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ABSTRACT
Modern high-performance computing (HPC) systems concurrently
execute multiple distributed applications that contend for the high-
speed network leading to congestion. Consequently, application
runtime variability and suboptimal system utilization are observed
in production systems. To address these problems, we propose
Netscope, a congestion mitigation framework based on a novel
delay sensitivity metric that quantifies the impact of congestion
on application runtime. Netscope uses delay sensitivity estimates
to drive a congestion mitigation mechanism to selectively throttle
applications that are less susceptible to congestion. We evaluate
Netscope on two Cray Aries systems, including a production super-
computer, on common scientific applications. Our evaluation shows
that Netscope has a low training cost and accurately estimates the
impact of congestion on application runtime with a correlation
between 0.7 and 0.9. Moreover, Netscope reduces application tail
runtime increase by up to 16.3×while improving the median system
utility by 12%.
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• Networks→ Data center networks; Network resources alloca-
tion; Application layer protocols; Network performance model-
ing; Network performance analysis; Network measurement.

KEYWORDS
congestion, interconnect, high-speed networks, application-aware,
high-performance computing

ACM Reference Format:
Archit Patke, Saurabh Jha, Haoran Qiu, Jim Brandt, Ann Gentile, Joe
Greenseid, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer. 2021. De-
lay Sensitivity-driven Congestion Mitigation for HPC Systems. In 2021

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICS ’21, June 14–17, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8335-6/21/06. . . $15.00
https://doi.org/10.1145/3447818.3460362

International Conference on Supercomputing (ICS ’21), June 14–17, 2021, Vir-
tual Event, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3447818.3460362

1 INTRODUCTION
Modern high-performance computing (HPC) systems concurrently
execute multiple distributed applications that contend for the high-
speed network leading to congestion. To limit contention in the
network, several congestion control (CC) mechanisms that restrict
application traffic injection into the network have been proposed [1–
6]. However, application runtime variability (i.e., variable job com-
pletion times for the exact same input parameters) and suboptimal
system utilization (as measured by increased node hours to com-
pletion) continue to be a problem in production systems [7, 8]. For
example, runtime variability of up to 100% has been observed in a
512 node MILC application [9], which projects to several million
node hours of wasted compute time (based on [10]).

Approach. We introduce a new metric delay sensitivity of an
application to quantify the impact of congestion on runtime. Delay
sensitivity is defined as the gradient of application runtime with
respect to network congestion (measured as message delivery time).
The delay sensitivity of an application is provided as a parameter
to an AIMD [11] (Additive Increase Multiplicative Decrease) con-
troller to quantify the extent of throttling a low delay sensitivity
application, while implicitly rewarding the high delay sensitivity ap-
plication dynamically. The mechanismwas tested on Cori (a NERSC
supercomputer) with common scientific applications (on over 100
nodes), and was shown to reduce runtime variability by 7-15× com-
pared to Cray static rate control and DCQCN [12] (state-of-the-art
in RDMA networks), while incurring a performance overhead of
less than 5%. Our approach outperforms alternative CCmechanisms
for the following reasons:

(a) Other CC mechanisms treat applications as a blackbox and
are unable to be as responsive as our approach.

(b) Delay sensitivity is determined offline per application and
used as prior knowledge to augment the mitigation mecha-
nism.

(c) Delay sensitivity is calculated using a multi-dimensional
dataset consisting of network performance counters, net-
work topology, application node placement, and application
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runtime; thereby increasing estimation accuracy. The multi-
dimensional dataset captures the complex interplay between
computation and communication.

Contributions. In this paper, we present Netscope, a delay
sensitivity-based congestion mitigation framework. Our major con-
tributions are:

(a) Design and implementation of Netscope that consists of:
(i) delay sensitivity estimation from large-scale networkmon-
itoring datasets using inter-linked probabilistic regression
models, and (ii) congestion mitigation using an AIMD con-
troller whose parameters are set using delay sensitivity es-
timates. A low-overhead wrapper for MPI communication
primitives enables traffic rate control and network counter
sampling to support congestion mitigation.

(b) Demonstration of Netscope on Voltrino (a testbed system
at Sandia National Laboratories) and Cori (a large-scale pro-
duction system at NERSC) with commonly used applications
such as MILC [9], AMG [13], and LAMMPS [14].

Results. Evaluation of Netscope shows that:
(a) The congestion mitigation mechanism significantly reduces

runtime variability and improves system utilization. In our
evaluation, the tail of runtime increase with Netscope is up
to 16.3× and 11.8× lower than Cray static rate control and
DCQCN rate control [12] respectively. Additionally, we show
that Netscope is tolerant to delay sensitivity estimation er-
rors. In worst-case error estimation, Netscope’s performance
is no worse than that of DCQCN.

(b) Delay sensitivity can accurately estimate the impact of conges-
tion on application runtime. Correlation between application
runtime estimated using delay sensitivity and actual runtime
is between 0.7 and 0.9 for common scientific applications un-
der synthetically generated congestion and natural system
congestion found in production settings.

