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Abstract
Large multimodal models (LMMs) demonstrate impressive
capabilities in understanding images, videos, and audio be-
yond text. However, efficiently serving LMMs in production
environments poses significant challenges due to their com-
plex architectures and heterogeneous characteristics across
their multi-stage inference pipelines.
We present the first comprehensive systems analysis of

two prominent LMM architectures, decoder-only and cross-
attention, across six representative open-source models, re-
vealing key systems design implications. We also present an
in-depth analysis of production LMM inference traces, un-
covering unique workload characteristics, including variable,
heavy-tailed request distributions and bursty traffic patterns.

Based on these insights, we proposeModServe, a modular
LMM serving system that decouples stages for independent
optimization and adaptive scaling.ModServe dynamically
reconfigures stages and handles bursty traffic with modality-
aware scheduling and autoscaling to meet tail latency SLOs
while minimizing costs.ModServe achieves 3.3–5.5× higher
throughput (leading to 25–41.3% cost saving) while meeting
SLOs on a 128-GPU cluster with production traces.

1 Introduction
The rapid advancement in generative AI has led to the devel-
opment of large multimodal models (LMMs) capable of pro-
cessing inputs across various modalities such as text, image,
video, and audio. These models have demonstrated remark-
able capabilities in tasks like image captioning [5, 17, 35],
visual question answering [46, 47], and multimodal dialogue
systems [8, 25, 52]. This has led to a rapid adoption of LMMs
in production services, including online applications where
latency service-level objectives (SLOs) are critical.

Monolith (vLLM)

Decoupled (ModServe)

+

Figure 1. Impact of image workload on LMM inference
TTFT for state-of-the-art implementation of Llama3.2-11B
on vLLM vs. ModServe with an 8-A100 GPU server. The
“Monolith” setup deploys the full model using 8 GPUs while
the “Decoupled” setup deploys the LLM backend on 4 GPUs
and four image encoders on the other 4 GPUs.

Unlike traditional large language models (LLMs) that pro-
cess purely textual inputs using a single component, a decoder-
based transformer architecture [55], LMMs handle funda-
mentally different types of inputs, each requiring distinct pro-
cessing approaches. This heterogeneity introduces unique
serving complexities that demand novel analysis and serving
strategies. For Image-Text-to-Text models [21], the inference
pipeline consists of multiple specialized stages: image prepro-
cessing to transform raw images into tensor representations,
image encoding to convert these tensors into image tokens,
and a language model backend that combines text prompts
with image tokens to generate text outputs. Currently, these
stages are typically served as a monolithic system [4, 23, 56],
where all components are integrated within a single serving
instance and scaled together as a unified entity.

Unfortunately, existing monolithic inference serving sys-
tems fail to account for multimodality, making them unable
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to scale effectively while meeting time-to-first-token (TTFT)
SLOs, which now include image processing and encoding
times. Figure 1 shows how a monolithic deployment strug-
gles to scale as the number of images per request increases
(a common scenario in multi-image or video workloads) re-
sulting in sharp TTFT degradation. As a result, image-heavy
requests can result in head-of-line (HoL) blocking, reducing
system responsiveness and causing overprovisioning.
OurWork. In this paper, we present the first comprehensive
systems analysis of two leading LMM architectures: cross-
attention (CroAttn) and decoder-only (DecOnly), on both
open-source LMMs and novel production LMM inference
traces in Azure datacenters. We analyze their multi-stage
inference pipelines, performance-resource tradeoffs, and pro-
duction workload patterns, including variable request rates,
diverse multimodal inputs, and bursty traffic. We focus on
Image-Text-to-Text but our insights extend to other multi-
modal scenarios, such as Video-Text-to-Text, where videos
are processed as image frame sequences [26], andAudio-Text-
to-Text tasks [19], which share similar model architectures
with the models we study.

Our analysis identifies three key insights for optimizing
LMM inference. First, different LMM inference stages exhibit
diverse performance characteristics and varying sensitiv-
ity to resource and model configurations (e.g., batching and
model sharding), necessitating decoupled execution. Sec-
ond, image encoding is a major bottleneck for TTFT, requir-
ing efficient encoder parallelization to reduce both latency
and HoL blocking. Finally, production multimodal traffic ex-
hibits distinct bursty patterns driven by increased images per
request, highlighting the need formodality-aware routing

strategies to manage bursts and mitigate tail latency spikes.
Based on these insights, we proposeModServe, a novel

modular architecture for scalable and resource-efficient
LMM serving which directly addresses the challenges identi-
fied in our analysis. ModServe separates image- and text-
specific inference stages into distinct instances for decoupled
execution. In ModServe, Image Instances handle image pre-
processing and encoding, while Text Instances manage LLM
prefill and decoding (Figure 1). Text-only requests are served
by Text Instances, whereas image-text requests go through
Image Instances where images are converted to tokens before
being forwarded to Text Instances for text generation.

ModServe’s modular architecture unlocks stage-specific
optimizations. ModServe manages Image and Text Instances

independently with stage-aware autoscaling, model shard-
ing, and batching. By autoscaling the stages separately, it
minimizes resource overprovisioning. For example, during
image-driven bursts observed in production traffic, Image

Instances can scale out independently, making ModServe
more resource-efficient than monolithic inference systems.
To navigate the image encoding bottleneck, ModServe par-
allelizes encoding of a single request across multiple Image

Instances (Figure 1), leveraging our finding that the images
within a request do not attend to each other during encoding,
and hence the requests can be parallelized at the image level.

Further, to manage image-driven bursts,ModServe imple-
ments modality-aware routing for Image and Text Instances.
For example, images from image-text requests are routed to
Image Instances with the fewest pending image tokens to
encode, reducing HoL blocking and tail latency spikes.
We implementModServe on top of a high-performance

inference system, vLLM [23], and demonstrate the effec-
tiveness of ModServe through extensive evaluations on
a 16-server (128 GPUs) cluster running production Azure
LMM inference traces. Compared to state-of-the-art base-
lines, ModServe achieves 3.3–5.5× higher throughput

under static allocation and reduces LMM serving cost by

25–41.3% while meeting the P99 TTFT SLOs.
Summary. This paper makes the following contributions:
• A comprehensive system characterization on LMM serv-
ing, examining performance profiles and resource uti-
lization patterns across diverse workloads in both open-
source LMM deployments and production environment.

