overclocking can be offloaded to the hardware
for efficiency. We are extending the ACPI [2] CPPC interface
to configure VM priority while scheduling (no affinitization)
on CPU cores.The firmware can use these priorities to assign
per-core performance (frequency) while managing power.

Vendor engagements to enable overclocking. As overclock-
ing is enabled by under-utilization (Section III), instead of
overclocking, vendors (e.g., Intel, AMD) inquire about design-
ing a CPU with revised time-in-state assumptions for offline
certification. However, this is still inefficient as it does not
leverage the impact of utilization variability from workload
demands (with and without overclocking) and temperature
fluctuations on ageing at cloud scale. Using wear-out counters
to track usage impact on ageing lacks these limitations.

Furthermore, we are working with vendors to ensure all
cores can hit a minimum-desired overclocking frequency (e.g.,
15-20% beyond max turbo). Some cores can run faster, but this
variability is not exposed on server CPUs (even for turbo); we
are exploring bringing mechanisms from client CPUs (e.g.,
ACPI CPPC preferred cores [2]) to leverage this variability.

Overclocking beyond CPUs. SmartOClock is a general
framework and its principles can be easily applied for over-
clocking any server component. Our initial focus was CPU
since it provides the highest benefits, but we have started
exploring overclocking of other components (e.g., GPU).

Silent data corruption (SDC). Recent work shows risks
from SDC at scale [28], [41], [91]. Although overclocking
can aggravate error rates, our extensive lab and production
experiments do not show an increase in (un)correctable errors,
with frequencies ∼20% beyond max turbo; this is inline
with prior work [51]. Nonetheless, for safety, we work with
vendors to define max overclocking frequency. Furthermore,
techniques from the recent SDC work can be used for added
safeguarding.

VII. RELATED WORK

Computational sprinting. Extensive research [15], [16], [18],
[30], [55], [63], [74], [78], [79], [99], [100] has explored
computational sprinting (i.e., boosting CPU frequency for
short periods). Mechanisms like game theory [30], formal
control [77], and performance modeling [74] have been pro-
posed to manage sprinting. Researchers have also investigated
efficiency factors like resource interference [63], power avail-
ability [16], processor design [38], and cooling [51]. However,
none of these works holistically address the overclocking
challenges in the cloud. They either focus on single-server
setup, assume transparent-box knowledge of applications, or
overlook multi-tenancy on a server or rack. The closest related
work is Computational Sprinting Game (CSG) [30]. There are
two major differences between CSG and SmartOClock. First,

CSG leverages turbo and is constrained by thermal/power
limits. In contrast, overclocking also affects reliability whose
time scales are orders of magnitude (months/years) more than
for power/thermal (minutes). It is nontrivial to add reliability
under CSG when evaluating sprint utility. SmartOClockuses
epochs to divide overclocking budget across coarse-grain
time scales (days) that local agents enforce. Second, lack of
sprinting/overclocking (of even a few VMs) can impact SLO
of workloads that under-provision while relying on sprinting
to handle peaks. Therefore, a mitigation mechanism to protect
performance is needed when sprinting is unavailable, a prob-
lem not addressed by CSG. Section V presents the impact of
proactive scaleout by SmartOClock to protect workload SLOs.

Undervolting. Prior work has proposed decreasing the voltage
for a frequency below its safe marginal value for reducing
power [12], [13], [17], [29], [52], [75]. However, undervolting
can introduce instability and pipeline (i.e., timing) errors,
thereby necessitating hardware designers to add mechanisms
for fault tolerance. For example, Razor [29] uses additional
latches that run on a delayed clock in vulnerable paths to detec-
t/recover from errors. This body of work is complementary and
can create additional power and component lifetime headroom
(reduced wearout from lower voltage) for overclocking.

Datacenter power management. Prior work has proposed
oversubscription through leveraging statistical properties of
concurrent power usage across servers [14], [37], [42], [56],
[57], [59], [80], [84], [93] to improve datacenter power utiliza-
tion and save costs. These works are complementary and in-
fluence our non-overclocked baseline. The provider leverages
policies based on these prior works to oversubscribe power.
The policies factor the power demand from turbo to meet the
provider’s performance SLAs [7], [36], [71] and prioritized
throttling [57], [59] is used to protect (turbo) performance of
critical workloads under rare power capping events.

