
Medha: Efficiently Serving Multi-Million Context
Length LLM Inference Requests Without

Approximations
Amey Agrawal2 Haoran Qiu1 Junda Chen3 Íñigo Goiri1 Chaojie Zhang1 Rayyan Shahid2

Ramchandran Ramjee1 Alexey Tumanov2 Esha Choukse1
1Microsoft 2Georgia Institute of Technology 3UC San Diego

Abstract
As large language models (LLMs) handle increasingly longer
contexts, serving long inference requests of millions of to-
kens presents unique challenges.We show that existing work
for long context inference is largely based on techniques
from long context training, and does not handle the high
variability in input lengths during inference. This leads to
inefficient resource utilization, server fragmentation, and
head-of-line (HOL) blocking.
We present Medha, an end-to-end system for efficient

long-context LLM inference that addresses these challenges
through fine-grained time sharing. Medha introduces three
key innovations: (1) the mechanism of adaptive prefill chunk-
ing to help mitigate HOL blocking with preemption; (2)
two new parallelism strategies: Sequence Pipeline Paral-
lelism (SPP) to reduce time-to-first-token by pipelining prefill
chunks, and KV-Cache Parallelism (KVP) to lower time-per-
output-token by distributing decoding across servers; and (3)
a novel input-length aware least remaining slack scheduling
to meet Service Level Objectives (SLOs).

Medha enables exact inference scaling beyond 10 million
tokens, maintaining high throughput and low latency across
mixed-length workloads. Compared to state-of-the-art sys-
tems, Medha reduces server fragmentation, cuts median la-
tency by up to 30×, and improves throughput by over 5×,
delivering production-scale long-context inference without
compromising performance on shorter requests.

1 Introduction

Motivation. Emerging applications (e.g., book summariza-
tion, movie analysis, multi-agent dialogue with knowledge
retrieval, and multi-modal reasoning) are pushing large lan-
guage models (LLMs) to process contexts spanning millions
of tokens, orders of magnitude longer beyond the limits of
current systems [14, 30, 51].

The quadratic cost of self-attention [47]makes long-context
inference latency-intensive. Recent training-time methods
like Context Parallelism (ring and striped attention [9, 28])
distribute context processing across a fixed number of GPUs
to mitigate this cost. However, unlike training, inference
requests have highly variable sequence lengths. Thus, using

CD
F

1 10 100 1000
TTFT (s)

0.00

0.25

0.50

0.75

1.00

30x

174x

(a) TTFT distribution where
LoongServe shows 30-174× higher
latency due to its coarse-grained
space-sharing.

0 1000 2000 3000
Time (s)

0
100
200
300
400
500

TT
FT

 (
s)

LoongServe
Medha

(b) TTFT over time showing head-
of-line blocking for LoongServe
where short requests get stuck be-
hind long requests.

Figure 1. Impact of long-context requests on TTFT for Llama-3 8B
inference using 16 A100 GPUs with LoongServe [49] and Medha.

a fixed degree of parallelism leads to significant communica-
tion overhead and inefficient compute/memory utilization.

LoongServe [49] addresses variability in sequence lengths
using elastic context parallelism and prefill-decode disaggre-
gation, dynamically resizing GPU pools to match request
lengths. While this reduces prefill latency and communica-
tion overhead, it remains vulnerable to head-of-line (HOL)
blocking—an issue inherent to ring attention. As shown in
Figure 1, LoongServe experiences sharp latency spikes when
serving a mix of short and long-context requests (with just
5% long requests), as short ones are blocked behind long-
running requests.
Moreover, LoongServe fragments servers into dedicated

pools for prefill and decode stages, further reducing over-
all resource utilization, as we illustrate later in Figure 4. A
common workaround is to introduce more pools partitioned
by request length buckets. However, determining the right
splits is challenging (e.g., a 128K-token request can be 100×
cheaper than a 1M-token one), often resulting in inefficiency
and even greater server fragmentation.

Our Work. We design Medha, a system for scalable long-
context inference that reduces resource fragmentation and
improves efficiency across all request types (i.e., prefill and
decode for both short and long requests). To achieve this,
Medha enables fine-grained preemption, and uses advanced
scheduling techniques to share the resources better, avoiding
the inefficiencies of static partitioning.

1

ar
X

iv
:2

40
9.

17
26

4v
3

 [
cs

.L
G

]
 9

 M
ay

 2
02

5

Amey Agrawal et al.

The key enabling mechanism in Medha is prefill chunking,
which splits long-context requests into smaller chunks, al-
lowing prefill and decode to be batched together. This line of
work tries to utilize resources better without creating pools.
Contrary to prior belief [4, 17], chunking overhead decreases
with context length; even small chunks (e.g., 64 tokens) add
minimal cost at scale (Figure 5b). We leverage this insight
by introducing, adaptive chunking, wherein we dynamically
adjust the chunk size for a request based on the context
length to meet decode latency SLO without compromising
on system throughput (Figure 6b). This fine-grained preemp-
tion ability also allows short requests to interleave with long
ones and complete without delay, using our slack-aware
prioritization across prefill requests.
However, chunking alone is insufficient since ring atten-

tion is incompatible with chunked prefills, and tensor par-
allelism (TP) cannot scale across servers due to intercon-
nect limitations. To overcome this, Medha introduces two
new parallelism strategies: (1) Sequence Pipeline Parallelism
(SPP) reduces time-to-first-token (TTFT) by concurrently
processing consecutive chunks of a long request across pi-
pleine stages, enabling linear scaling of prefill latency; and
(2) KV-Cache Parallelism (KVP) accelerates token genera-
tion by distributing the KV-cache across servers, reducing
time-per-output-token (TPOT).

Medha unifies TP, SPP, and KVP in a novel 3D parallelism
framework and combines it with adaptive chunking and
batching. This design eliminates fragmentation, avoids HOL
blocking, and enables exact inference with context lengths
up to 10 million tokens. In this way, Medha enables exact
inference with long contexts, achieving performance scaling
for context lengths up to 10 million tokens. Medha reduces
median latency by up to 30× and improves throughput by
over 5× compared to state-of-the-art systems.
Summary. We make the following contributions to long-
context inference serving systems, without approximations:
• Sequence pipeline parallelism (SPP) for concurrent chunk

execution during prefill, reducing TTFT while mitigating
HOL blocking.

• Adaptive chunking and KV cache parallelism (KVP) to dy-
namically control the trade-off between TTFT and TPOT
across requests in mixed-batching scenarios with long
context requests.

• Medha 3D parallelism combining TP, SPP, and KVP to scale
inference to 10M tokens, maintaining efficiency and low
latency across heterogeneous batches.

• Medha scheduling that prioritizes and balances short and
long requests using fine-grained time sharing.

2 Background and Motivation

2.1 Long-Context LLM Inference

Models. Recent research showed that LLMs can be fine-
tuned to handle context lengths spanning millions of tokens

Table 1. Definitions of notations in equations.

Notation Definition

𝑛 number of tokens
ℎ𝑞 or ℎ𝑘𝑣 number of query or key-value heads

𝑑 attention head dimension
𝑝 𝑗 parallelism degree for strategy j. e.g. 𝑝𝑡𝑝 for TP
𝑀𝑘𝑣 memory required for KV cache
𝐹𝑎 attention flops
𝑅𝑎 number of bytes read for attention
𝐼𝑎 attention arithmetic intensity
𝑐 chunk size
𝑇 execution time

𝑇𝑝 or𝑇𝑑 prefill latency or decode latency

by re-scaling positional embeddings [8, 27, 46, 51]. These
long-context transformers unlock new capabilities, includ-
ing deep agentic workflows, multi-modal processing and
reasoning over several books’ worth of textual data. For ex-
ample, Google’s Gemini 1.5 model [40] supports contexts of
up to 2 million tokens in production, and Meta’s Llama 4
supports up to 10 million context length [30].
Phases and Metrics. LLM inference with auto-regressive
transformers involves two distinct phases, each with unique
resource and performance profiles [5, 35]. The prefill phase
is compute-intensive, processing input tokens and building
the KV cache. Its latency defines Time to First Token (TTFT),
which is critical for interactive use. The decode phase gen-
erates output tokens sequentially, dominated by memory
bandwidth due to frequent KV cache reads. The Time per
Output Token (TPOT) affects the model’s fluency.
Resource Requirements. With longer contexts, computa-
tional complexity grows quadratically with input size. For
example, serving 1million tokens using Llama-3 70B requires
320 GB of memory for the KV cache and 2.4 exaFLOPs.
As we present our analysis of these resources, Table 1

summarizes our notation. During prefill, each token attends
to all prior tokens, involving two matrix multiplications: (1)
query (𝑄) and key (𝐾) tensors to obtain the attention matrix
and (2) attention matrix with value (𝑉) tensors. Each oper-
ation requires 2𝑛2𝑑ℎ𝑞 FLOPs. In causal attention, only the
lower triangular matrix is computed, halving the compute
cost, but still growing quadratically with number of tokens.
Thus, for 𝑛 input tokens, the compute FLOPs are:

𝐹𝑎 (𝑛) = 2𝑛2𝑑ℎ𝑞 (1)

During decode, we scan the entire KV cache so far, result-
ing in a linear increase in memory reads. The capacity for
the KV cache and memory reads are:

𝑀𝑘𝑣 (𝑛) = 4𝑛𝑑ℎ𝑘𝑣 = 𝑅𝑎 (𝑛) (2)

Figure 2a shows the theoretical maximum input tokens
that meet a 30s TTFT and 20ms TPOT SLO on a single DGX-
H100 node for Llama-3 8B. Compute becomes a bottleneck at
∼1M tokens, and memory capacity at 4M tokens. Figure 2b

2

Medha: Efficiently Serving Multi-Million Context Length LLM Inference Requests Without Approximations

Memory
Capacity

Memory
Bandwidth

Compute
0

1

2

3

4

M
ax

 T
he

or
et

ic
al

Le
ng

th
 S

up
po

rt
ed

 (
M

)

(a)Maximum number of tokens per
resource type on 8 H100 GPUs.