• A large open-source dataset containing sampled produc-
tion Azure LMM inference traces.

• Design and implementation of ModServe, a modular ar-
chitecture for scalable and efficient LMM serving.

• A thorough evaluation of ModServe in a 128-GPU cluster
using large-scale production traces.

2 Large Multimodal Models Background
LMMs extend text-centric LLMs by integrating multimodal
understanding capabilities for tasks like visual question an-
swering [47] and computer-using agents [37, 40]. Figure 2
shows the typical pipeline of LMM inference in visual un-
derstanding tasks [21], which consists of three key stages:
(1) image preprocessing, where raw images are transformed
into uniform-sized tiles; (2) image encoding, where an en-
coder extracts visual features and produces a sequence of
image tokens; and (3) text generation, where an LLM back-
end processes the image and text tokens to generate output
text tokens. There are two dominant LMM architectures
that differ in how the LLM backend handles image tokens
and text tokens: (1) decoder-only (DecOnly), used in mod-
els like DeepSeek’s Janus [6], LLaVA-OneVision [26], In-
ternVL [8], and NVLM-D [11]; and (2) cross-attention-based
(CroAttn), found in Llama-3.2 Vision [10], NVLM-X [11],
and Flamingo [2]. In this work, we analyze six open-source
LMMs (listed in Table 1) across these architectures, varying
image encoder sizes (400M–6B) and LLM scales (7B–72B).
Image Preprocessing. LMMs typically follow three pre-
processing steps on CPU: (1) resize, rescale, pad, and nor-
malize the raw image, (2) segment it into tiles [8, 10, 11]
or patches [26], and (3) apply tile/patch-level transforma-
tions and sampling. The number of tiles varies, with higher
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Table 1. Model configurations for six representative open-source LMMs with an example input image of 896 × 896 pixels.

LMM Model Name Abbreviation Architecture Tile Size Image Encoder Total Image Token Size LLM Backend Tensor Avgerage Accuracy
(#Params) (#𝑇𝑖𝑙𝑒𝑠 × #𝑇𝑜𝑘𝑒𝑛𝑠𝑃𝑒𝑟𝑇𝑖𝑙𝑒) (#Params) Parallelism (HF-VLM [13])

Llama 3.2 Vision 11B [32] Llama3.2-11B Cross-attention 560×560 ViT-H/14 (630M) 4 × 1601 × 1 = 6404 Llama 3.1 (8B) TP-4 57.8%

Llama 3.2 Vision 90B [33] Llama3.2-90B Cross-attention 560×560 ViT-H/14 (630M) 4 × 1601 × 1 = 6404 Llama 3.1 (70B) TP-8 63.4%

LLaVA-OneVision 7B [29] LLaVA-OV-7B Decoder-only 384×384 SigLIP (400M) 10 × 729 × 1 = 7290 Qwen2 (7B) TP-4 60.1%

LLaVA-OneVision 72B [28] LLaVA-OV-72B Decoder-only 384×384 SigLIP (400M) 10 × 729 × 1 = 7290 Qwen2 (72B) TP-8 68%

InternVL-2.5 26B [9] InternVL-26B Decoder-only 448×448 InternViT (6B) 5 × 256 = 1280 InternLM (20B) TP-8 71.6%

NVLM-D 72B [12] NVLM-D-72B Decoder-only 448×448 InternViT (6B) 5 × 256 = 1280 Qwen2-Instruct (72B) TP-8 67.6%

Image 
Encoding

Text 
Tokenization

Text Prompt

Image 
Preprocessing …

…

Image tokens

Text tokens

Feed-forward
Self-Attention

    Prefill and Decode 
DecOnly (Decoder-only)

Transformer Layers Feed-forward
Cross-attention 

Layer

Prefill and Decode
CroAttn (Cross-attention)

Transformer Layers

Self-attention
… …

… Text tokens

…

Text tokens Image tokens

Image(s)

…Output text tokens

LLM Backend

Figure 2. Model architecture for decoder-only and cross-
attention-based LMMs in Image-Text-to-Text tasks [21].

image dimensions resulting in more tiles, which ultimately
increases the number of image tokens. For example, an im-
age with 896×896 pixels generates 4, 5, or 10 tiles of different
sizes after preprocessing for six open-source LMMs (Table 1).

Image Encoding. The image encoder takes processed image
tiles as input and produces image tokens that are then passed
to the language model backend. Today’s image encoders pre-
dominantly use the vision transformer architecture [3] to
extract visual features from images. Table 1 shows that dif-
ferent LMMs use different encoders [3, 8, 26, 58], leading to
variations in the number of image tokens when running im-
age encoders on the same ShareGPT-4o dataset [7] (Figure 3).
This is due to differences in the number of tiles and image
tokens generated per tile by each encoder.

Text Generation. Image and text prompt tokens are com-
bined and passed through LLM prefill and decode to generate
output tokens, typically using one of two architectures:

Decoder-Only (DecOnly) LMMs.An unmodified LLM backend
is reused in DecOnly LMMs (e.g., LLaVA-OV reuses Qwen2
LLM [26]), processing text and image tokens uniformly (“De-
cOnly” box in Figure 2). While valued for their simplicity

0K 1K 2K 3K 4K 5K 6K 7K 8K
Number of Image Tokens per Request

0.0

0.2

0.4

0.6

0.8

1.0

CD
F 1601*4 tokens

256*13 tokens

256*7 tokens
729*12 tokens

Llama-3.2 11B/90B
LLaVA-OV 7B/72B
InternVL 26B
NVLM-D 72B

Figure 3. Distribution of image token count (per request) for
open-source LMMs on ShareGPT-4o dataset [7]. Different
LMMs (e.g., LLaVA-OV 7B and 72B) can share the same image
encoder so the number of image tokens is the same.

and unified modality handling, DecOnly models often re-
quire long sequences for high-resolution images, resulting
in computational inefficiencies during inference.