Naively adding overclocking to the baseline power utiliza-
tion increases the probability of power capping events. Increas-
ing provisioned power cannot be used to address this problem
due to the TCO impact, especially when turbo is sufficient
to meet a provider’s performance SLAs. Consequently, an
overclocking system can only leverage unutilized power while
meeting workload SLOs when overclocking is not possible;
problems not addressed in prior power management work.

Workload intelligence. Research has leveraged workload
awareness to optimize performance, energy consumption, and
cost [19]–[21], [44], [53], [98], [101]. Sinan [98] uses ML
models to allocate resources per microservice tier, minimizing
cost while maintaining end-to-end tail latency targets. Re-
Tail [19], Rubik [53], Adrenaline [43], and Gemini [101] use
application-specific features to predict optimal per-request fre-
quencies, reducing power consumption while meeting SLOs.
Resource Central [21] gathers VM telemetry, learns VM
behaviors offline, and provides online predictions for various
resource managers. We propose a clean interface for cloud
workloads to provide the necessary signals for overclocking
without compromising their opaque-box implementations.

12



VIII. CONCLUSION

In this paper we proposed SmartOClock, the first distributed
overclocking management platform for cloud environments.
SmartOClock enables cloud workloads to run with high per-
formance at a lower cost by introducing four novel features:
workload-aware overclocking, prediction-based overclocking
admission control, heterogeneous power budgeting and de-
centralized budget enforcement. SmartOClock reduces the tail
latency by 8.9% and the application cost by 30.4%. Addition-
ally, it minimizes the number of power capping events while
increasing the overclocking success rate by up to 62%.

REFERENCES

[1] S. I. Abrita, M. Sarker, F. Abrar, and M. A. Adnan, “Benchmarking
vm startup time in the cloud,” in Benchmarking, Measuring, and
Optimizing, C. Zheng and J. Zhan, Eds., 2019.

[2] ACPI Specification Revision Committee, “Advanced configuration
and power interface specification,” 2022. [Online]. Available:
https://uefi.org/specifications

[3] P. Alcorn, “CPU Overclocking Impact on Lifespan and Reliabil-
ity,” https://www.tomshardware.com/how-to/how-to-overclock-a-cpu#
section-cpu-overclocking-impact-on-lifespan-and-reliability, 2023.

[4] Amazon AWS, “AWS Lambda,” https://aws.amazon.com/lambda/.
[5] Amazon AWS, “Instance metadata and user data,” https://docs.aws.

amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html.
[6] Amazon AWS, “AWS Auto Scaling,” https://aws.amazon.com/

autoscaling/, 2023.
[7] Amazon Web Services, “Processor state control for your EC2

instance,” https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
processor state control.html.

[8] AMD, “CPU warranty terms,” https://www.amd.com/system/files/
documents/processor-warranty-update.pdf.

[9] AMD, “Host System Management Port (HSMP),” https://github.com/
amd/amd hsmp.

[10] AMD, “Turbo Core Technology,” https://www.amd.com/en/
technologies/turbo-core.

[11] A. F. Baarzi and G. Kesidis, “SHOWAR: Right-Sizing And Efficient
Scheduling of Microservices,” in SoCC, 2021.

[12] A. Bacha and R. Teodorescu, “Dynamic reduction of voltage margins
by leveraging on-chip ECC in Itanium II processors,” in ISCA, 2013.

[13] R. Bertran, A. Buyuktosunoglu, P. Bose, T. J. Slegel, G. Salem,
S. Carey, R. F. Rizzolo, and T. Strach, “Voltage Noise in Multi-Core
Processors: Empirical Characterization and Optimization Opportuni-
ties,” in MICRO, 2014.

[14] A. A. Bhattacharya, D. Culler, A. Kansal, S. Govindan, and S. Sankar,
“The need for speed and stability in data center power capping,” in
IGCC, 2012.

[15] H. Cai, Q. Cao, F. Sheng, Y. Yang, C. Xie, and L. Xiao, “ESprint:
QoS-Aware Management for Effective Computational Sprinting in Data
Centers,” in CCGRID, 2019.