128K 512K 1.0M 2.0M
Number of Tokens

0

10

20

30

40

N
um

be
r

of
 G

PU
s Compute

Memory Capacity
Memory Bandwidth

(b) GPUs required to meet each re-
source for given context length.

Figure 2. Theoretical resource requirements for serving Llama-3
8B with 30s TTFT and 20ms TPOT SLOs. Compute is the primary
scaling bottleneck for interactive long-context LLM inference.

Q 0

KV1KV0

Q1

Tensor Parallelism Ring Attention

O 0 O1

0Q

1KV

0KV

1Q

0O

GPU0 GPU0 GPU1GPU1

Sharded in Sequence Dimension

1O

1 1

2 2

3

1

2

3

3

4 4

4

5
6

5

1

24

6

5

Sharded in Head Dimension

Figure 3. TP shards computation across the head dimension, Ring
Attention (one CP implementation) distributes computation across
the sequence dimension with cyclic KV cache transfers. Arrows
show data flow, with numbered steps showing computation order.

shows the GPUs required to meet this SLO as input tokens
increase: 10 GPUs for 1M tokens and 40 for 2M.

2.2 Serving Long Context Queries

To serve modern LLMs with billions of parameters, long-
context requires distributed computation across multiple
GPUs for high throughput and interactive latencies.
Traditional Parallelism Techniques. Tensor Parallelism
(TP) [43] divides tensors within layers, distributing opera-
tions like attention across devices (Figure 3). This intra-layer
strategy improves both latency and throughput, but frequent
large-scale communication limits its scalability. TP typically
requires high-speed interconnects (e.g., NVLINK), confining
it to single-server deployments on systems like DGX-H100.
Pipeline Parallelism (PP) [5, 20, 54] distributes model lay-

ers across devices, easing memory pressure and freeing up
space for KV cache to support larger batches and higher
throughput. While it scales well across nodes due to minimal
inter-stage communication, it offers no latency benefit due
to sequential stage dependencies.

As context lengths grow into themillions of tokens, achiev-
ing interactive latencies requires efficient parallelization

across many devices. Traditional approaches fall short:
TP does not scale well, while PP improves throughput
but not latency.

LoongServe. A recent work LoongServe [49] uses Ring At-
tention/Context Parallelism [9, 28] (CP) for long context serv-
ing (Figure 3), and therefore partitions queries across devices,
with each shard computing attention over rotating blocks
of KV cache. When each device processes enough tokens
(e.g., 24.5K on A100 with InfiniBand [28]), communication
overlaps with computation, allowing efficient multi-GPU
scaling for long-context workloads. However, this requires
LoongServe to dynamically adjust the degree of parallelism
based on input length and manage separate resource pools.
Large requests are distributed across more GPUs for paral-
lel execution, while smaller ones are packed efficiently to
maximize utilization.

Furthermore, since CP is ineffective for decoding, LoongServe
follows prior work [35, 37] in using disaggregation, migrat-
ing the KV cache to different devices for decoding. As shown
in Figure 2b, decode ismemory-bound and uses fewer devices
than the compute-bound prefill phase. Existing systems built
on CP [52] are subsumed by LoongServe in both capability
and performance.

2.3 Limitations of LoongServe

Our analysis shows that LoongServe faces fundamental limi-
tations due to its coarse-grained resource management.

Resource Fragmentation. LoongServe partitions cluster
resources into three types of isolated pools for: short prefills,
long prefills, and decodes. This segmentation limits flexibility
by forcing the same ratios on memory and compute across
prefill and decode: long requests cannot fully utilize available
compute, and resources remain underused within artificial
boundaries. Figure 4 shows this effect from fragmentation,
where at times, with very long requests, the compute demand
for prefill shoots up dramatically due to the quadratically
cost of attention. The compute in decode pools is often
underutilized due to memory-bound workloads, while
long-prefill requests are slowed down due to reduced
compute capacity due to fragmentation.

Head-of-LineBlocking.The biggest limitation of LoongServe
is its poor handling of mixed workloads. Long-context re-
quests (e.g., 1M tokens) occupy majority of resources for
minutes during prefill, causing severe head-of-line blocking
for other requests. Note that, while LoongServe attempts to
form multiple prefill pools to tackle this challenges, the large
variance in prefill computation cost with sequence length in-
evitably results in HOL blocking for some requests. Though
LoongServe allows space sharing, its coarse-grained elas-
tic allocation and lack of preemption limit effective re-
source multiplexing.

3

Amey Agrawal et al.

0 200 400 600 800 1000
Elapsed Time (s)

10 1

101

103

105
Pr

ef
ill

/D
ec

od
e

Ra
ti

o
Memory Requirment
Compute Requirement
Allocated

Figure 4. Timeline showing that as requests arrive and drain, the
required memory and compute ratios for prefill and decode di-
verge significantly (note the log-scale y-axis). Prefill pools become
compute-bound, while decode pools are limited by memory capac-
ity. LoongServe’s static partitioning approach leads to fragmenta-
tion of memory and compute resources across pools, reducing its
ability to efficiently serve such divergent resource demands.

Takeaway: The coarse-grained space sharing in ECP is insuf-
ficient. For efficient long-context serving, we require a funda-
mentally different approach that combines fine-grained time-
and space-sharing.

3 Medha: Key Insights & Mechanisms
The main insight driving Medha is that for very high vari-
ability in context lengths, pool creation causes resource frag-
mentation. Therefore, we optimize techniques that run large
prefills piecewise, enabling fine-grained preemption across
a mix of workload on a shared set of hardware. The par-
allelism techniques we propose, unlike Context Parallelism
or LoongServe, do not need rigid sizing proportional to
context lengths. And finally, our batching and scheduling
algorithms are tuned to offer SLO-awareness for a wide
variety of context lengths.
3.1 Chunked Prefills for Long Context

Instead of executing the entire prefill at once, chunking the
input prompt during prefill [4] enables more flexible sched-
uling. This approach allows finer-grained control, improving
adherence to both prefill and decode latency SLOs across
varying context lengths. As shown in Figure 5a, finer pre-
emption granularity leads to more efficient and responsive
scheduling. This technique parallels the disaggregation of
prefill and decode phases [35] employed by LoongServe.
The Myth. Chunked prefills cause read amplification, since
the whole KV cache must be read for each chunk’s attention,
increasing KV cache reads from 𝑂 (𝑛) to 𝑂 (𝑛2). This has led
to the myth that chunked prefills are inefficient for long
contexts [5, 49, 57]. We challenge this assumption through
an analysis of arithmetic intensity.
Busting theMyth.We find that the arithmetic intensity of a
prefill chunk depends solely on the chunk size, not the total
context length. Each chunk processes 𝑐 tokens, requiring
reads of the full KV cache but performing a fixed number

8 16 32 64 128
Number of GPUs

0

25

50

75

100

125

Pr
ee

m
pt

io
n

G
ra

nu
la

ri
ty

 (
s)

147x

86x

55x
47x 42x

Context Length: 1M
Context Parallelism
Medha

(a) Preemption granularity enabled
on 1M token sequences prefill with
Llama-3 8B.

32 64 12
8

25
6

51
2

10
24

20
48

Chunk Size

0

2

4

6

8

10

La
te

nc
y

(m
)

9.17 8.60 8.38 8.39 8.31 8.27 8.25

(b) Self-Attention computation time
with chunked prefill for 1M tokens
with Llama-3 70B using 8 H100s.

Figure 5. Efficacy of chunked prefill for long-context inference.

400 500 600 700 800 900
Prefill Latency (s)

0

250

500

750

1000

1250

1500

1750

P9
5

Pe
r

Ba
tc

h
La

te
nc

y
(m

s)

Chunk Size: 32
Chunk Size: 512
Chunk Size: 4096

(a) Static chunk sizes.

400 500 600 700 800 900
Prefill Latency (s)

0

250

500

750

1000

1250

1500

1750

P9
5

Pe
r

Ba
tc

h
La

te
nc

y
(m

s)

Fixed Policy
Dynamic Policy

(b) Adaptive chunk size.

Figure 6. Pareto frontiers of prefill/decode latencies in mixed batch-
ing with chunked prefills: (a) Static sizes have a trade-off between
prefill and decode latencies. (b) Adaptive chunking starts with larger
chunks, gradually reducing size to keep batch latencies consistent,
achieving better prefill efficiency and low decode latency.

of operations per token. So, while longer contexts increase
memory reads, compute per chunk stays constant.
Modern LLMs amplify this effect via grouped-query at-

tention [6] (Equation (3)). For example, in Llama-3 70B, 8
query heads share one KV head, boosting arithmetic inten-
sity nearly 8× over standard linear layers [4]. As a result, on
NVIDIA H100 GPUs running Llama-3 70B, a chunk of just 40
tokens can saturate GPU compute.

𝐼 𝑖𝑐𝑝 (𝑛, 𝑐) =
𝐹 𝑖𝑐𝑝 (𝑛, 𝑐)
𝑅𝑖𝑐𝑝 (𝑛, 𝑐)

≃
4𝑖𝑐2𝑑ℎ𝑞
4𝑖𝑐𝑑ℎ𝑘𝑣

= 𝑐
ℎ𝑞

ℎ𝑘𝑣
(3)

This high intensity enables splitting multi-million-token
prefills into thousands of short chunks. Each chunk runs in
tens of milliseconds, making prefill fast and interruptible;
unlike CP’s long, monolithic executions which take minutes.
Kernel Bottlenecks. Early attention kernels struggled with
chunked prefills, as they parallelized only over query (𝑄) to-
kens; limiting throughput when 𝑄 is small. Recent work ad-
dresses this with KV-parallel designs: FlashDecoding [18, 41]
shards across KV tokens, while FlashInfer and FlashAttention-
2 [11, 53] parallelize over both𝑄 and 𝐾𝑉 , delivering efficient
performance at any context length.
3.2 Adaptive Chunked Prefills

Aligned with our analytical model, Figure 5b shows that a
chunk size of 32 adds just 11% overhead to self-attention

4

Medha: Efficiently Serving Multi-Million Context Length LLM Inference Requests Without Approximations

Time

(a) Pipeline Parallelism (b) Sequence Pipeline Parallelism

GPU0

GPU1

R11 R21

R21R11

R12 R22

R12

Time

R11 R12

R12R11

R13 R14

R13

Figure 7. Contrasting PP strategies for prefill processing. (a) Stan-
dard PP interleaves micro-batches composed of prefills from dif-
ferent requests (𝑅1, 𝑅2) to improve throughput. (b) SPP overlaps
chunks of the same request (𝑅11, 𝑅22) across stages to reduce prefill
latency for long request while maintaining high GPU utilization.