Cross-Attention (CroAttn) LMMs. Unlike DecOnly LMMs,
which leave the LLM backend unchanged, CroAttn-based
models (e.g., Llama-3.2 Vision) integrate cross-attention lay-

ers to process image tokens, treating visual inputs like a
“foreign language” in the LLM backend. While more complex
to train, they improve inference efficiency by avoiding full
image token unrolling in the LLM decoder, making them
ideal for high-resolution inputs. Self-attention operates on
text tokens, while the cross-attention layer attends to both
text and image tokens (“CroAttn” box in Figure 2).

SLOMetrics for LMM Inference. Production LMM serving
systems need to satisfy SLOs defined on tail latency (e.g.,
P99) for worst-case performance. These SLO metrics include
Time to First Token (TTFT) and Time Between Tokens (TBT).
TTFT measures the latency from query (text/images) to the
first response token, critical for interactive applications. In
contrast to text-centric LLM serving, LMM TTFT includes
the following stages of LMMs inference pipeline: (1) image
preprocessing, (2) encoding, and (3) language model prefill
time. TBT captures the delay between consecutive token
generations during decoding, affecting output fluency. As
multimodal preprocessing and encoding primarily influence
TTFT, in this work, we focus on TTFT while leveraging
state-of-the-art techniques [1, 41] to optimize TBT.
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Figure 4. Image dimension distribution and text prompt
length distribution of ShareGPT-4o Image dataset [7].

An ideal LMM-serving system should meet TTFT/TBT
SLOs while maximizing request throughput (i.e., goodput)
and compute utilization (GPU cost).
LMM Deployments Today. State-of-the-art serving frame-
works [4, 23, 56] deploy LMMs asmonolithic systems to meet
latency SLOs. In this setup, all inference components (i.e.,
image preprocessor, image encoder, and LLM backend) are
co-located on the same hardware server as a single unit.
These tightly coupled components share uniform batching
and model parallelism strategies across the pipeline. Table 1
details the default model parallelism for our open-source
LMMs. While this monolithic design is straightforward to
implement and common in open-source LMM serving, it
limits flexibility and suffers from sharp TTFT degradation
under image-heavy workloads (Figure 1).

3 Motivation and LMM Characterization
To further understand the limitations of monolithic deploy-
ments and explore unique characteristics that distinguish
LMM serving from text-centric LLM serving, we characterize
open-source LMMs in the Image-Text-to-Text category [21].
We evaluate the performance and resource characteristics
of heterogeneous inference stages under varying image in-
puts and model configurations (Section 3.1). Moreover, to
understand multimodal traffic patterns at scale, we analyze
sample production traces from one production LMM infer-
ence cluster in Azure (Section 3.2).
Characterization Setup. The following is our setup:
Models. We use six representative open-source LMMs across
two different architectures (DecOnly and CroAttn) as listed
in Table 1. We deploy the models on vLLM [23] in BF16.
Dataset. We use the open-source ShareGPT-4o dataset [7],
which includes 50K images of varying resolutions and text
prompts from multimodal GPT-4o as shown in Figure 4.
Hardware. Our setup features a DGX-A100 server with 8
NVIDIAA100 GPUs (80GB each) connected via NVLINK [34].
It has 96 AMD Epyc™ 7V12 CPU cores and 1900 GiB DRAM.

3.1 Characterization on Open-Source LMMs
We characterize open-source LMMs to understand how dif-
ferent inference stages impact performance and resource

efficiency. Additionally, we compare DecOnly and CroAttn
models to highlight the need for model-specific optimization.

Per-stage Latency Breakdown. Figure 5 plots the split-up
of TTFT across the three stages that comprise it; image pre-
processing, image encoding, and LLM prefill. There are three
key takeaways. First, image preprocessing, which occurs on
the CPU, contributes minimally to the overall TTFT, while
image encoding time contributes to a major portion in TTFT
(especially for CroAttn models). For instance, 79% and 65%
of TTFT in Llama3.2-11B and Llama3.2-90B are from image
encoding. For DecOnly models such as InternVL-26B and
NVLM-D-72B, image encoding latency accounts for 25% and
54% of TTFT. Second, the image encoding time depends on
the encoder model size. For instance, scaling from SigLIP-
400M (in LLaVA-OV-7B) to InternViT-6B (in InternVL-26B),
the median image encoding time increases by 10×. Finally,
prefill computation is more efficient in CroAttn models be-
cause image tokens are attended to only in the CroAttn
layers, as previously discussed in Section 2.

Insight 1: A major portion of the TTFT is spent on image

encoding, particularly for CroAttn models, making image

encoding optimization critical to meet TTFT SLOs.

Compute Characteristics of LMM Stages. Image prepro-
cessing on CPU and image encoding on GPU are compute-
intensive processes. Figure 6a plots the impact of varying the
number of CPU cores on preprocessing latency. Preprocess-
ing is CPU-intensive and benefits from trivially parallelizing
across cores. Both stages exhibit linear latency scaling with
batch size, saturating compute without significant through-
put gains from increased batching as shown in Figures 6b
and 6c, respectively. Figure 6d further plots the GPU utiliza-
tion metrics for a request batch size of one during image pre-
processing and image encoding. We observe a consistent SM
core activity near 100% during image encoding, with average
DRAM utilization below 30%. Image encoding is, therefore,
typically compute-bound, resembling the language model’s
prefill phase [22]. Moreover, when a request has multiple
images in the input prompt, there is no compute dependency
between the images during image encoding; hence, image
tiles can be parallelized across multiple encoders.

Insight 2: Image preprocessing and encoding are both

compute-intensive similar to LLM prefill stage. The inde-

pendence of image computations in a multimodal request

enables parallelization of image preprocessing and encoding

across multiple instances.