[16] H. Cai, X. Zhou, Q. Cao, H. Jiang, F. Sheng, X. Qi, J. Yao, C. Xie,
L. Xiao, and L. Gu, “GreenSprint: Effective Computational Sprinting
in Green Data Centers,” in IPDPS, 2018.

[17] K. K. Chang, A. G. Yağlıkçı, S. Ghose, A. Agrawal, N. Chatterjee,
A. Kashyap, D. Lee, M. O’Connor, H. Hassan, and O. Mutlu, “Un-
derstanding Reduced-Voltage Operation in Modern DRAM Devices:
Experimental Characterization, Analysis, and Mechanisms,” Proceed-
ings of the ACM on Measurements and Analysis of Computer Systems,
2017.

[18] J. Charles, P. Jassi, N. S. Ananth, A. Sadat, and A. Fedorova, “Evalu-
ation of the Intel® Core™ i7 Turbo Boost feature,” in IISWC, 2009.

[19] S. Chen, A. Jin, C. Delimitrou, and J. F. Martı́nez, “ReTail: Opting for
Learning Simplicity to Enable QoS-Aware Power Management in the
Cloud,” in HPCA, 2022.

[20] Z. Chen, J. Hu, G. Min, A. Y. Zomaya, and T. El-Ghazawi, “Towards
Accurate Prediction for High-Dimensional and Highly-Variable Cloud
Workloads with Deep Learning,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 4, 2020.

[21] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource Central: Understanding and Predicting Work-
loads for Improved Resource Management in Large Cloud Platforms,”
in SOSP, 2017.

[22] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “RAPL:
Memory power estimation and capping,” in ISLPED, 2010.

[23] W. R. Davis, C. Shaw, and A. R. Hassan, “How to write a compact
reliability model with the open model interface (omi),” in 2020 IEEE
International Reliability Physics Symposium (IRPS), 2020, pp. 1–2.

[24] J. Dean and L. A. Barroso, “The Tail at Scale,” Communications of
the ACM, vol. 56, pp. 74–80, 2013.

[25] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-Efficient and QoS-
Aware Cluster Management,” in ASPLOS, 2014.

[26] C. Delimitrou and C. Kozyrakis, “Amdahl’s Law for Tail Latency,”
Commun. ACM, vol. 61, no. 8, jul 2018.

[27] D. DiMaria and J. Stathis, “Non-arrhenius temperature dependence of
reliability in ultrathin silicon dioxide films,” Applied Physics Letters,
1999.

[28] H. D. Dixit, S. Pendharkar, M. Beadon, C. Mason, T. Chakravarthy,
B. Muthiah, and S. Sankar, “Silent Data Corruptions at Scale,” CoRR,
vol. abs/2102.11245, 2021. [Online]. Available: https://arxiv.org/abs/
2102.11245

[29] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: a low-power
pipeline based on circuit-level timing speculation,” in MICRO, 2003.

[30] S. Fan, S. M. Zahedi, and B. C. Lee, “The Computational Sprinting
Game,” in ASPLOS, 2016.

[31] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou, “Sage: practical
and scalable ML-driven performance debugging in microservices,” in
ASPLOS, 2021.

[32] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa,
R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An Open-Source
Benchmark Suite for Microservices and Their Hardware-Software
Implications for Cloud & Edge Systems,” in ASPLOS, 2019.

[33] Google Cloud, “About VM metadata,” https://cloud.google.com/
compute/docs/metadata/overview.

[34] Google Cloud, “Google Cloud Functions,” https://cloud.google.com/
functions.

[35] Google Cloud, “Autoscaling groups of instances,” https://cloud.google.
com/compute/docs/autoscaler/, 2023.

[36] Google Compute Platform, “CPU platforms,” https://cloud.google.com/
compute/docs/cpu-platforms.

[37] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and A. Bal-
dini, “Statistical profiling-based techniques for effective power provi-
sioning in data centers,” 2009.

[38] B. Greskamp and J. Torrellas, “Paceline: Improving Single-Thread
Performance in Nanoscale CMPs through Core Overclocking,” in
PACT, 2007.

[39] J. Guo, Z. Chang, S. Wang, H. Ding, Y. Feng, L. Mao, and Y. Bao,
“Who Limits the Resource Efficiency of My Datacenter: An Analysis
of Alibaba Datacenter Traces,” in IWQoS, 2019.