8 16 32 64 128
Number of GPUs

0

20

40

60

80

100

120

140

Pr
ef

ill
 L

at
en

cy
 (

s)

1.10x

1.08x

1.08x
1.29x 1.64x

Sequence Length: 1M
Context Parallelism
Medha 2D Parallel

Figure 8. Performance comparison of Context Parallelism vs.
Medha 2D Parallel (SPP+TP) for 1M token sequences prefill with
Llama-3 8B. Medha achieves better scaling efficiency for prefill
computation, resulting in up to 1.64× lower prefill latency.

compared to a 2048-token chunk. However, small chunks
can hurt end-to-end performance due to inefficient linear
layer execution and fixed CPU overheads. For Llama-3 8B
on 8 NVIDIA H100 GPUs, a 32-token chunk increases prefill
latency by 1.75× for a 1M-token request compared to 4096-
token chunks. Larger chunks, in contrast, increase decode
latency for batched requests (Figure 6a), creating a trade-off
between prefill and decode efficiency.
Early in prefill, MLP layers dominate runtime; as the

KV cache grows, attention becomes the bottleneck, where
smaller chunks become more efficient. To balance this, we
begin with large chunks and shrink them over time.

Our adaptive chunking strategy dynamically adjusts chunk
size during prefill based on (a) decode latency SLOs of other
batched requests, and (b) the minimum efficient chunk size
at the current stage. This approach significantly improves
the prefill–decode latency trade-off, as shown in Figure 6b.

3.3 Sequence Pipeline Parallelism (SPP)

While chunked prefills avoid HOL blocking, we still need
efficient parallelization to reduce latency for long-context
requests. As noted in Section 2.2, TP does not scale well
due to high communication overhead. PP, used in systems
like Orca and Sarathi-Serve [4, 54], maintains efficiency by
interleaving micro-batches from different requests (Figure 7).

This works for decode, where outputs have strict sequen-
tial dependencies. However, it is suboptimal for prefill. We

Table 2. Comparison of parallelization techniques for long-context
LLM inference. ∗Preemption indicates if it supports fine-grained
preemption with chunked prefills.

Parallelism strategy Ba
tc
hi
ng

Pr
ee
m
pt
io
n∗

Fa
st
pr
efi

ll

Fa
st
de
co
de

Sc
al
ab
le

Pipeline Parallelism (PP) [20] ✓ ✓ × × ↑
Tensor Parallelism (TP) [43] ✓ ✓ ✓ ✓ ↓
Context Parallelism (CP) [9, 28] × × ✓ × ↑
Sequence Pipeline Parallelism (SPP) ✓ ✓ ✓ × ↑
KV Parallelism (KVP) ✓ ✓ ✓ ✓ ↓
Medha 3D Parallelism (3DP) ✓ ✓ ✓ ✓ ↑

observe that the prefill chunks do not rely on the model
output from the previous chunk.

This motivates the design of Sequence Pipeline Parallelism
(SPP): a novel pipelining strategy that cuts prefill latency
through smarter chunk scheduling. The core idea lies in
scheduling chunk 𝑖 + 1 right after chunk 𝑖 finishes the first
pipeline stage (Figure 7). This tightly packed schedule maxi-
mizes pipeline utilization during prefill, enabling near-linear
speedups as GPU count scales:

𝑇
𝑠𝑝𝑝
𝑝 (𝑛, 𝑐) ≃

𝑇𝑝 (𝑛, 𝑐)
𝑝𝑠𝑝𝑝

+ 𝑇
𝑝𝑝
𝑐𝑜𝑚𝑚 (𝑐)𝑛

𝑐
∼
𝑇𝑝 (𝑛, 𝑐)
𝑝𝑠𝑝𝑝

(4)

𝑇
𝑠𝑝𝑝
𝑝 (𝑛, 𝑐) is the SPP prefill time for 𝑛 tokens with chunk

size 𝑐 , 𝑇𝑝 (𝑛, 𝑐) is the standard prefill time, 𝑝𝑠𝑝𝑝 is the SPP
degree, and 𝑇 𝑝𝑝

𝑐𝑜𝑚𝑚 (𝑐) is the inter-stage communication time.
The communication overhead 𝑇

𝑝𝑝
𝑐𝑜𝑚𝑚 (𝑐)𝑛

𝑐
becomes relatively

negligible as 𝑛 increases due the quadratic scaling of𝑇𝑝 (𝑛, 𝑐),
enabling communication-efficient cross-node scaling.
In addition to supporting batching and preemption, this

approach presents a distinctive advantage over context par-
allelism: the effectiveness of SPP remains independent of
variations in input sequence length, unlike CP, where the
degree of parallelism is closely tied to the sequence length.
Faster TTFTwithMedha 2D (SPP+TP). Figure 8 compares
the prefill latency of CP [9] (the best baseline for long-context
prefill) with Medha 2D SPP+TP. Medha achieves 64% lower
latency than CP using 128 H100 GPUs (16 servers) when
processing one million tokens, with TTFT latency under 15
seconds while using a 4K chunk size.
Scaling SPP to 10M Tokens. Figure 9 shows the TTFT
of Medha 2D SPP+TP as the token count increases from
1M to 10M, with pipeline depth for SPP varied from 1 to
16 for Llama-3 8B and Llama-3 70B. Red crosses indicate
configurations that are infeasible due to memory limitations.
Medha 2D SPP+TP scales nearly linearly with pipeline depth,
benefiting from the optimizations in Section 4.4. The strong
scaling trendlines suggest that more servers could further
reduce TTFT for larger contexts.

5

Amey Agrawal et al.

1 2 4 8 16
SPP Degree

0

50

100

150

Pr
ef

ill
 L

at
en

cy
 (

s)

Sequence Length: 1M

1 2 4 8 16
SPP Degree

0

250

500

750

1000

Sequence Length: 4M

1 2 4 8 16
SPP Degree

0

1000

2000

Sequence Length: 10M

(a) Llama-3 8B.

1 2 4 8 16
SPP Degree

0

100

200

300

400

Pr
ef

ill
 L

at
en

cy
 (

s)

Sequence Length: 1M

1 2 4 8 16
SPP Degree

0

500

1000

1500
Sequence Length: 4M

1 2 4 8 16
SPP Degree

0

1000

2000

3000

Sequence Length: 10M

(b) Llama-3 70B.

Figure 9. Scaling efficiency of Medha 2D (SPP+TP) for long-context prefill processing. Medha 2D reduces TTFT near-linearly (80%+ scaling
efficiency) as the SPP degree increases to operate with up to 128 H100 GPUs. Red crosses are infeasible settings due to memory limitations.

1 2 4 8 16
SPP Degree

0

5

10

15

20

D
ec

od
e

La
te

nc
y

(m
s) Sequence Length: 2M

(a) Llama-3 8B

1 4 8 16
SPP Degree

0

20

40

D
ec

od
e

La
te

nc
y

(m
s) Sequence Length: 2M

(b) Llama-3 70B

Figure 10. Impact of SPP scaling on decode latency in
Medha 2D (SPP+TP, 𝑝𝑡𝑝 = 8). Decode latency is only
marginally affected even with a 16-stage pipeline.

1 2 4
KV Parallel Degree

0
5

10
15
20
25
30

D
ec

od
e

La
te

nc
y

(m
s)

Sequence Length: 4M

1 2 4
KV Parallel Degree

0

20

40

60

Sequence Length: 10M

(a) Llama-3 8B with 𝑝𝑠𝑝𝑝 = 4.

1 2
KV Parallel Degree

0

20

40

60

80

D
ec

od
e

La
te

nc
y

(m
s)

Sequence Length: 4M

1 2
KV Parallel Degree

0

20

40

60

80

100
Sequence Length: 10M

(b) Llama-3 70B with 𝑝𝑠𝑝𝑝 = 8.

Figure 11. TPOT reduction with KVP in Medha 3D in decode-only batches. For
10M context length decodes for Llama-3 8B, 𝑝𝑘𝑣𝑝 = 2 results in almost 40%
reduction in latency, allowing decode at the rate of ∼30 tokens per second.

0KV1

0Q

0KV0

0O 0 0O1

0Q

1KV11KV0

1O 0 1O1

1Q 1Q

1

2

3

5

1

2

3

5

1

2 2

3

5

1

3

5

4 4

6

GPU0 GPU2 GPU1 GPU3

Figure 12. Combining KVP (horizontal) and TP (vertical) in Medha.
KVP splits the sequence across GPUs 0-1 and 2-3 while TP divides
computation within each KV shard across attention heads.

Decode Latency Impact of SPP. Having shown how SPP
unlocks lower TTFT, we now show in Figure 10 the decode
latency achieved as SPP scales out for 2M context on Llama-3
8B and Llama-3 70B. Given the small overheads of PP, decode
latency hasminimal impact as we scale SPP degree 𝑝𝑠𝑝𝑝 . Note
that the decode latency impact of SPP is further minimized
as we move to larger model (e.g., Llama-3 8B to Llama-3 70B).
This is caused due to the similar communication overhead
but higher computation time per stage in large models.

3.4 KV Cache Parallelism (KVP)

While SPP offers an effective mechanism to reduce prefill
latency, it does not improve decode latency due to the cross-
iteration dependency in auto-regressive decoding. To address
this challenge, we propose KV Cache Parallelism (KVP), a
novel technique that effectively reduces decode latency by
parallelizing KV-cache reads.