Compute characteristics of prefill and decode phases of
the LLM backend have been well studied; the prefill phase is
typically compute-bound, while the decode phase is memory-
bound [1, 22, 41]. However, Figure 5 shows that LLM prefill
is more efficient in CroAttn models than inDecOnly models,
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Figure 5. Per-stage request latency breakdown analysis across representative open-source LMMs deployed using default
tensor parallelism (TP) as described in Table 1. TTFT (dashed line) is the sum of the latency from each inference stage.
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Figure 6. Compute characteristics of image preprocessing and encoding. Both stages are compute-bound.

resulting in reduced compute boundness and an interesting
tradeoff we describe below.

Latency-Accuracy Profiles across LMMs. Figure 7 shows
the accuracy versus prefill/TTFT efficiency for different mod-
els. When comparing models with similar language model
backend sizes across both architectures (e.g., Llama3.2-11B
vs. LLaVA-OV-7B and Llama3.2-90B vs. LLaVA-OV-72B vs.
NVLM-D-72B), we observe that CroAttn models typically
have up to an order of magnitude lower LLM prefill time,
leading to lower TTFT. However, the CroAttn models usually
achieve 5 points lower accuracy compared to their DecOnly
counterparts on the Open VLM leaderboard [13]. For ex-
ample, Llama3.2-90B scores 63.4, while the similarly sized
LLaVA-OV-72B scores 68, but with significantly higher prefill
latency and TTFT than Llama3.2-90B.

Insight 3: DecOnly models exhibit 10× worse prefill la-

tency than similar-sized CroAttn models, leading to less

TTFT SLO headroom for the image encoding and thus ne-

cessitating higher scalability for image workloads.

Impact of Batching. In today’s monolithic deployments, a
single batch size is applied across all stages of the LMM on
the GPU, which does not strike a balance between latency
and throughput given heterogeneous compute characteris-
tics observed across different stages. Figure 8 shows how
the batch size affects the median latency of each LMM stage
across architectures. As the batch size increases, the latency

Better

Figure 7. LMM accuracy vs. prefill/TTFT efficiency.
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Figure 8.Median latency vs. batch size per LMM stage on
GPUs. Latency is normalized to that at batch size one.

grows at varying rates, reflecting each stage’s differing sen-
sitivity to batch size and compute intensity.
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LMMs. Latency is normalized to that of TP-8.

Compute-intensive stages like image encoding and LLM
prefill (in DecOnly models with longer image token inputs)
show limited throughput gains and rising latency beyond
small batch sizes. In contrast, the memory-bound decode
stage benefits from linear throughput scaling. Due to their
low text token count, CroAttn models uniquely gain from
prefill batching, diverging from traditional LLM trends where
prefill saturates compute even at a batch size of one. Notably,
DecOnly model NVLM-D with fewer image tokens also ex-
hibits certain benefits in batching.
Insight 4: The effectiveness of batching varies for each

LMM component and is model-specific. LMM request batch-

ing should thus be tailored to each stage.

Impact of Parallelism. Monolith deployments also limit
the flexibility of model sharding within a GPU server which
is typically done through tensor parallelism (TP) [53]. Fig-
ure 9 shows how increasing TP degrees affects latency across
LMM stages. In Llama3.2-11B, the lowest LLM prefill latency
occurs at TP-8, image encoding at TP-4, and TBT at TP-1.
At TP-8, encoding latency rises due to the tradeoff between
compute intensity and inter-GPU communication, making it
inefficient to split a small 630M encoder across eight GPUs.

In contrast, NVLM-D-72B, with a larger 6B image encoder,
sees a 1.3× latency reduction when increasing TP from 4 to
8. However, this comes with diminishing returns relative to
resource cost. To balance throughput and latency, operators
can deploy two TP-4 encoders for higher throughput or one
TP-8 encoder for lower latency, both using eight GPUs.
Insight 5: Treating the image encoder and LLM backend

as a monolith limits parallelism flexibility and degrades

performance. Decoupling them enables independent scaling

and optimized efficiency through pipelining.

3.2 Production LMM Trace Analysis
Building on the insights from open-source LMM characteriza-
tion, we further analyze multimodal traffic patterns at scale,
leveraging production traces from one of Azure’s LMM in-
ference clusters. The traces capture a sample of multi-tenant
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Figure 10. Aggregated prompt/out token rate, request ar-
rival rates in queries per minute (QPM), and image rate for
a production LMM inference cluster in one week.

traffic, including both text-only and image-text requests. Our
study focuses on (1) temporal and burstiness patterns and
(2) heterogeneity of multimodal requests. We plan to open-
source these production traces.
Temporal Patterns and Burstiness. Figure 10 shows the
traffic of text-only and image-text requests separately to
understand their dynamic behavior and overall impact on
the system. The traces are collected over a span of one week.
To understand the traffic patterns, we report the timeline of
prompt (input) token rate, output token rate, request arrival
rate, and input image rate. Our analysis reveals two key
characteristics in production LMM inference:
• Diverse Arrival Patterns. Image-text requests show up to
5× higher prompt token rates than text-only requests. In
addition, their peak and trough occurrences are largely
independent, showing minimal correlation.

• Image-Driven Bursts. Image-text requests experience sig-
nificant burstiness, not only due to higher request arrival
rates but also increased images per request (e.g., video
workloads). As a result, existing LLM traffic prediction
methods [50] (which work well for workloads with diur-
nal patterns) have a high average error rate of 79%.

Request Heterogeneity. Figure 11a shows that prompt
lengths vary significantly across modalities. Both image-
text and text-only requests follow a heavy-tailed power-law
distribution (𝛼=4.4 and 2.9, respectively) where a higher 𝛼
means a heavier tail with more extreme events occurring
more frequently. In addition, image-text requests have longer
median prompts due to image tokens but shorter tails than
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0 25 50 75 100
Image Token % in a Request

0

200

400

600

La
te

nc
y 

(m
s)

Image Preprocessing Image Encoding LLM Prefill

0 25 50 75 100
Image Token % in a Request

0

200

400

600
Attn Layer
MLP Layer
Cross Attn
Cross Attn MLP
Other

Figure 12. Llama3.2-11B (CroAttn) TTFT breakdown (left)
and LLM prefill time breakdown (right) under various image-
to-text token ratios in a request.

text-only requests. Figure 11b shows that the number of
images per request also varies significantly with a heavy tail.
In addition, among the top three services issuing text-image
requests, we observe high inter-service variability. Some
services process 16× more images per request than others.
Comparing the image dimension distribution in our pro-

duction traces with that of ShareGPT-4o image dataset [7],
we observe similar distributions, with median image width
and height around 500 pixels and P95 exceeding 1000 pixels.
Insight 6: Production LMM image traffic exhibits bursty

behavior independent of traffic patterns of text requests.