[40] O. Hadary, L. Marshall, I. Menache, A. Pan, E. E. Greeff, D. Dion,
S. Dorminey, S. Joshi, Y. Chen, M. Russinovich, and T. Moscibroda,
“Protean: VM Allocation Service at Scale,” in OSDI, 2020.

[41] P. H. Hochschild, P. J. Turner, J. C. Mogul, R. K. Govindaraju,
P. Ranganathan, D. E. Culler, and A. Vahdat, “Cores that don’t count,”
in HotOS, 2021.

[42] C.-H. Hsu, Q. Deng, J. Mars, and L. Tang, “SmoothOperator: Reducing
Power Fragmentation and Improving Power Utilization in Large-Scale
Datacenters,” in ASPLOS, 2018.

[43] C.-H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. Wenisch,
J. Mars, L. Tang, and R. G. Dreslinski, “Adrenaline: Pinpointing and
reining in tail queries with quick voltage boosting,” in HPCA, 2015.

[44] Q. Hu, P. Sun, S. Yan, Y. Wen, and T. Zhang, “Characterization
and Prediction of Deep Learning Workloads in Large-Scale GPU
Datacenters,” in SC, 2021.

[45] IBM Cloud, “IBM Cloud Functions,” https://cloud.ibm.com/functions/.
[46] IBM Cloud, “”Scaling stateful and stateless services”,”

https://www.ibm.com/docs/en/cloud-app-management/2019.3.0?
topic=sizing-scaling-stateless-stateful-services.

13

https://uefi.org/specifications
https://www.tomshardware.com/how-to/how-to-overclock-a-cpu#section-cpu-overclocking-impact-on-lifespan-and-reliability
https://www.tomshardware.com/how-to/how-to-overclock-a-cpu#section-cpu-overclocking-impact-on-lifespan-and-reliability
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html
https://www.amd.com/system/files/documents/processor-warranty-update.pdf
https://www.amd.com/system/files/documents/processor-warranty-update.pdf
https://github.com/amd/amd_hsmp
https://github.com/amd/amd_hsmp
https://www.amd.com/en/technologies/turbo-core
https://www.amd.com/en/technologies/turbo-core
https://arxiv.org/abs/2102.11245
https://arxiv.org/abs/2102.11245
https://cloud.google.com/compute/docs/metadata/overview
https://cloud.google.com/compute/docs/metadata/overview
https://cloud.google.com/functions
https://cloud.google.com/functions
https://cloud.google.com/compute/docs/autoscaler/
https://cloud.google.com/compute/docs/autoscaler/
https://cloud.google.com/compute/docs/cpu-platforms
https://cloud.google.com/compute/docs/cpu-platforms
https://cloud.ibm.com/functions/
https://www.ibm.com/docs/en/cloud-app-management/2019.3.0?topic=sizing-scaling-stateless-stateful-services
https://www.ibm.com/docs/en/cloud-app-management/2019.3.0?topic=sizing-scaling-stateless-stateful-services


[47] Intel, “CPU warranty terms,” https://www.intel.com/content/dam/
support/us/en/documents/processors/Limited Warranty 8.5x11 for
Web English.pdf.

[48] Intel, “Intel Platform Analysis Technology,” https://www.intel.com/
content/www/us/en/developer/topic-technology/platform-analysis-
technology/overview.html.

[49] Intel, “Platform Monitoring Technology Telemetry (PMT),” https://
github.com/intel/Intel-PMT.

[50] Intel, “What Is Intel® Turbo Boost Technology?” https://www.intel.
com/content/www/us/en/gaming/resources/turbo-boost.html.

[51] M. Jalili, I. Manousakis, I. Goiri, P. A. Misra, A. Raniwala, H. Alissa,
B. Ramakrishnan, P. Tuma, C. Belady, M. Fontoura, and R. Bianchini,
“Cost-Efficient Overclocking in Immersion-Cooled Datacenters,” in
ISCA, 2021.

[52] M. Kaliorakis, A. Chatzidimitriou, G. Papadimitriou, and D. Gizopou-
los, “Statistical Analysis of Multicore CPUs Operation in Scaled
Voltage Conditions,” IEEE Computer Architecture Letters, 2018.

[53] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez, “Rubik:
Fast analytical power management for latency-critical systems,” in
MICRO, 2015.