KVP shards the KV cache across multiple GPUs along the
sequence dimension as shown in Figure 12. During each iter-
ation, we replicate the Q token(s) across all GPUs and com-
pute partial attention outputs based on each local KV-cache
shard. These partial outputs are then combined using online-
softmax [33]. A critical advantage of KVP over techniques
like Ring Attention is that the communication cost 𝑇𝑘𝑣𝑝

𝑐𝑜𝑚𝑚 is
independent of the KV-cache length and only depends on the
number of query tokens. This makes KVP extremely effec-
tive in managing decode latency for long-context requests.
The KVP performance improvement can be modeled as:

𝑇
𝑘𝑣𝑝

𝑑
(𝑛) ≃

𝑇𝑎𝑡𝑡𝑛
𝑑

(𝑛)
𝑝𝑘𝑣𝑝

+ (𝑇𝑑 (𝑛) −𝑇𝑎𝑡𝑡𝑛
𝑑

(𝑛)) +𝑇𝑘𝑣𝑝
𝑐𝑜𝑚𝑚 (5)

Where 𝑇𝑘𝑣𝑝

𝑑
(𝑛) is KVP decode time, 𝑇𝑎𝑡𝑡𝑛

𝑑
(𝑛) is the atten-

tion computation time, 𝑝𝑘𝑣𝑝 is the KVP degree, 𝑇𝑑 (𝑛) is the
total decode time, and𝑇𝑘𝑣𝑝

𝑐𝑜𝑚𝑚 is the communication overhead.
KVP extends naturally to chunked prefills. For long se-

quences, the communication cost of KVP (𝑖𝑇𝑘𝑣𝑝
𝑐𝑜𝑚𝑚 (𝑐)) be-

comes significantly smaller than the attention computation
6

Medha: Efficiently Serving Multi-Million Context Length LLM Inference Requests Without Approximations

40 60 80 100 120
TTFT (s)

0

20

40

60

80

100

P9
5

TB
T

(m
s)

Sequence Length: 1M
KVP Degree: 1
KVP Degree: 2
KVP Degree: 4

100 125 150 175 200 225 250
TTFT (s)

0

20

40

60

80

100

120

140

P9
5

TB
T

(m
s)

Sequence Length: 2M
KVP Degree: 1
KVP Degree: 2
KVP Degree: 4

300 400 500 600 700
TTFT (s)

0

50

100

150

200

250

P9
5

TB
T

(m
s)

Sequence Length: 4M
KVP Degree: 1
KVP Degree: 2
KVP Degree: 4

Figure 13. TTFT vs. TPOT trade-off for Llama-3 8B using Medha
3D (TP-4, SPP-4) varying KVP degree and chunk size (32–256).

itself. This relationship can be expressed as:

𝑖𝑇
𝑘𝑣𝑝
𝑝 (𝑛, 𝑐) ≃

𝑖𝑇𝑎𝑡𝑡𝑛
𝑝 (𝑛, 𝑐)
𝑝𝑘𝑣𝑝

+(𝑖𝑇𝑝 (𝑛, 𝑐)−𝑖𝑇𝑎𝑡𝑡𝑛
𝑝 (𝑛, 𝑐))+𝑖𝑇𝑘𝑣𝑝

𝑐𝑜𝑚𝑚 (𝑐)

(6)
Where 𝑖𝑇

𝑘𝑣𝑝
𝑝 (𝑛, 𝑐) is the prefill time for the 𝑖-th chunk

with KVP, 𝑖𝑇𝑎𝑡𝑡𝑛
𝑝 (𝑛, 𝑐) is the attention computation time for

the chunk, 𝑖𝑇𝑝 (𝑛, 𝑐) is the total prefill time for the chunk, and
𝑖𝑇

𝑘𝑣𝑝
𝑐𝑜𝑚𝑚 (𝑐) is the communication overhead for the chunk.
Our experiments shows that KVP is also effective in cap-

ping the latency impact of prefills on the decodes of other
batched requests in mixed batching scenarios. For instance,
when processing a 4 million context length request, the P95
decode latency (for requests batched along) with even a small
chunk of 128 tokens reaches almost 100ms (Figure 13).

To optimize resource usage, we use a dynamic KVPworker
allocation strategy. Each request starts with one worker, and
workers are added once we exceed the worker KV-cache to-
ken limit. This enables KVP replicas to batch short requests
independently while cooperatively handling long ones, en-
suring efficient resource utilization across workloads.

3.5 Medha 3D Parallelism

To meet the demanding prefill and decode latency require-
ments in long-context LLM inference, Medha introduces a
novel 3D parallelism (Figure 14), combining SPP, KVP, and
TP to scale performance across hundreds of GPUs. SPP ac-
celerates prefill, while KVP and TP enhance both phases.

Faster TPOTwithMedha 3Dparallelism. Figure 11 shows
the TPOT for Llama-3 8B and Llama-3 70B with 4M and 10M
context length in Medha 3D parallel, where 𝑝𝑡𝑝 = 8, 𝑝𝑠𝑝𝑝 = 4
for Llama-3 8B, 𝑝𝑠𝑝𝑝 = 8 for Llama-3 70B, and 𝑝𝑘𝑣𝑝 is varied.
𝑝𝑠𝑝𝑝 = 8 was used for Llama-3 70B, as longer context lengths
do not fit within 𝑝𝑠𝑝𝑝 = 4 (see Figure 9b).
Figure 11 shows that increasing 𝑝𝑘𝑣𝑝 brings down the

TPOT considerably, helping achieve interactivity targets.
The latency benefit is not linear due to Amdahl’s law, but
gets more pronounced with longer context length. Increasing
𝑝𝑘𝑣𝑝 from 1 to 4, therefore using 4× the GPUs For Llama-
3 8B, reduces TPOT by only 1.7× for 4M context length,

User Training
Workload

Maya Virtual Runtime

Device
Emulator

Trace
Collator

Kernel
Runtime
Estimator

Intercept
API calls

Worker
Traces

Operation
Runtimes

Simulation Report

Emulation Spec
Device: A100

Devices per Node: 8
Number of Nodes: 4

Interconnect: Infiniband

Total batch time: 70 ms
Communication time: 20 ms
Peak memory usage: 38 GB

Profiled
Kernel
Runtimes

1

2

3

4

Simulator

Heimdall

Session Manager
(§4.2)

Client Interface

A
llo

ca
te

Fr
ee

Copy Blocks

Allocation Request1

Block Allocation Request
& Session Stats Refresh

2

C
op

y

B

lo
ck

s

Block Promotions
& Eger Demotion

Requests
3

Placement Planner
(§4.4)

4
Async Plan

Update RequestSession History

Utility Estimator

ILP Solver

5
Async Eviction
Order Update NVMe Allocator

GPU Allocator

Block Allocators
(§4.3)

CPU Allocator

3D Parallel Execution Engine

KVP-0 KVP-1

SPP-0

TP-0

SPP-1

TP-0

SPP-0

TP-0

SPP-1

TP-0

Replica Controller

Batch Scheduler Batch Packer

Runtime Predictor

Client Interface

Prefill Priority Queue

Add New Request1

Get Least
Slack Prefill

5

3
Update
Batch 4 Check Runtime

Constraint 4

Dispatch
Batch

6 Reque
Partial Prefill

7Return Generated Tokens

3D Parallel Execution Engine

KVP-0 KVP-1

SPP-0

TP-0

SPP-1

TP-0

SPP-0

TP-0

SPP-1

TP-0

Replica Controller

Batch Scheduler Batch Packer

Runtime Predictor

Client Interface

Prefill Priority Queue

Add New Request1

Get Least
Slack Prefill

5

3
Update
Batch 4 Check Runtime

Constraint 4

Dispatch
Batch

6 Reque
Partial Prefill

7Return Generated Tokens

Request Response

Figure 14. Medha architecture for efficient long-context inference.
The Replica Controller centrally manages the request life-cycle, fea-
turing a slack-aware Batch Scheduler and a Batch Packer to optimize
for SLOs. It dispatches batches to the 3D Parallel Execution Engine,
which leverages Medha’s novel combination of KVP, SPP, and TP.

whereas for 10M context length this benefit increases to
2.5×. Therefore, we use KVP only for longer context lengths.

Tackling Prefill-Decode Latency Tradeoff.We analyze
how system parameters impact the tradeoff between prefill
and decode performance. Figure 13 shows this tradeoff by
examining the relationship between chunk sizes and KV
cache parallelism (KVP) degree for Llama-3 8B with a 4M
context length, while fixing SPP degree at 4. Increasing chunk
size reduces TTFT (prefill latency) but increases TPOT. For
a fixed chunk size, increasing 𝑝𝑘𝑣𝑝 reduces both TTFT and
TPOT in most cases, improving the overall tradeoff.

4 Medha: System Design and Implementation
Serving extremely long-context LLM requests requires bal-
ancing latency, efficiency, and resource fairness. Section 3
introduced mechanisms like adaptive chunked prefill, SPP,
and KVP for long-context serving. Medha integrates these
into a complete system with advanced scheduling, batch-
ing, and load-balancing to meet latency SLOs and optimize
resource use. The design goals of Medha include:
(R1) Meet the TTFT and TPOT latency SLOs of both long
and short context interactive requests.
(R2) Drive up the hardware utilization to increase through-
put per device, thereby reducing operation cost.
(R3) Avoid HOL and provide fairness to efficiently handle
mixed requests with a wide range of context lengths simul-
taneously within a single serving system.

7

Amey Agrawal et al.