Serving systems must dynamically scale resources to handle

modality-specific bursts efficiently.

Impact of Mixed Modality. Given LMM requests’ input
heterogeneity, Figure 12 shows how varying image token
percentages within a single request affects TTFT and LLM
prefill time in a CroAttn model Llama3.2-11B, with detailed
latency breakdowns. DecOnly models have no prefill time
variation with varying token ratios as image and text tokens
are treated in the same manner. We fix the total context
length of each request at 16K tokens while varying the per-
centage of image tokens by adjusting the number of images
(0–10 images in each case with 1601 tokens per image).

TTFT increases with the percentage of image tokens in a
request due to the increased image encoding computation, re-
sulting in a 1.5× TTFT degradation when transitioning from
text-only to image-only inputs. However, this latency gain
is significantly lower than DecOnly models because CroAttn

models attend to image tokens only within the CroAttn lay-
ers, resulting in reduced LLM prefill time (shown in green)
and partially offsetting the overhead from image encoding.
The right figure further illustrates this by breaking down
the layer-wise LLM prefill time, highlighting a reduction in
self-attention compute (i.e., “Attn Layer” and “MLP Layer”)
as the proportion of image tokens increases. Although the
cross-attention computation peaks at the 50% image tokens
(due to the dependency on both image and text tokens), it
contributes much less than self-attention computation be-
cause there are only 4 CroAttn layers (out of 40 layers).

Insight 7: DecOnly models maintain consistent prefill

times regardless of tokenmodality, making total token count

the key factor for request routing. In contrast, CroAttn mod-

els experience reduced prefill latency as the image token

percentage increases, requiring a modality-aware routing

strategy that balances both text and image token load.

4 ModServe Design and Implementation
Based on our insights from the characterization study of
open-source LMM benchmarks and production LMM work-
loads, we proposeModServe, a novel decoupled architecture
for scalable and resource-efficient LMM serving.

The key idea in ModServe is to separate image- and text-
specific inference stages into distinct instances, given the
need to optimize each stage separately (Insight 1 and 3) and
enable seamless interaction between stages. Unlike mono-
lithic infrastructures, ModServe enables independent opti-
mization of each stage, improving resource efficiency while
meeting performance SLOs. This decoupling also enables
modality-aware request serving, addressing tail latency, het-
erogeneous bursts, and resource contention.

Overview. Figure 13 showsModServe’s design. A pool of
Image Instances handles image preprocessing and encoding
of image-text requests. The resulting image tokens are passed
to a pool of Text Instances, which performs LLM prefill and
decode operations. Text-only requests bypass the image com-
ponents and are queued directly at the Text Instances. Two
pools are managed by the Image and Text Pool Managers.

ModServe adopts a hierarchical architecture inspired by
DynamoLLM [50]. Onboarding any new LMMs (e.g., Llama3.2-
11B) starts with an offline profiling phase to build model-
stage profiles that capture how model configurations and
load impact performance (Section 4.1).ModServe uses these
profiles to guide model configuration and instance scaling.
After model deployment, ModServe then reconfigures re-
sources periodically to adapt to workload patterns, scaling
for increased image-text requests (or vice versa) (Section 4.2).
For each request, ModServe selects the optimal LMM Text
or Image Instances for execution (Section 4.3).
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Figure 13. Overview of the ModServe architecture.

4.1 Offline LMM Profile Generation
When onboarding a new LMM,ModServe generates resource-
performance profiles by characterizing the image encoder
and LLM backend independently. This profiling runs con-
trolled inference workloads with varying model parallelisms
(e.g., TP-2 and TP-8), batch sizes, and load (i.e., image tokens
per second for image encoders and prompt tokens per second
for LLM backends) to capture per-stage performance charac-
teristics. To efficiently model performance across different
load conditions,ModServe profiles a set of representative
load levels (up to the maximum throughput) and extrapolates
the behavior for intermediate loads. The resulting profiles
take load, parallelism, and batch size as inputs to predict key
performance metrics, including encoding latency for Image

Instances and prefill time and TBT for Text Instances. The
Pool Managers use these profiles to guide operational deci-
sions (Section 4.2): (1) pool autoscaling to meet latency SLOs
without overprovisioning, (2) model sharding that selects
optimal TP degrees, and (3) max batch sizing for each stage.

Since multiple LMMs may share the same image encoder
or LLM backend,ModServe minimizes overhead by reusing
model profiles across deployments. These profiles are cached
in cluster-local storage and synchronized via a global reposi-
tory, enabling efficient sharing across clusters.

4.2 Decoupled Resource Management
ModServe’s decoupled approach to resource management
stems from our insights on stage-specific performance dis-
parities in batching (Insight 4), independent scaling benefits
(Insight 5), and modality-specific traffic patterns (Insight 6).
Specifically,ModServe periodically reconfigures resources
(i.e., every five minutes to match the autoscaling overhead)
to align with workload demands.
The Image Pool Manager maintains a pool of Image In-

stances, which preprocess images on CPU and encode image
workloads on GPU for image-text requests. Meanwhile, the
Text Pool Manager manages a pool of Text Instances respon-
sible for the prefill and decode stages of both image-text

and text-only requests. Based on model profiles (Section 4.1),
each manager independently optimizes pool autoscaling,
model sharding, and max batch sizing to minimize costs
while meeting performance SLOs.