[54] J. Kim and K. Lee, “FunctionBench: A Suite of Workloads for
Serverless Cloud Function Service,” in CLOUD, 2019.

[55] S. Kondguli and M. Huang, “A Case for a More Effective, Power-
Efficient Turbo Boosting,” ACM Transactions on Architecture and Code
Optimization, vol. 15, no. 1, 2018.

[56] V. Kontorinis, L. E. Zhang, B. Aksanli, J. Sampson, H. Homayoun,
E. Pettis, D. M. Tullsen, and T. S. Rosing, “Managing Distributed Ups
Energy for Effective Power Capping in Data Centers,” in ISCA, 2012.

[57] A. G. Kumbhare, R. Azimi, I. Manousakis, A. Bonde, F. Frujeri,
N. Mahalingam, P. A. Misra, S. A. Javadi, B. Schroeder, M. Fontoura,
and R. Bianchini, “Prediction-Based Power Oversubscription in Cloud
Platforms,” in USENIX ATC, 2021.

[58] Y.-H. Lee, N. R. Mielke, W. McMahon, Y.-L. R. Lu, and S. Pae,
“Thin-gate-oxide breakdown and cpu failure-rate estimation,” IEEE
Transactions on Device and Materials Reliability, vol. 7, no. 1, pp.
74–83, 2007.

[59] S. Li, X. Wang, X. Zhang, V. Kontorinis, S. Kodakara, D. Lo,
and P. Ranganathan, “Thunderbolt: Throughput-Optimized, Quality-of-
Service-Aware Power Capping at Scale,” in OSDI, 2020.

[60] Z. Li, L. Zheng, Y. Zhong, V. Liu, Y. Sheng, X. Jin, Y. Huang,
Z. Chen, H. Zhang, J. E. Gonzalez, and I. Stoica, “AlpaServe: Statistical
Multiplexing with Model Parallelism for Deep Learning Serving,” in
OSDI, 2023.

[61] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “MICA: A Holistic
Approach to Fast In-Memory Key-Value Storage,” in NSDI, 2014.

[62] Q. Liu and Z. Yu, “The Elasticity and Plasticity in Semi-Containerized
Co-Locating Cloud Workload: A View from Alibaba Trace,” in SoCC,
2018.

[63] D. Lo and C. Kozyrakis, “Dynamic management of TurboMode in
modern multi-core chips,” in HPCA, 2014.

[64] S. Luo, H. Xu, K. Ye, G. Xu, L. Zhang, G. Yang, and C. Xu, “The
power of prediction: microservice auto scaling via workload learning,”
in SoCC, 2022.

[65] J. Lyu, M. You, C. Irvene, M. Jung, T. Narmore, J. Shapiro,
L. Marshall, S. Samal, I. Manousakis, L. Hsu, P. Subbarayalu,
A. Raniwala, B. Warrier, R. Bianchini, B. Schroeder, and D. S.
Berger, “Hyrax: Fail-in-Place server operation in cloud platforms,”
in 17th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 23). Boston, MA: USENIX Association,
Jul. 2023, pp. 287–304. [Online]. Available: https://www.usenix.org/
conference/osdi23/presentation/lyu

[66] D. Marcon, T. Kauerauf, F. Medjdoub, J. Das, M. Van Hove, P. Srivas-
tava, K. Cheng, M. Leys, R. Mertens, S. Decoutere, G. Meneghesso,
E. Zanoni, and G. Borghs, “A comprehensive reliability investigation of
the voltage-, temperature- and device geometry-dependence of the gate
degradation on state-of-the-art GaN-on-Si HEMTs,” in Proceedings of
the 2010 International Electron Devices Meeting, 2010.

[67] Microsoft Azure, “Azure Instance Metadata Service,”
https://learn.microsoft.com/en-us/azure/virtual-machines/instance-
metadata-service.

[68] Microsoft Azure, “Data Exchange: Using key-value pairs to
share information between the host and guest on Hyper-V,”
https://learn.microsoft.com/en-us/previous-versions/windows/it-
pro/windows-server-2012-R2-and-2012/dn798287(v=ws.11).

[69] Microsoft Azure, “Introduction to Auto Scaling,” https:
//learn.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-
resource-manager-autoscaling.