(c) Delay sensitivity estimation has a low training cost. Delay
sensitivity can be estimated for a new application within
thirty runs in production environments and five runs with
synthetically generated congestion.

2 MOTIVATION
Applications running in HPC systems [10] have diverse commu-
nication characteristics due to complex interplay of computation
and communication. Consequently, effects of network congestion
on runtime are variable for every application. Such variability can
be captured by the delay sensitivity metric, defined as the gradient
between application runtime and network congestion (measured in
terms of message delivery time). The design of Netscope is inspired
by two insights associated with (1) estimating delay sensitivity,
and (2) integrating delay sensitivity with the CC mechanism as
described below:

Insight 1: Network performance counters1 and application
runtime can be used to estimate application delay sensitivity.
To understand whether network performance counters (collected
from network switches [15]) are useful for estimating application

1Network performance counters such as link stall times and traffic can be collected at
switches via vendor-provided mechanisms.
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Figure 1: Variable impact of congestion onMILC andGPCNeT
runtime as captured by low and high network stall counters

delay sensitivity, we characterize the relation between counters
and the application runtime variability. Fig. 1 shows the runtime
for MILC and GPCNeT under low (0.25% percent time stalled2) and
high (7.5% percent time stalled) congestion, as measured from stall
performance counters. The figure shows that the response to con-
gestion in the system (that is captured through network counters)
varies for each application. For instance, MILC has a 60% increase
in runtime, while GPCNeT’s runtime marginally increases by 2.6%
for the same difference in measured congestion Any application
whose runtime degrades more with respect to the same conges-
tion difference has a higher delay sensitivity (as the gradient is
higher). Thus, using both network performance counters and run-
time we conclude that MILC has a higher delay sensitivity than
GPCNeT. In §4.1 we will expand on this insight to provide an exact
quantification of delay sensitivity.

Insight 2: Delay sensitivity can be used to augment con-
gestion mitigation to reduce application runtime variabil-
ity. Congestion signals used in CC mechanisms such as ECN [16],
QCN [17], and network delay [5, 6] do not address the source of
congestion directly. Consequently, during the operation of the CC
mechanism, the non-congestion-contributing applications are pe-
nalized along with the culprit that is responsible for the congestion.
Moreover, if the application that was not responsible for congestion
is also delay sensitive, it’s performance degradation due to con-
gestion mitigation can be severe. To test whether augmenting the
CC mechanism can alleviate this problem, we run three different
algorithms (Cray static rate control [18], DCQCN [12], and DCQCN
augmented with application delay sensitivities) on a Cray Aries [18]
HPC system (16 switches). Our test workload consists of a highly
delay sensitive application (MILC, isolated runtime 26 sec) and a
non-delay sensitive application (GPCNeT, isolated runtime 75 sec)
that run simultaneously. For the test setup, we penalize GPCNeT
five times more than MILC, as the goal is to understand whether
augmentation with delay sensitivity aids the CC mechanism. Over-
all (see Table 1), we show that prior knowledge of delay sensitivity
may be useful for reducing runtime variability and therefore could
be augmented in the CC mechanism (described in §5).
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Cray DCQCN Augmented-DCQCN

MILC (Isolated: 26 sec) 56 sec (115%) 41 sec (58%) 28 sec (7%)
GPCNeT (Isolated: 75 sec) 75 sec (0%) 77 sec (2.7%) 77 sec (2.7%)

Table 1:Measured percentage increase in application runtime
with respect to isolated runtime for three CC mechanisms.
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Figure 2: Overview of Netscope

3 NETSCOPE OVERVIEW
Fig. 2 depicts the architecture of Netscope, our proposed de-
lay sensitivity-driven congestion mitigation framework for high-
performance computing systems. The framework consists of two
major components: delay sensitivity estimation and congestion
mitigation driven by the inferred delay sensitivity, discussed below.
Network Monitoring ( 1 ). HPC systems expose network teleme-
try data of each switch as network performance counters. Netscope
uses network telemetry data to drive (i) delay sensitivity estimation;
and (ii) congestion mitigation. For delay sensitivity estimation, the
counters are collected and aggregated across the network by the
Lightweight Distributed Metric Service (LDMS) [15] to provide a
coherent global network snapshot. For the congestion mitigation
mechanism, each node periodically samples local switch counters
by using the Performance API (PAPI) [19].3

Our test HPC systems use the Cray Aries network technol-
ogy [18] with a low-diameter Dragonfly topology [20]. The Dragon-
fly topology partitions the compute nodes and switches into fully
connected “electrical groups,” [18] in which each group operates as
a high-radix virtual switch. To mitigate congestion in the Dragonfly
network, each node performs static rate control and uses adaptive
routing to distribute traffic across network paths [20].
Delay Sensitivity Estimation ( 3 ). Delay sensitivity estimation is
driven by three inter-linked probabilistic regression models: (i) the