Before their online operation, the initial number of Im-
age Instances (𝑁𝑖 ) is determined using the median image
QPS multiplied by the median image encoding latency. The
number of Text Instances (𝑁𝑡 ) is set as 𝑁𝑖 divided by the
median number of images per request, based on historical
LMM inference traces. If no history is available, ModServe
initially overprovisions resources to ensure reliability.
Token-Aware Pool Autoscaling. The Pool Managers dy-
namically scale the number of Image and Text Instances based
on real-time workload demands. For example, a surge in
image-heavy requests leads to more image preprocessors
and encoders, while an increase in text requests or requests’
prompt lengths triggers the Text Pool Manager to scale LLM
replicas to handle variations in prefill.
The number of replicas per stage is computed as ⌈𝑀𝐿

𝑀𝐶
⌉

where𝑀𝐿 is the modality-specific load (e.g., prompt token-
s/sec for Text Instances, image tokens/sec for Image Instances)
and𝑀𝐶 is the maximum capacity each stage can handle with-
out violating SLOs, based on the offline LMM profiling data.
Unlike traditional web service autoscaling, which reacts to
request rates,ModServe optimizes scaling based on token
throughput (tokens/s), capturing variations in both request
rates and request sizes (Insight 6 and Figure 11a).

For Image Instances, image token counts are precomputed
based on static mapping from image dimensions (Figure 3).
Autoscaling of Text Instances is based on text token load in
CroAttn models but total tokens in DecOnly models due
to homogeneous self-attention across modalities. Advanced
autoscaling hysteresis prevention techniques [60] can be em-
ployed to avoid excessive scaling actions caused by transient
workload fluctuations but are not covered in this paper.
Model Sharding. The Pool Managers also determine in-
stance sharding for optimal tensor parallelism (TP) for im-
age encoders and LLM backends. Our characterization (Sec-
tion 3.1) shows image encoders achieve peak throughput
with lower TP than LLMs. Therefore, the model sharding
degree for each instance is configured separately for maxi-
mum throughput while ensuring SLO attainment on TTFT
and TBT. By decoupling the components, ModServe en-
sures independent sharding, optimizing parallelism without
unnecessary synchronization overhead.
When scaling beyond a single GPU server, ModServe

prioritizes autoscaling over pipeline parallelism (PP) [48]
to maximize throughput, seamlessly transitioning to batch-
level optimizations as needed.
Identifying Max Batch Size. For each stage, the maximum
batch size is configured to maximize throughput while meet-
ing latency SLOs. Batch sizing decisions are guided by the
offline model-stage profiles, which predict their impact on
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encoding and decoding latencies. Image Instances may forgo
batching as small max batch sizes often achieve optimal GPU
utilization (Insight 3). In contrast, Text Instances batch re-
quests when beneficial, optimizing token throughput during
prefill/decode based on TTFT and TBT SLOs, particularly
for CroAttn LMMs (Insight 4).

4.3 Modality-Aware LMM Request Serving
For each incoming LMM request, ModServe dynamically
routes and schedules workloads to balance load across Image

and Text Instances. The Pool Managers optimize this process
to minimize queueing delays and improve TTFT latency.

Request Routing Across Instances. To mitigate tail TTFT
latency surges caused by modality-specific bursts and queu-
ing delays, ModServe employs a modality-aware routing
strategy that balances image and text workloads indepen-
dently. Traditional request-level LLM load balancing (e.g.,
round-robin, memory-based [51]) overlooks the computa-
tional intensity of image encoding (Insight 2), making them
vulnerable to load imbalances during image bursts (Insight 6),
leading to high tail latencies.
Instead, ModServe routes requests by input modality.

Image-text requests are assigned to Image Instances with the
least image-token load. Large requests (i.e., those with more
images) are consequently distributed across multiple Image

Instances for parallel processing and encoding (Insight 2),
preventing degraded batching performance that would occur
if all images were routed to a single instance. This effectively
enables a form of request chunking [1], where images in
a large request can be processed in an interleaved manner
with other requests, reducing HoL blocking and improving
scheduling flexibility.

To route traffic between Text Instances, text-only requests
and image-text requests with completed image tokens are di-
rected to the Text Instance with the least total pending tokens
(text+image) for DecOnly models and the least total pend-
ing text tokens for CroAttn models because of the attention
mechanism difference between the two model architectures
(Insight 7). Modality-aware routing enables parallel image
encoding and dynamically adapts to image or text traffic
bursts, reducing queueing delays and improving TTFT, par-
ticularly at the tail.

Instance Request Scheduling. At the instance level, Mod-
Serve minimizes resource contention between image-text
and text-only requests with priority scheduling based on
modality and prompt size. While decoupling isolates image
and text processing, contention can still arise in Text In-

stances, where both request types share prefill processing.
This issue is particularly pronounced in DecOnly LMMs,
which exhibits lower efficiency during the prefill stage (Fig-
ure 8). Performance degradation occurs from increased batch-
ing latency for all requests, while non-batched processing

introduces HoL blocking and high queueing delays at tails
due to request heterogeneity (Figure 11).
To address these challenges, ModServe replaces tradi-

tional FIFO scheduling–which may exacerbate HoL block-
ing [42, 45]–with an SLO-driven scheduling strategy that can
prioritize shorter requests (e.g., text-only queries or small
image-text requests with tight SLOs) to maintain low latency.

Pool Managers continuously monitor SLO attainment and
trigger pool autoscaling when the rate falls below a pre-
defined threshold (default 0.99 with a sensitivity study in
Section 5.3), ensuring adaptive resource allocation under dy-
namic workloads (especially in cases of unpredictable traffic).
ModServe can work with state-of-the-art batch scheduling
techniques [1, 41] to optimize TBT during the decode stage,
which we leave to future work as we do not observe TBT
degradation in LMM characterization (Insight 4).

Image Token Transfer.Once image processing is complete,
ModServe transfers image tokens from Image Instances to
Text Instances via a pull-based RDMA mechanism. Unlike
a push-based approach that immediately sends image to-
kens upon availability, this strategy reduces synchronization
overhead and optimizes load balancing.
Since image-text requests may involve multiple images

processed across different Image Instances, the transfer fol-
lows a many-to-one pattern, aggregating all image tokens
before text processing begins. This defers transfer until all
tokens are ready, allowing for better scheduling decisions by
routing requests to the least-loaded Text Instance. Meanwhile,
queuing at the Text Instance overlaps with token transfer,
effectively hiding transfer latency.