4.1 Medha Architecture Overview

Medha employs a carefully designed architecture to effi-
ciently serve mixed long and short context LLM requests,
combining SLO-aware scheduling with 3D parallel execution.
Figure 14 provides a visual representation of this architecture
and the typical flow of a request.
Incoming requests first arrive via the Client Interface

and are added to the Prefill Priority Queue within the
Replica Controller (Step 1). The Replica Controller acts
as the central coordinator, managing the request lifecycle to
meet SLOs and maximize resource utilization.
The Batch Scheduler periodically queries the priority

queue, selecting requests for the next batch based on a slack-
aware policy (Step 4). This prioritizes latency-sensitive short
requests and enables fine-grained preemption. The chunks
sizes for the selected prefill requests is adjusted by Batch
Packer (Step 3) to form executable batches with the help of
Runtime Predictor to ensure SLO adherence (Step 4).
Batches are then dispatched by the Replica Controller

(Step 5) to the 3D Parallel Execution Engine. This allows
Medha to scale across multiple servers to meet the TTFT
and TPOT SLOs of long context serving, as discussed in
Section 3.5 and compared in Table 2. The Batch Scheduler re-
queues the partially completed prefill back into the waiting
queue (Step 6), this enables us to use pick the highest priority
prrefill across both new and partially completed requests.

4.2 Medha Scheduling and Batching Policy

The core of Medha’s batching scheduler leverages slack-
aware prioritizationwith fine-grained preemption that avoids
HOL while meeting latency SLOs. Its design incorporates: (1)
HOL avoidance by preventing long requests from blocking
short ones; (2) fairness by fine-grained time-sharing among
requests of varying context lengths; and (3) latency SLO
compliance by meeting TTFT and TPOT deadlines.
All scheduling and batching optimizations in Medha are

applied only during the prefill phase. Once a request enters
the decode phase, it is never interrupted or preempted. This
avoids violating tight TPOT SLOs and prevents wasting the
KV cache memory already allocated for that request. To bet-
ter handle compute variability from different request lengths,
Medha extends the standard Least Remaining Slack (LRS)
policy into an input-length-aware version, referred to as
ILRS. Requests are prioritized dynamically based on their
real-time slack, defined as the remaining fraction of time
before their TTFT deadline is violated. This ensures that
latency-sensitive requests, typically shorter ones, are sched-
uled first and not blocked by longer requests. To form each
execution batch, Medha applies dynamic bin-packing heuris-
tics that take into account both GPU resource constraints
(compute and memory) and request deadlines.

The batching process continuously adjusts as new requests
arrive, dynamically recomputing the batch composition at

every iteration to maximize GPU utilization and meet dead-
lines, thereby preventing HOL blocking.
Slack-based Request Prefill Prioritization. The sched-
uler dynamically reorders the request queue based on ILRS
(relative to the prefill deadline):

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑎𝑐𝑘 =
𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 − 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑝𝑟𝑒 𝑓 𝑖𝑙𝑙_𝑡𝑖𝑚𝑒

𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (7)

Deadline latency is predicted at by the Runtime Predic-
tor using offline profiling results collected and trained on
Vidur [3], under the same system setup with isolated runs
of requests across varied context lengths. By prioritizing re-
quests with tighter deadlines, Medha reduces the chance of
SLO violations. Because slack is defined as a percentage rel-
ative to each request’s deadline, it avoids a common issue in
Earliest Deadline First (EDF) scheduling, where long-context
requests can be delayed by a steady stream of short arrivals.
Prefill-Prefill Batching (PPB). Slack-based prefill prioriti-
zation ends up favouring shorter prefills over longer prefills.
However, we see an opportunity for almost free prefill-prefill
batching. Consider a batch with early chunks of long-context
request using a small chunk size (32–64 tokens). In this case,
MLP layers are memory bound, underutilizing the compute
capacity. Packing a prefill chunk from a short request lever-
ages this arithmetic slack with minimal overhead.
Inspired by prefill-decode mixed batching, in Medha, we

allow long prefill requests to share resources with short ones,
enabling prefill-prefill batching (PPB). The fraction of space
allocated to short requests in a mixed batch is proportional
to their remaining slack. Requests closer to their deadline
receive more resources, ensuring latency requirements are
met. The slack fraction is capped by a configurable maximum
sharing limit to prevent excessive overhead for long requests.
Batch Packing. The scheduler computes the number of
tokens for the next batch chunk dynamically using the con-
figured target batch time (i.e., decode latency SLO) and the re-
maining slack fraction using dynamic-bin packing guided by
runtime predictions. This ensures that, during prefill-decode
mixed batching, the decode requests experience minimal
delay the long-request prefill. This allows us to naturally
integrate both adaptive chunking and prefill-prefill batch-
ing to improve prefill efficiency and reduce decode latency
(Figure 6).
4.3 Medha KVP Load Balancer

Medha uses a just-in-time load balancing mechanism to effi-
ciently allocate short and long-context requests to the appro-
priate compute resources. At the inter-KVP level, incoming
requests are distributed based on the estimated runtime of
pending prefill work and memory usage of each KVP rank,
enabling efficient scaling across KVP dimension without
causing resource hot spots. SPP complements this with im-
plicit load balancing by evenly splitting prefill workloads
along the pipeline stages.

8

Medha: Efficiently Serving Multi-Million Context Length LLM Inference Requests Without Approximations

4.4 Implementation Optimizations

Efficient long-context LLM inference requires platform-level
optimizations. Medha extends the Sarathi-Serve framework
[4] to tackle multi-million token context requests. Unlike
vLLM and Sarathi-Serve, which incur overhead from central-
ized schedulers as sequence length grows, we reduce commu-
nication by replicating sequence state across the scheduler
and GPU workers.

We replace Ray [12]with ZeroMQ [2] for scheduler-worker
communication, eliminating GIL contention as we scale to
hundreds of workers. We also integrate FlashInfer [53] ker-
nels to distribute work across both query and KV tokens,
optimizing chunked prefill for long contexts. To meet strict
latency targets with small prefill chunks, we implement the
model execution engine’s critical path in C++ using PyBind,
ensuring seamless integration with the Python codebase.

5 Evaluation

5.1 Evaluation Setup

Baselines. We compare our system against the state-of-the-
art LLM inference serving systems, LoongServe [49] and
vLLM [23] with long context request serving ability. Note
that, for context lengths greater than 32K, vLLM defaults to
the Sarathi-Serve scheduler [4]. Thus, we refer to this base-
line as Sarathi. We consider two chunk sizes for the Sarathi
scheduler: 512 and 2048. Furthermore, we also consider var-
ious disaggregated compute [19, 35, 57] options. However,
none of the available open-source implementations support
context lengths over 32K tokens, making them unsuitable
for evaluation at the time of writing. Finally, we evaluate
Medha variant that replaces the IRLS request prioritization
and prefill-prefill batching with standard first-come-first-
serve (FCFS) scheduling while retaining all other proposed
mechanisms.

Models and datasets. We use Llama-3 8B and Llama-3
70B with RoPE [44] scaling to support up to 10M tokens.
Currently, there are no publicly available long-context LLM
datasets available that span millions of tokens. Previous sys-
tems use L-Eval [7] and LV-Eval [55] for long context eval-
uations. However, these datasets feature very short decode
lengths (P90 < 75 tokens for LV-Eval), which do not rep-
resent real-world scenarios, where models must generate
comprehensive responses after ingesting the context.

To evaluate realistic workloads, we construct the Medha-
SWE trace using the Gemini-Flash-1.5Bmodel [40].We focus
on two common software engineering tasks: code review and
pull request (PR) handling. From the top 1,000 most-starred
GitHub repositories with permissive licenses (Apache or
MIT), we select those with token counts between 100K and
1M. We extract the 100 most recent issues and merged PRs
per repo and prompt Gemini to respond to each, referencing
the full codebase.

This yields interactions with prefill lengths of 393K (P50)
and 839K (P90) tokens and decode lengths of 518 (P50) and
808 (P90). To simulate a realistic request mix, we combine
these long-context examples with the ShareGPT4 trace [48],
which consists of real GPT-4 conversations capped at 8K
tokens. We test Medha under various ratios of long and
short-context requests.
Hardware.We evaluate Medha across two hardware setups.
For the Llama-3 8B model, we use a setup with two DGX-
A100 servers [32]. While for Llama-3 70B, we use a cluster
with 16 DGX-H100 servers [31]. In both setups, each server
has 8 GPUswith 80GB of high bandwidthmemory. The GPUs
within a server are connected with NVLINK. Cross-server
connection is via InfiniBand.
5.2 Capacity Evaluation

We begin by evaluating how Medha performs under varying
loads compared to existing approaches for Llama-3 8B model
on the A100 cluster. Our capacity evaluation focuses on two
key metrics: TTFT and TPOT, as these directly impact user
experience in interactive scenarios.

To evaluate capacity systematically, we designed twowork-
load scenarios: (1) a baselinewith only short-context requests
(i.e., ShareGPT4) and (2) a mixed workload containing 5%
long-context requests (128K–1M tokens).We vary the system
load from 0.25 to 1.75 queries per second (QPS) and com-
pare Medha against LoongServe (TP-2, CP-4) and Sarathi
(TP-8, PP-2). For fairness, we configure Medha with similar
configuration (TP-8, SPP-2).
Baseline Performance. In the scenario with only short
requests (Figure 15a, Figure 16a), all systems exhibit com-
parable performance at low loads (0.25 QPS). However, as
load increases, LoongServe’s performance degrades consid-
erably, which we attribute to resource fragmentation. At 1.75
QPS, LoongServe’s P90 TTFT increases dramatically, while
Medha maintains consistent latency. Furthermore, Medha
achieves considerably better latency compared to Sarathi
due to Medha’s SPP technique, which helps reduce TTFT.
Long Query Performance. Figure 15b shows significant
benefits for Medha with long-context requests. At 0.75 QPS,
Medha achieves a 30×median TTFT improvement over LoongServe.
Sarathi and Medha-FCFS quickly degrade due to the HOL
blocking. Even at 1.25 QPS, Medha maintains acceptable
TTFT latencies, offering 5× higher effective capacity than
the baselines. Some baseline systems fail to complete re-
quests within the 60-minute profiling window due to HOL
blocking, resulting in truncated CDFs.
Decode Performance. Figure 16 shows that LoongServe ex-
periences 5× higher TPOT latencies thanMedha, even at high
loads without long requests, due to resource fragmentation.
With long requests, Medha achieves comparable or better
TPOT while processing significantly more requests with an
order of magnitude lower TTFT. Even Sarathi, optimized for

9

Amey Agrawal et al.