[70] Microsoft Azure, “Microsoft Azure Functions,” https://azure.microsoft.
com/en-gb/services/functions/.

[71] Microsoft Azure, “Virtual Machine series,” https://azure.microsoft.com/
en-us/pricing/details/virtual-machines/series.

[72] Microsoft Azure, “Overview of autoscale in Azure,” https:
//learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-
overview, 2023.

[73] A. Mirhosseini and T. Wenisch, “µSteal: A Theory-Backed Framework
for Preemptive Work and Resource Stealing in Mixed-Criticality Mi-
croservices,” in ICS, 2021.

[74] N. Morris, C. Stewart, L. Chen, R. Birke, and J. Kelley, “Model-Driven
Computational Sprinting,” in EuroSys, 2018.

[75] G. Papadimitriou, M. Kaliorakis, A. Chatzidimitriou, D. Gizopoulos,
P. Lawthers, and S. Das, “Harnessing Voltage Margins for Energy
Efficiency in Multicore CPUs,” in MICRO, 2017.

[76] L. Piga, I. Narayanan, A. Sundarrajan, M. Skach, Q. Deng, M. C.
B. Maity, A. Huang, A. Dhanotia, and P. Malani, “Expanding Data-
center Capacity with DVFS Boosting: A Safe and Scalable Deployment
Experience,” in ASPLOS, 2024.

[77] R. P. Pothukuchi, J. L. Greathouse, K. Rao, C. Erb, L. Piga, P. G. Voul-
garis, and J. Torrellas, “Tangram: Integrated Control of Heterogeneous
Computers,” in MICRO, 2019.

[78] A. Raghavan, L. Emurian, L. Shao, M. Papaefthymiou, K. P. Pipe,
T. F. Wenisch, and M. M. Martin, “Computational Sprinting on a
Hardware/Software Testbed,” in ASPLOS, 2013.

[79] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K. P. Pipe,
T. F. Wenisch, and M. M. K. Martin, “Computational Sprinting,” in
HPCA, 2012.

[80] P. Ranganathan, P. Leech, D. Irwin, and J. Chase, “Ensemble-level
Power Management for Dense Blade Servers,” in ISCA, 2006.

[81] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and Dynamicity of Clouds at Scale: Google Trace
Analysis,” in SoCC, 2012.

[82] H. Rui, “amd-pstate CPU Performance Scaling Driver,” https://docs.
kernel.org/admin-guide/pm/amd-pstate.html, 2023.

[83] R. Russell, “Virtio: Towards a de-facto standard for virtual i/o
devices,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, p. 95–103, jul
2008. [Online]. Available: https://doi.org/10.1145/1400097.1400108

[84] V. Sakalkar, V. Kontorinis, D. Landhuis, S. Li, D. De Ronde,
T. Blooming, A. Ramesh, J. Kennedy, C. Malone, J. Clidaras, and
P. Ranganathan, “Data Center Power Oversubscription with a Medium
Voltage Power Plane and Priority-Aware Capping,” in ASPLOS, 2020.

[85] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, Scalable Schedulers for Large Compute Clusters,”
in EuroSys, 2013.

[86] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Server-
less in the Wild: Characterizing and Optimizing the Serverless Work-
load at a Large Cloud Provider,” in USENIX ATC, 2020.

[87] J. Stojkovic, T. Xu, H. Franke, and J. Torrellas, “MXFaaS: Resource
Sharing in Serverless Environments for Parallelism and Efficiency,” in
ISCA, 2023.

[88] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin, S. Hand,
M. Harchol-Balter, and J. Wilkes, “Borg: The next Generation,” in
EuroSys, 2020.

[89] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-Scale Cluster Management at Google with Borg,” in
EuroSys, 2015.

[90] G. Wang, L. Zhang, and W. Xu, “What Can We Learn from Four Years
of Data Center Hardware Failures?” in DSN, 2017.

[91] S. Wang, G. Zhang, J. Wei, Y. Wang, J. Wu, and Q. Luo, “Understand-
ing Silent Data Corruptions in a Large Production CPU Population,”
in SOSP, 2023.

[92] E. Wu, J. Sune, W. Lai, E. Nowak, J. McKenna, A. Vayshenker, and
D. Harmon, “Interplay of voltage and temperature acceleration of oxide
breakdown for ultra-thin gate oxides,” Solid-State Electronics, vol. 46,
no. 11, 2002.