ModServe colocates Image and Text Instances in the same
server when each Text Instance is not taking up all GPUs on
a server to avoid image transfer overhead and unallocated
idle GPUs. For example, it may place one TP-4 Text Instance
and two TP-2 Image Instances within the same 8-GPU server.
Unlike monolithic deployments, colocated instances remain
independently configurable and can serve corresponding
stages of different requests independently.

4.4 Implementation
We implement ModServe using 5,000 lines of Python code.
We base the Text Instance on vLLM [23] (v0.7.2), a state-
of-the-art generative model inference platform, and build
the Image Instance on HuggingFace Transformers [20]. The
modular architecture of ModServe enables easy integration
with other serving engines (e.g., TensorRT [38] and Deep-
Speed [4]). We use numactl to restrict CPU and memory
usage of image preprocessing to a single NUMA node, which
reduces memory access latency and performance variation.
To ensure efficient GPU-to-GPU memory transfer of image
tokens, we use PyTorch’s distributed communication with
the NCCL backend and GPU Direct RDMA. The P99 transfer
latency of image tokens per request is 5 ms.
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We implement the Image and Text Pool Managers as light-
weight gRPC servers (hosted on dedicated VMs) with low
memory and compute requirements, drawing inspiration
from DynamoLLM [50]. For failure detection and recovery,
the Pool Managers use a simple heartbeat-based member-
ship management protocol [14]. However, ModServe can
be easily extended to adopt more robust leader election (e.g.,
Raft [39]) and fault-tolerance algorithms [54].

5 Evaluation
5.1 Experimental Setup

Models andWorkloads.Weuse Llama3.2-11B and InternVL-
26B as representativemodels for CroAttn andDecOnly LMMs,
respectively. To ensure realistic workload distribution, we
reuse the LMM dataset from Section 3.1 and adopt the inter-
arrival timestamps of requests and the number of images
associated with each request (ranges from 0 to 16) from the
production LMM inference trace (Section 3.2).
Hardware. We evaluate ModServe on a cluster with 16
DGX-A100 servers [34] (128 GPUs). Each server has the same
configuration as the server used in our characterization study
(Section 3.1). The GPUs within a server are connected with
NVLINK 3.0 while cross-server connection is via InfiniBand.
Baselines and Systems.We compareModServe against the
state-of-the-art generative model inference serving system,
vLLM [23], which supports LMM inference as a monolithic
setup. We also evaluate ModServe with a few variants of
ModServe implemented on top of vLLM: (1) vLLM with
decoupled Image/Text Instances (i.e., ModServe-Decoup),
(2) ModServe-Decoup plus modality-aware scheduling (i.e.,
ModServe-Sched), and (3) ModServe-Sched plus modality-
aware routing (i.e., ModServe), for ablation study.
SLO Definition. We define the SLO metrics for LMM in-
ference based on the TTFT/TBT during the isolated run
of a single text-only request and text-image request (with
one image) on the monolith baseline setup. Then, we scale
the SLO metrics with a constant factor (i.e., SLO factor) to
evaluate howModServe performs under tight/relaxed SLOs
(Section 5.3). The SLOs are defined on P99 tail latency.
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Figure 15.Maximum load meeting SLO.

5.2 End-to-end Performance

Static Resource Allocation. We begin by evaluating Mod-
Serve under a static resource allocation setup, where a fixed
number of servers remain active at all times without autoscal-
ing. This setup isolates the benefits of decoupling, modality-
aware request scheduling, and routing from pool autoscaling
(which we explore independently). Figure 14 shows the av-
erage and tail (P99) TTFT achieved by ModServe and the
baselines when serving different input loads over fixed re-
sources (16 servers with 128 GPUs in total). In this setup,
vLLM (monolith) deploys 32 instances (each with TP-4) while
the other approaches (decoupled) deploy 20 Text Instances
(TP-4) and 48 Image Instances (TP-1).

Compared to vLLM, statically decoupling (ModServe-
Decoup) improves the average and P99 TTFT by 27% and 42%
(for Llama3.2), 46% and 47% (for InternVL). This is because
monolithic deployments process all modalities on shared
GPU resources, leading to contention and inefficient utiliza-
tion under imbalanced modality traffic. In addition, Mod-
Serve-Decoup with the same number of GPUs can deploy
16 extra Image Instances and enables image encoding paral-
lelization that reduces TTFT significantly compared to the
monolithic deployment on vLLM.
ModServe shows a more pronounced TTFT improve-

ment over the monolith baseline when serving InternVL.
This is because the monolith deployment faces resource
contention with DecOnly models due to their high prefill
latency (Insight 3), which contends with image encoding.
Additionally, InternVL’s image encoder has higher batching
performance degradation (Insight 4) and thus benefits more
from parallelization. Adding modality-aware request sched-
uling (ModServe-Sched) further reduces the average and P99
TTFT by 12% and 25%, modality-aware routing (ModServe)
reduces the average and P99 TTFT by 14% and 32%, as it
reduces HoL blocking and mitigates tail latency spikes.
Overall,ModServe achieves the lowest TTFT across all

load levels, demonstrating the effectiveness of modular infer-
ence pipelines. We observe similar TBT performance in all
approaches due to its compute insensitivity (as indicated by
Figure 8). Figure 15 further evaluates the maximum through-
put under the TTFT and TBT SLO when varying the static
resource allocation from 4 to 16 servers.ModServe achieves
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during a one-day interval on the production traces.

a 3.3× and 5.5× throughput improvement over vLLM (mono-
lith) for Llama3.2 and InternVL, respectively, which confirms
that DecOnly models benefit more from decoupling.