0.5 1.0 1.5 2.0
TTFT (s)

0.00

0.25

0.50

0.75

1.00
CD

F

QPS: 0.25

LoongServe
Medha
Medha-FCFS
Sarathi-2K
Sarathi-512

0.5 1.0 1.5 2.0
TTFT (s)

0.00

0.25

0.50

0.75

1.00
QPS: 0.75

0.5 1.0 1.5 2.0
TTFT (s)

0.00

0.25

0.50

0.75

1.00
QPS: 1.25

0.5 1.0 1.5 2.0
TTFT (s)

0.00

0.25

0.50

0.75

1.00
QPS: 1.75

(a) For short-context workloads from ShareGPT4, Medha maintains consistently low latency even at high QPS.

1 10 100 1000
TTFT (s)

0.00

0.25

0.50

0.75

1.00

CD
F

QPS: 0.25

1 10 100 1000
TTFT (s)

0.00

0.25

0.50

0.75

1.00
QPS: 0.75

1 10 100 1000
TTFT (s)

0.00

0.25

0.50

0.75

1.00
QPS: 1.25

1 10 100 1000
TTFT (s)

0.00

0.25

0.50

0.75

1.00
QPS: 1.75

(b) For ShareGPT4 with 5% long requests, Medha achieves up to 30× lower median TTFT, demonstrating effective mitigation of HOL blocking

Figure 15. TTFT latency distribution under varying load conditions for Llama-3 8B on two servers with a total of 16 A100 GPUs.

P50 P90
Percentile

1

10

100

TP
O

T
(m

s)

QPS: 0.25

P50 P90
Percentile

1

10

100
QPS: 1.75

Medha
Medha-FCFS

LoongServe
Sarathi-512

Sarathi-2K

(a) ShareGPT4.

P50 P90
Percentile

100

1000

TP
O

T
(m

s)

QPS: 0.25

P50 P90
Percentile

100

1000

QPS: 1.75

(b) ShareGPT4 with 5% long requests.

Figure 16. Decode latency for Llama-3 8B on 16 A100s. Due to
adaptive chunking, Medha maintains low decode latency while
other chunked prefill-based systems suffer from high latency.

low decode latency, reaches TPOTs as high as 1 second due to
its static chunking approach, which increases costs for pro-
cessing later chunks in long sequences. In contrast, Medha’s
adaptive chunking maintains consistent performance across
varying sequence lengths.

5.3 3D Parallel Performance

With Medha’s baseline established, we evaluate 3DP using
Llama-3 70B on our H100 cluster. We compare two setups
with equal resource budgets: (1) a 2D configuration (SPP-
8) and (2) a 3D configuration (SPP-4, KVP-2), both using
TP8. This isolates the effect of KV cache parallelism. We run
a mixed workload, including 5% long-context (2M token)
requests, scaled from the Medha-SWE trace.

Figure 17 shows TTFT distributions under varying loads.
At lower request rates (0.25 and 0.75 QPS), both configura-
tions perform similarly, with nearly identical CDF curves. At
higher loads (1.25 and 1.75 QPS), a trade-off emerges: the 3D
parallel setup offers slightly lower peak throughput due to a
higher SPP degree, which is more communication-efficient
than KVP and better accelerates prefill. Despite this, both
configurations maintain similar median latencies.

Figure 18 shows the strength of 3DP in the decode phase.
At high load (1.75 QPS), the 3DP setup reduces TPOT by over
2× at both P50 and P90. Even small prefill chunks can delay
co-batched decode requests, especially with 2M-token se-
quences and large models. KVP mitigates this by distributing
KV cache reads, reducing decode latency.
This confirms a core design goal of Medha’s 3D paral-

lelism: balancing prefill throughput with decode responsive-
ness. While the 2D setup favors prefill speed, 3DP delivers
more consistent end-to-end latency—critical for real-world
deployments. It retains the benefits of SPP while combining
the strengths of both approaches.

10

Medha: Efficiently Serving Multi-Million Context Length LLM Inference Requests Without Approximations

1 10 100 1000
TTFT (s)

0.00

0.25

0.50

0.75

1.00
CD

F

QPS: 0.25

Medha-2D
Medha-3D

1 10 100 1000
TTFT (s)

0.00

0.25

0.50

0.75

1.00
QPS: 0.75

1 10 100 1000
TTFT (s)

0.00

0.25

0.50

0.75

1.00
QPS: 1.25

1 10 100 1000
TTFT (s)

0.00

0.25

0.50

0.75

1.00
QPS: 1.75

Figure 17. Impact of the parallelization strategy on TTFT distribution across different load points for Llama-3 70B on 8 servers with a total
of 64 H100 GPUs running ShareGPT4 with 5% long requests. Both Medha-2D (SPP+TP) and Medha-3D (SPP+TP+KVP) maintain comparable
TTFT performance but enable significantly better decode performance by distributing KV cache reads.

P50 P90
Percentile

50
100
150
200

TP
O

T
(m

s)

QPS: 0.25

Medha-2D
Medha-3D

P50 P90
Percentile

50
100
150
200

QPS: 1.75

Figure 18. Comparison of decode performance between paralleliza-
tion strategies for Llama-3 70B with 5% long requests. Medha-3D’s
KV cache parallelism delivers 2× compared to Medha-2D.

5.4 Effectiveness of Medha Scheduler

End-to-End. Figure 21 shows the number of active requests
in the system for both LoongServe andMedha. In LoongServe,
HOL blocking and pool fragmentation lead to a sawtooth pat-
tern, as small prefill requests are frequently delayed behind
longer ones. In contrast, Medha maintains a stable number
of active requests through fine-grained preemption and SLO-
aware scheduling.

Scheduler Ablation. We isolate the impact of Medha’s op-
timized slack-based prefill prioritization and prefill-prefill
batching by comparing it to traditional scheduling policies.
Figure 22 shows the TTFT distributions for four approaches:
FCFS, EDF, LRS (with slack-based prioritization), andMedha’s
scheduler with prefill-prefill batching. The evaluation uses
Llama-3 8B on A100 GPUs in TP8-SPP2 configuration with
a mixed workload of 5% long-context requests.
At low load (0.25 QPS), all policies show similar median

latency but differ in tail behavior. However, at high load (1.75
QPS), the differences become more pronounced. FCFS per-
forms poorly due to unmitigated HOL blocking from long
requests. Despite its success in latency-sensitive systems,
EDF struggles here. While effective at low loads, EDF’s per-
formance degrades at higher loads, resembling FCFS behav-
ior. This occurs because EDF defers long requests until their
deadlines become unfeasible, causing them to be prioritized
only once they pass their deadlines.

We also compare Medha to our adaptation of LRS with
normalization to handle request length heterogeneity. The
key difference between Medha and LRS is space sharing.
While LRS reduces HOL blocking compared to FCFS and
EDF, it results in up to 1.8× higher median latency than
Medha due to the lack of space sharing.

Pool Fragmentation. A common industry technique to
mitigate HOL blocking when serving models with moderate
context lengths (64-128K) is to create separate pools for short
and long requests. While LoongServe dynamically creates
similar pools based on prefill lengths, it does not guarantee
the availability of dedicated resources for all short requests.
To evaluate the effectiveness of this approach, we implement
a version of LoongServe with a reserved pool specifically for
short request processing, as shown in Figure 23.

We compare Medha to this baseline using the same setup
as Section 5.2, reserving two of eight CP instances for short
requests (<8192 tokens) and the rest for long requests. Each
pool uses the standard LoongServe scheduler. This reserva-
tion increases contention for long prefills, leading to up to
20% lower completions for long requests compared to Medha,
and 10% lower than default LoongServe. For the decodes,
LoongServe with reservation achieves slightly lower TPOT
compared to LoongServe as an artifact of overall lower inges-
tion (prefill) rate. Medha consistently achieve lower decode
latency compared to be both the variants of LoongServe.

5.5 Scaling Efficiency

The ultimate measure of Medha’s effectiveness is its ability
to maintain high throughput while scaling to large paral-
lelism degrees. We evaluate this using hardware utilization
metrics Model FLOPS Utilization (MFU) and Model Band-
width Utilization (MBU) [1, 10]. In LLM inference, prefill
phases are compute-bound while decode phases are memory-
bound [35, 36]. Figure 19 shows the MFU for Medha in
the prefill phase (2D SPP+TP), while Figure 20 shows the
MBU for the decode phase (2D KVP+TP). For Llama-3 70B,
we achieve 50–60% MFU across configurations, improving
for longer sequences. Even at the scale of 128 GPUs, we
achieve over 50% MFU. Examining MBU, Figure 20 shows

11

Amey Agrawal et al.

1M 2M 4M 10M
Sequence Length

0

20

40

60

80

100

M
FU

 (
%

)

Llama-3 8B

1M 2M 4M 10M
Sequence Length

0

20

40

60

80

100

M
FU

 (
%

)

Llama-3 70B
SPP Degree: 1 SPP Degree: 2 SPP Degree: 4 SPP Degree: 8 SPP Degree: 16

Figure 19. Model FLOPS Utilization [10] (MFU) for Medha 2D (TP+SPP). It
achieves 50-60% utilization across sequence lengths and parallelism degrees.

4M 10M
Sequence Length

0

20

40

60

80

100

M
BU

 (
%

)

Llama-3 8B

4M 10M
Sequence Length

0

20

40

60

80

100

M
BU

 (
%

)

Llama-3 70B
KV Parallel: 1 KV Parallel: 2 KV Parallel: 4

Figure 20. Model Bandwidth Utilization (MBU) for
Medha 2D (TP+KVP).

0

50

100

150

Ru
nn

in
g

Re
qu

es
ts LoongServe

Prefill
Decode

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0

10

20

30

40

Ru
nn

in
g

Re
qu

es
ts Medha

Prefill
Decode

Figure 21. Active requests over time in LoongServe and Medha
using the 5% long request trace. Note that active requests also
include pending/queued requests from HOL blocking.