[93] Q. Wu, Q. Deng, L. Ganesh, C.-H. Hsu, Y. Jin, S. Kumar, B. Li,
J. Meza, and Y. J. Song, “Dynamo: Facebook’s Data Center-Wide
Power Management System,” in ISCA, 2016.

[94] Xen Project, “XenStore,” https://wiki.xenproject.org/wiki/XenStore.

14

https://www.intel.com/content/dam/support/us/en/documents/processors/Limited_Warranty_8.5x11_for_Web_English.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/Limited_Warranty_8.5x11_for_Web_English.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/Limited_Warranty_8.5x11_for_Web_English.pdf
https://www.intel.com/content/www/us/en/developer/topic-technology/platform-analysis-technology/overview.html
https://www.intel.com/content/www/us/en/developer/topic-technology/platform-analysis-technology/overview.html
https://www.intel.com/content/www/us/en/developer/topic-technology/platform-analysis-technology/overview.html
https://github.com/intel/Intel-PMT
https://github.com/intel/Intel-PMT
https://www.intel.com/content/www/us/en/gaming/resources/turbo-boost.html
https://www.intel.com/content/www/us/en/gaming/resources/turbo-boost.html
https://www.usenix.org/conference/osdi23/presentation/lyu
https://www.usenix.org/conference/osdi23/presentation/lyu
https://learn.microsoft.com/en-us/azure/virtual-machines/instance-metadata-service
https://learn.microsoft.com/en-us/azure/virtual-machines/instance-metadata-service
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/dn798287(v=ws.11)
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/dn798287(v=ws.11)
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-autoscaling
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-autoscaling
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-autoscaling
https://azure.microsoft.com/en-gb/services/functions/
https://azure.microsoft.com/en-gb/services/functions/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview
https://docs.kernel.org/admin-guide/pm/amd-pstate.html
https://docs.kernel.org/admin-guide/pm/amd-pstate.html
https://doi.org/10.1145/1400097.1400108
https://wiki.xenproject.org/wiki/XenStore


[95] A. Yassine, H. Nariman, M. McBride, M. Uzer, and K. Olasupo, “Time
dependent breakdown of ultrathin gate oxide,” IEEE Transactions on
Electron Devices, vol. 47, no. 7, 2000.

[96] C. Zhang, A. G. Kumbhare, I. Manousakis, D. Zhang, P. A. Misra,
R. Assis, K. Woolcock, N. Mahalingam, B. Warrier, D. Gauthier,
L. Kunnath, S. Solomon, O. Morales, M. Fontoura, and R. Bianchini,
“Flex: High-Availability Datacenters with Zero Reserved Power,” in
ISCA, 2021.

[97] J. Zhang, S. Elnikety, S. Zarar, A. Gupta, and S. Garg, “Model-
Switching: Dealing with Fluctuating Workloads in Machine-Learning-
as-a-Service Systems,” in HotCloud, 2020.

[98] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou, “Sinan:
ML-Based and QoS-Aware Resource Management for Cloud Microser-
vices,” in ASPLOS, 2021.

[99] W. Zheng and X. Wang, “Data Center Sprinting: Enabling Computa-
tional Sprinting at the Data Center Level,” in ICDCS, 2015.

[100] W. Zheng, X. Wang, Y. Ma, C. Li, H. Lin, B. Yao, J. Zhang,
and M. Guo, “SprintCon: Controllable and Efficient Computational
Sprinting for Data Center Servers,” in IPDPS, 2019.

[101] L. Zhou, L. N. Bhuyan, and K. K. Ramakrishnan, “Gemini: Learning to
Manage CPU Power for Latency-Critical Search Engines,” in MICRO,
2020.

15


	I Introduction
	II Background
	III Challenges and Opportunities
	IV SmartOClock
	IV-A Workload-Aware Overclocking
	IV-B Overclocking Admission Control
	IV-C Heterogeneous Power Budgets
	IV-D Decentralized Budgets Enforcement

	V Evaluation
	V-A Cluster-Level Experiments
	V-B Large-Scale Simulations
	V-C Experiments with Production Services

	VI Lessons from Production Deployment
	VII Related Work
	VIII Conclusion
	References