Resource Allocation with Autoscaling.We now assess
howModServe and vLLM (monolith) baseline handle image-
driven bursts seen in the production trace (Figure 10). Fun-
damentally, to serve traffic bursts, a system needs to scale up
the resources to meet the workload demand while scaling
down to avoid overprovisioning. Therefore, we enable au-
toscaling in bothModServe and vLLM and evaluate them on
a one-day interval of the production trace that contains an
image-driven burst. For a fair comparison, bothModServe
and vLLM (monolith) use similar SLO-driven autoscaling
heuristics based on offline model profiling (Section 4.2).
Figure 16 compares the number of GPUs used by Mod-

Serve and vLLM (monolith) to serve the image-driven burst
in the production trace. ModServe takes 41.3% and 25%
fewer GPUs compared to vLLM to serve Llama-3.2 (CroAttn)
and InternVL (DecOnly) models respectively while meeting
the tail latency SLOs.ModServe’s cost reduction is higher
for Llama-3.2 (CroAttn) model as the increase in image to-
kens caused by image-driven bursts not overwhelming LLM
backend in CroAttn models as observed in its latency profile
(Figure 12). However, in InternVL (DecOnly), the LLM back-
end’s latency increases with the increase in image tokens
due to homogeneous self-attention. Therefore, to meet SLOs,
ModServe scales up the number of Text Instances for In-
ternVL more than for Llama-3.2 during image-driven bursts
(light pink in Figure 16). Overall,ModServe’s stage-aware
autoscaling prevents unnecessarily scaling up LLM backends
(done by vLLM due to monolith deployment) during image-
driven bursts and prevents resource over-provisioning.
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Figure 18. Impact of image request percentage (𝑌 -axis) and
instance allocation (𝑋 -axis), i.e., #Text Instances (TP4) : #Im-
age Instances (TP1) on 8 servers (64 GPUs).

5.3 Sensitivity Study

Impact of SLO Scale. Figure 17 shows themaximum through-
put ModServe can achieve when changing the SLO scale
(higher values refer to more relaxed SLOs). As the SLO scale
increases, ModServe consistently outperforms the vLLM,
achieving up to 4.3× higher throughput for Llama-3.2 and
6.8× for InternVL. This trend highlights that ModServe bet-
ter utilizes resources under the same latency requirements.

Impact of Image-to-Text Instance Ratio. Figure 18 shows
the effect of varying the ratio of Image and Text Instances on
64 GPUs (8 servers) along the𝑋 -axis, in comparison to vLLM
monolith with 16 instances. For instance, “4:48” denotes a
configuration with 4 Text Instances (TP-4) and 48 Image In-
stances (TP-1). As the ratio of Text Instances increases, we
observe thatModServe consistently achieves superior TTFT
performance compared to vLLM (monolith) until the ratio
reaches 10:24. However, at 12:16, the decoupled configura-
tion contains the same number of image encoders but 4 fewer
LLM backends, resulting in inferior performance. Moreover,
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reducing image encoders below the monolith baseline con-
tradicts the core goal of decoupling to scale up/out the image
encoders independently for multimodal processing.
Impact of Image:TextRequest Ratio. Figure 18 also shows
the impact of varying image-text request percentages in the
workload (𝑌 -axis). As this percentage increases from 10%
to 90% (more image-heavy), TTFT for Llama-3.2 (CroAttn)
increases. InternVL (DecOnly) follows a similar trend, except
at lower Text Instance ratios (e.g., 4:48), where P99 TTFT
decreases from 3.8 to 3.3 seconds due to reduced text load.
This stems from DecOnly models’ poor prefill efficiency. For
the same reason, at low image-text request percentages (e.g.,
10%), InternVL sees a lower P99 TTFT as more Text Instances
help distribute the text-heavy load.

On the other hand, across all image-text request percent-
ages, increasing the number of Text Instances raises P99 TTFT
in Llama3.2 due to a reduced number of Image Instances, lead-
ing to longer image encoding times. However, regardless of
distribution,ModServe outperforms the monolith baseline
(by up to 18.4× for Llama3.2 and 9.2× for InternVL) when
Image:Text Instance ratio exceeds 2.4, demonstrating its effi-
ciency handling multimodal workloads.

6 Related Work
LMM Characterization. Lee et al. [24] provides a compre-
hensive characterization of multimodal generation models at
Meta, while we focus on multimodal inputs. Hou et al. [15]
focus on traditional multimodal models employing small-
scale convolutional neural networks. In contrast, our work
presents a detailed analysis of multimodal input workloads
on both open-source LMM models and production traces,
highlighting their unique execution and workload patterns.
LMM Serving. Recent research has introduced several tech-
niques to optimize LMM serving by addressing key ineffi-
ciencies in inference computation and memory usage. Inf-
MLLM [36] employs token caching strategies and attention
bias to maintain performance with long contexts while reduc-
ing KV cache memory consumption. Elastic Cache [31] uti-
lizes an importance-driven cache merging strategy to prune
KV caches efficiently during inference. Dynamic-LLaVA [18],
VTW [30], and QueCC [27] present various vision token spar-
sification and compression techniques to dynamically reduce
redundancy in vision tokens. These optimizations primarily
operate at the model level, trading off computational over-
head with model performance. They are orthogonal to our
proposed system-level design for SLO-driven LMM serving
that does not impact model performance, which can fur-
ther benefit from such model-level advancements, e.g., faster
image encoding through token compression.
Text-Centric LLM Serving. Recent studies have delved into
disaggregating LLM prefill and decode phases for text-only
LLM serving. Examples include Splitwise [41], DistServe [59],
Mooncake [43], and MemServe [16]. Other optimizations for

LLM serving include key-value cache management [23], con-
tinuous batching [57], request scheduling [1, 42, 45, 51], and
energy optimization [44, 49, 50]. While these optimizations
can be applied inModServe to enhance LLM backend pre-
fill and decode efficiency, our work focuses on the unique
characteristics of multimodal models.

7 Conclusion
Wepresent the first comprehensive systems analysis of LMMs
on both open-source models and production LMM infer-
ence traces. Our insights lead to the design of ModServe,
a scalable and resource-efficient LMM-serving framework
that decouples inference stages for dynamic reconfiguration,
adaptive scaling, and modality-aware scheduling. Evalua-
tions show that ModServe achieves 25–41% cost savings
compared to the state-of-the-art while efficiently serving
production-scale LMM inference workloads.
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