P50 P90
Percentile

1
2

10

100

N
or

m
al

iz
ed

 T
TF

T

1.1x1.1x0.9x
1.5x

81x

16x

QPS: 0.25

P50 P90
Percentile

1
2

10

100

1.8x

87x91x

1.6x

56x62x

QPS: 0.75

Medha
Medha-LRS

Medha-FCFS
Medha-EDF

Figure 22. Impact of different scheduling policies on normalized
TTFT latency. Even compared to our modified LRS policy, Medha
scheduler achieves (1.6–1.8×) lower latency, demonstrating the
effectiveness of Medha’s prefill-prefill batching technique.

that Medha’s KVP implementation achieves up to 92% MBU
in optimal configurations, allowing consistent decode per-
formance even with extremely long contexts.
6 Related Work

LLMs for long context. Recent research has focused on
effectively training and serving long-context LLM models.
Some propose new attention parallelism techniques as more
efficient solutions to enable long context [9, 25, 28]. We
discuss and compare them in detail in Sections 2 and 5. A

0.25 0.75 1.25 1.75
QPS

0.6

0.8

1.0

N
or

m
al

iz
ed

Co
m

pl
et

io
n

Ra
te

(a) Normalized completion rate.

P50 P90
Percentile

100

150

200

TP
O

T
(m

s)

1.3x

1.8x 1.6x

2.4x

Medha
LoongServe + Reserv
LoongServe

(b) Decode latency at 0.75 QPS.

Figure 23. Impact of pool fragmentation on long requests for Llama-
3 8B on 16-A100 with 5% long requests. Medha maintains maximum
throughput and lowest latency. Adding a dedicated reserved pool to
LoongServe (+Reserv) to mitigate HOL blocking for short requests
fragments resources and further degrades overall completion rate
for long requests compared to both standard LoongServe.

similar idea to SPP without adaptive chunking, called token-
parallelism, was used in TeraPipe [26] to parallelize the differ-
ent micro-batches of a mini-batch along the token dimension
in order to reduce pipeline bubbles and improve through-
put during training. Medha creates small mixed-batches of
chunked prefill and decodes and then parallelize these mixed
batches to maintain latency targets during inference.
Approximate alternatives. State Space Models (SSMs) [15,
16] offer alternative attention-based architectures to reduce
computational complexity. Other techniques like locality-
sensitive hashing (LHS) [22], compressive attention [34],
and prompt/KV cache compression [21, 24, 56] reduce com-
putation and memory footprint. While these methods trade
accuracy for efficiency, we focus on transformer models that
preserve accuracy by retaining the full context. Medha can
also be combined with approximate techniques.
Request scheduling. Efficient request scheduling has been
extensively studied [13, 29, 38, 39, 42, 45, 50], but existing
approaches have notable limitations when addressing long-
context requests. For example, SRTF scheduling [13, 39] re-
duces median latency but leads to starvation of long requests
due to lack of preemption. LoongServe[49] supports space
sharing among concurrent long requests but lacks preemp-
tion and time-sharing, resulting in significant HOL delays, es-
pecially under FCFS scheduling. Fairness-focused schedulers
like [42] emphasize equitable resource distribution among

12

Medha: Efficiently Serving Multi-Million Context Length LLM Inference Requests Without Approximations

clients but fail to address strict latency SLOs. In contrast,
Medha introduces a slack-based fine time sharing sched-
uling policy with prefill-prefill batching, enabling efficient
mixing of long and short requests to meet latency SLOs.

7 Conclusion
We present Medha, an efficient and scalable long-context
LLM inference system that combines novel adaptive chunk-
ing and 3D Parallelism techniques to achieve fast prefill and
decode up to 10M tokens. By incorporating variable context
support, mixed batching, and a slack-aware scheduling pol-
icy with space-time sharing, Medha dynamically prioritizes
requests based on performance SLOs. This design improves
throughput and resource efficiency while ensuring latency
guarantees across diverse workloads, making Medha a prac-
tical solution for long-context interactive LLM applications.

References
[1] [n. d.]. LLM Inference Performance Engineering: Best Prac-

tices. https://www.databricks.com/blog/llm-inference-performance-
engineering-best-practices.

[2] [n. d.]. ZeroMQ. https://zeromq.org/.
[3] Amey Agrawal, Nitin Kedia, Jayashree Mohan, Ashish Panwar, Nipun

Kwatra, Bhargav S Gulavani, Ramachandran Ramjee, and Alexey Tu-
manov. 2024. Vidur: A Large-Scale Simulation Framework For LLM
Inference. MLSys (2024).

[4] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun
Kwatra, Bhargav S Gulavani, Alexey Tumanov, and Ramachandran
Ramjee. 2024. Taming Throughput-Latency Tradeoff in LLM Inference
with Sarathi-Serve. OSDI (2024).

[5] Amey Agrawal, Ashish Panwar, Jayashree Mohan, Nipun Kwatra,
Bhargav S. Gulavani, and Ramachandran Ramjee. 2023. SARATHI: Ef-
ficient LLM Inference by Piggybacking Decodes with Chunked Prefills.
arXiv:2308.16369 [cs.LG]

[6] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy,
Federico Lebrón, and Sumit Sanghai. 2023. GQA: Training General-
ized Multi-Query Transformer Models from Multi-Head Checkpoints.
arXiv:2305.13245 [cs.CL]

[7] Chenxin An, Shansan Gong, Ming Zhong, Xingjian Zhao, Mukai Li,
Jun Zhang, Lingpeng Kong, and Xipeng Qiu. 2023. L-eval: Instituting
standardized evaluation for long context language models. arXiv
preprint arXiv:2307.11088 (2023).

[8] Sparsh Bhasin. 2024. Enhancing LLM Context Length with RoPE Scal-
ing. https://blog.monsterapi.ai/blogs/enhancing-llm-context-length-
with-rope-scaling.

[9] William Brandon, Aniruddha Nrusimha, Kevin Qian, Zachary Ankner,
Tian Jin, Zhiye Song, and Jonathan Ragan-Kelley. 2023. Striped at-
tention: Faster ring attention for causal transformers. arXiv preprint
arXiv:2311.09431 (2023).

[10] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma,
Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, et al. 2023. PaLM: Scaling Lan-
guage Modeling with Pathways. Journal of Machine Learning Research
24, 240 (2023), 1–113.

[11] Tri Dao. 2023. FlashAttention-2: Faster Attention with Better Paral-
lelism and Work Partitioning. arXiv:2307.08691 [cs.LG]

[12] Apache Foundation. [n. d.]. Apache Ray. https://docs.ray.io/en/latest/
index.html.

[13] Yichao Fu, Siqi Zhu, Runlong Su, Aurick Qiao, Ion Stoica, and Hao
Zhang. 2024. Efficient LLM Scheduling by Learning to Rank. arXiv
preprint arXiv:2408.15792 (2024).

[14] Google. 2024. Gemini – Long context. https://ai.google.dev/gemini-
api/docs/long-context

[15] Albert Gu and Tri Dao. 2023. Mamba: Linear-time sequence modeling
with selective state spaces. arXiv preprint arXiv:2312.00752 (2023).

[16] Albert Gu, Karan Goel, and Christopher Ré. 2021. Efficiently mod-
eling long sequences with structured state spaces. arXiv preprint
arXiv:2111.00396 (2021).

[17] Connor Holmes, Masahiro Tanaka, Michael Wyatt, Ammar Ahmad
Awan, Jeff Rasley, Samyam Rajbhandari, Reza Yazdani Aminabadi,
Heyang Qin, Arash Bakhtiari, Lev Kurilenko, and Yuxiong He. 2024.
DeepSpeed-FastGen: High-throughput Text Generation for LLMs via
MII and DeepSpeed-Inference. arXiv:2401.08671 [cs.PF]

[18] Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu,
Kangdi Chen, Yuhan Dong, and Yu Wang. 2023. FlashDecoding++:
Faster Large Language Model Inference on GPUs. arXiv preprint
arXiv:2311.01282 (2023).

[19] Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu,
Shuang Chen, Hao Feng, Chenxi Wang, Sa Wang, Yungang Bao, et al.
2024. Inference without Interference: Disaggregate LLM Inference
for Mixed Downstream Workloads. arXiv preprint arXiv:2401.11181
(2024).

[20] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui
Wu, et al. 2019. Gpipe: Efficient training of giant neural networks
using pipeline parallelism. Advances in neural information processing
systems 32 (2019).

[21] Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew
Lin, Yuqing Yang, and Lili Qiu. 2023. LongLLMLingua: Accelerating
and enhancing llms in long context scenarios via prompt compression.
arXiv preprint arXiv:2310.06839 (2023).

[22] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. 2020. Reformer:
The efficient transformer. arXiv preprint arXiv:2001.04451 (2020).

[23] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
2023. Efficient Memory Management for Large Language Model
Serving with PagedAttention. In SOSP.

[24] Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. 2024.
InfiniGen: Efficient Generative Inference of Large Language Models
with Dynamic KV Cache Management. In OSDI.

[25] Shenggui Li, Fuzhao Xue, Chaitanya Baranwal, Yongbin Li, and Yang
You. 2021. Sequence parallelism: Long sequence training from system
perspective. arXiv preprint arXiv:2105.13120 (2021).

[26] Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang Zhuo, Hao Zhang,
Dawn Song, and Ion Stoica. 2021. TeraPipe: Token-Level Pipeline
Parallelism for Training Large-Scale Language Models. arXiv preprint
arXiv:2102.07988 (2021).

[27] Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. 2024. World
Model on Million-Length Video And Language With Blockwise
RingAttention.

[28] Hao Liu, Matei Zaharia, and Pieter Abbeel. 2023. Ring At-
tention with Blockwise Transformers for Near-Infinite Context.
arXiv:2310.01889 [cs.CL] https://arxiv.org/abs/2310.01889

[29] Jiachen Liu, Zhiyu Wu, Jae-Won Chung, Fan Lai, Myungjin Lee, and
Mosharaf Chowdhury. 2024. Andes: Defining and Enhancing Quality-
of-Experience in LLM-Based Text Streaming Services. arXiv preprint
arXiv:2404.16283 (2024).

[30] Meta. [n. d.]. The Llama 4 herd: The beginning of a new era of na-
tively multimodal AI innovation. https://ai.meta.com/blog/llama-4-
multimodal-intelligence.

[31] Microsoft Azure. 2024. ND-H100-v5 sizes series. https:
//learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-
accelerated/ndh100v5-series?tabs=sizenetwork.

[32] Microsoft Azure. 2024. NDm-A100-v4 sizes series. https:
//learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-

13

https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices
https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices
https://zeromq.org/
https://arxiv.org/abs/2308.16369
https://arxiv.org/abs/2305.13245
https://blog.monsterapi.ai/blogs/enhancing-llm-context-length-with-rope-scaling
https://blog.monsterapi.ai/blogs/enhancing-llm-context-length-with-rope-scaling
https://arxiv.org/abs/2307.08691
https://docs.ray.io/en/latest/index.html
https://docs.ray.io/en/latest/index.html
https://ai.google.dev/gemini-api/docs/long-context
https://ai.google.dev/gemini-api/docs/long-context
https://arxiv.org/abs/2401.08671
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2310.01889
https://ai.meta.com/blog/llama-4-multimodal-intelligence
https://ai.meta.com/blog/llama-4-multimodal-intelligence
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/ndh100v5-series?tabs=sizenetwork
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/ndh100v5-series?tabs=sizenetwork
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/ndh100v5-series?tabs=sizenetwork
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/ndma100v4-series?tabs=sizebasic
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/ndma100v4-series?tabs=sizebasic
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/ndma100v4-series?tabs=sizebasic

Amey Agrawal et al.

accelerated/ndma100v4-series?tabs=sizebasic.
[33] Maxim Milakov and Natalia Gimelshein. 2018. Online normalizer

calculation for softmax. arXiv preprint arXiv:1805.02867 (2018).
[34] Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. 2024.

Leave no context behind: Efficient infinite context transformers with
infini-attention. arXiv preprint arXiv:2404.07143 (2024).

[35] Pratyush Patel, Esha Choukse, Chaojie Zhang, Íñigo Goiri, Aashaka
Shah, Saeed Maleki, and Ricardo Bianchini. 2024. Splitwise: Efficient
generative LLM inference using phase splitting. In ISCA.

[36] Pratyush Patel, Esha Choukse, Chaojie Zhang, Íñigo Goiri, BrijeshWar-
rier, Nithish Mahalingam, and Ricardo Bianchini. 2023. POLCA: Power
Oversubscription in LLM Cloud Providers. arXiv:2308.12908 [cs.DC]
https://arxiv.org/abs/2308.12908

[37] Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang, Yong-
wei Wu, and Xinran Xu Weimin Zheng. 2024. Mooncake: A
KVCache-centric Disaggregated Architecture for LLM Serving.
arXiv:2407.00079 [cs.DC] https://arxiv.org/abs/2407.00079

[38] Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha,
ChenWang, Hubertus Franke, Zbigniew Kalbarczyk, Tamer Başar, and
Ravishankar K. Iyer. 2024. Power-aware Deep Learning Model Serving
with 𝜇-Serve. In USENIX Annual Technical Conference (USENIX ATC).

[39] Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha,
Chen Wang, Hubertus Franke, Zbigniew T. Kalbarczyk, Tamer Başar,
and Ravishankar K. Iyer. 2024. Efficient Interactive LLM Serving with
Proxy Model-based Sequence Length Prediction. In The 5th Interna-
tional Workshop on Cloud Intelligence / AIOps at ASPLOS 2024.

[40] M Reid, N Savinov, D Teplyashin, Lepikhin Dmitry, T Lillicrap, JB
Alayrac, R Soricut, A Lazaridou, O Firat, et al. 2024. Gemini 1.5:
Unlocking multimodal understanding across millions of tokens of
context. arXiv preprint arXiv:2403.05530 (2024).

[41] Rya Sanovar, Srikant Bharadwaj, Renee St Amant, Victor Rühle, and
Saravan Rajmohan. 2024. Lean Attention: Hardware-Aware Scalable
Attention Mechanism for the Decode-Phase of Transformers. arXiv
preprint arXiv:2405.10480 (2024).

[42] Ying Sheng, Shiyi Cao, Dacheng Li, Banghua Zhu, Zhuohan Li,
Danyang Zhuo, Joseph E Gonzalez, and Ion Stoica. 2023. Fairness
in Serving Large Language Models. arXiv preprint arXiv:2401.00588
(2023).

[43] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. 2019. Megatron-LM: Training
multi-billion parameter language models using gpu model parallelism.
arXiv preprint arXiv:1909.08053 (2019).

[44] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and
Yunfeng Liu. 2024. Roformer: Enhanced transformer with rotary
position embedding. Neurocomputing 568 (2024).

[45] Biao Sun, Ziming Huang, Hanyu Zhao, Wencong Xiao, Xinyi Zhang,
Yong Li, and Wei Lin. 2024. Llumnix: Dynamic Scheduling for Large
Language Model Serving. In OSDI.

[46] Gradient team. [n. d.]. Scaling Rotational Embeddings for Long-
Context Language Models. https://gradient.ai/blog/scaling-rotational-
embeddings-for-long-context-language-models.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017.
Attention is All you Need. In Advances in Neural Information Pro-
cessing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran As-
sociates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[48] Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, Sen Song, and
Yang Liu. 2023. OpenChat: Advancing Open-source Language Models
with Mixed-Quality Data. arXiv:2309.11235 [cs.CL]

[49] Bingyang Wu, Shengyu Liu, Yinmin Zhong, Peng Sun, Xuanzhe Liu,
and Xin Jin. 2024. LoongServe: Efficiently Serving Long-context Large
Language Models with Elastic Sequence Parallelism. In SOSP.

[50] Bingyang Wu, Yinmin Zhong, Zili Zhang, Shengyu Liu, Fangyue Liu,
Yuanhang Sun, Gang Huang, Xuanzhe Liu, and Xin Jin. 2023. Fast dis-
tributed inference serving for Large Language Models. arXiv preprint
arXiv:2305.05920 (2023).

[51] An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoyan
Huang, Jiandong Jiang, Jianhong Tu, Jianwei Zhang, Jingren Zhou,
Junyang Lin, Kai Dang, Kexin Yang, Le Yu, Mei Li, Minmin Sun, Qin
Zhu, Rui Men, Tao He, Weijia Xu, Wenbiao Yin, Wenyuan Yu, Xi-
afei Qiu, Xingzhang Ren, Xinlong Yang, Yong Li, Zhiying Xu, and
Zipeng Zhang. 2025. Qwen2.5-1M Technical Report. arXiv preprint
arXiv:2501.15383 (2025).

[52] Amy (Jie) Yang, Jingyi Yang, Aya Ibrahim, Xinfeng Xie, Bangsheng
Tang, GrigorySizov, Jeremy Reizenstein, Jongsoo Park, and Jianyu
Huang. 2024. Context Parallelism for Scalable Million-Token Inference.
arXiv preprint arXiv:2411.01783 (2024).

[53] Zihao Ye, Lequn Chen, Ruihang Lai, Yilong Zhao, Size Zheng, Junru
Shao, Bohan Hou, Hongyi Jin, Yifei Zuo, Liangsheng Yin, Tianqi Chen,
and Luis Ceze. 2024. Accelerating Self-Attentions for LLM Serving
with FlashInfer. https://flashinfer.ai/2024/02/02/introduce-flashinfer.
html

[54] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and
Byung-Gon Chun. 2022. Orca: A Distributed Serving System for
Transformer-Based Generative Models. In OSDI.

[55] Tao Yuan, Xuefei Ning, Dong Zhou, Zhijie Yang, Shiyao Li, Minghui
Zhuang, Zheyue Tan, Zhuyu Yao, Dahua Lin, Boxun Li, et al. 2024.
Lv-eval: A balanced long-context benchmark with 5 length levels up
to 256k. arXiv preprint arXiv:2402.05136 (2024).

[56] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin
Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Re, Clark
Barrett, Zhangyang Wang, and Beidi Chen. 2023. H_2O: Heavy-
Hitter Oracle for Efficient Generative Inference of Large Language
Models. In Conference on Parsimony and Learning (Recent Spotlight
Track). https://openreview.net/forum?id=w4IRMAJYPk

[57] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xu-
anzhe Liu, Xin Jin, and Hao Zhang. 2024. DistServe: Disaggregating
Prefill and Decoding for Goodput-optimized Large Language Model
Serving. arXiv:2401.09670 [cs.DC]

14

https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/ndma100v4-series?tabs=sizebasic
https://arxiv.org/abs/2308.12908
https://arxiv.org/abs/2308.12908
https://arxiv.org/abs/2407.00079
https://arxiv.org/abs/2407.00079
https://gradient.ai/blog/scaling-rotational-embeddings-for-long-context-language-models
https://gradient.ai/blog/scaling-rotational-embeddings-for-long-context-language-models
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2309.11235
https://flashinfer.ai/2024/02/02/introduce-flashinfer.html
https://flashinfer.ai/2024/02/02/introduce-flashinfer.html
https://openreview.net/forum?id=w4IRMAJYPk
https://arxiv.org/abs/2401.09670

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Long-Context LLM Inference
	2.2 Serving Long Context Queries
	2.3 Limitations of LoongServe

	3 Medha: Key Insights & Mechanisms
	3.1 Chunked Prefills for Long Context
	3.2 Adaptive Chunked Prefills
	3.3 Sequence Pipeline Parallelism (SPP)
	3.4 KV Cache Parallelism (KVP)
	3.5 Medha 3D Parallelism

	4 Medha: System Design and Implementation
	4.1 Medha Architecture Overview
	4.2 Medha Scheduling and Batching Policy
	4.3 Medha KVP Load Balancer
	4.4 Implementation Optimizations

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Capacity Evaluation
	5.3 3D Parallel Performance
	5.4 Effectiveness of Medha Scheduler
	5.5 Scaling Efficiency

	6 Related Work
	7 Conclusion
	References