2Percent Time Stalled is a proxy for measuring congestion in credit-based flow control
networks that we describe in §4.2
3We use PAPI because timely mitigation depends on quick access to network perfor-
mance counters, which is hard to achieve via LDMS, as it aggregates performance
counters on the file system.

network latency model (described in §4.2), which estimates network
latency (i.e., the time required to send a quanta 4 of data5) un-
der varying levels of congestion by using network performance
counters (indicative of queuing delays), network topology, and com-
pute-node endpoints; (ii) spatial & temporal aggregation (described
in §4.1), which estimates expected message delivery time by ag-
gregating inferred network latency spatially (i.e., across multiple
communication paths) and temporally (i.e., across the application’s
lifespan); and (iii) the delay sensitivity model (described in §4.1),
which estimates application delay sensitivity using inferred mes-
sage delivery times and corresponding application runtimes. The
network latency model is system-specific, i.e., it needs to be re-
trained for each system, whereas the delay sensitivity model and
spatial & temporal aggregation are application-specific, i.e., they
need to be retrained for every application configuration.

To train the latencymodel, we use round-trip timemeasurements
obtained via a specialized pingpong application under diverse con-
gestion conditions and representative compute node endpoints. To
train the application model, we use application runtimes collected
from application runs under synthetically generated or natural
system congestion. After model training, delay sensitivity is deter-
mined for each application and can be provided as prior knowledge
to augment the congestion mitigation mechanism.
Congestion Mitigation ( 2 ). The congestion mitigation mecha-
nism uses a dynamic traffic rate limiter based on an additive increase
multiplicative decrease (AIMD) [11] controller whose parameters
are set using the estimated delay sensitivity. An AIMD controller
exponentially throttles application traffic (multiplicative decrease)
when congestion is sensed in the network, and linearly increases
traffic (additive increase) in the absence of detected congestion.
Netscope enhances the state-of-the-art AIMD mechanism6 by mak-
ing the multiplicative decrease step in the AIMD controller depen-
dent on the application’s delay sensitivity, to minimize the penalty
(i.e., traffic throttling) on applications that are more sensitive to
congestion.

4 DELAY SENSITIVITY ESTIMATION
This section describes the estimation of delay sensitivity, which
includes application-specific and system-specific models.

4.1 Application-specific Models
Here we present application-specific models that we used to derive
the application delay sensitivity, which encapsulates the relation-
ship between network congestion and application runtime as given
in definition 4.1. To make our methodology of estimating delay
sensitivity extensible to a large class of applications, we developed
a model that assumes no knowledge of application communication
patterns. Our model relies solely on network topology, application
node placement, and network performance counters to infer delay
sensitivity.

Definition 4.1. Delay sensitivity (𝑐𝑎) is the gradient between ap-
plication runtime (𝑇𝑎) and expected value of message delivery times

4Note that an application message would comprise of multiple data quanta
5In Aries, the smallest quantum of data is a flit whose size is ∼6 bytes.
6For example, DCQCN uses AIMD congestion control with a fixed additive increase
and multiplicative decrease step for all applications.
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(𝑀𝑎).

𝑐𝑎 =
Δ𝑇𝑎
Δ𝑀𝑎

(1)
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Figure 3: Breakdown of total message delivery time

Our key assumption is that delay sensitivity does not vary across
the application’s lifespan due to their iterative communication
patterns (discussed in §7). As delay sensitivity is constant, the
gradient of application runtime with expected message delivery
time (𝑀𝑎) is constant, and their interdependence can be modeled
by a linear regressor given by (2).

𝑇𝑎 = 𝑐𝑎𝑀𝑎 + 𝑘𝑎 (2)

Thus, our quest for estimating delay sensitivity reduces to esti-
mating the slope between expected message delivery times and
application runtime. Application runtime can be trivially obtained
from scheduler logs. However, estimating expected message deliv-
ery times is more involved, and we devote the rest of this section
to describing our approach.

Abstracting Message Delivery Time. HPC applications typ-
ically rely on sending of messages between two endpoints using
a communication library such as the Message Passing Interface.
The various delays involved in the process of sending/receiving
messages are shown in Fig. 3 (inspired by the logP model [21]). A
message consists of several packets that are transmitted sequen-
tially across the network from the source to the destination. The
total message delivery time for a message (𝑀𝑠𝑟𝑐,𝑑𝑠𝑡 (𝑡)) that is ini-
tiated at the source at time 𝑡 can be broadly categorized into the
following components:

(a) End-host Overheads (𝑜𝑠𝑟𝑐 , 𝑜𝑑𝑠𝑡 ): Housekeeping tasks need
to be performed at the source (before the packet is sent out)
and at the destination (after the packet has been received).
These tasks include packet header processing, interface-level
processing, and OS scheduling of the packet onto the net-
work interface card (NIC). The total time associated with
these tasks are represented by 𝑜𝑠𝑟𝑐 and 𝑜𝑑𝑠𝑡 for the source
and destination, respectively.

(b) Latency (𝐷): The time needed for the first quanta of data to
reach the destination is the latency (𝐷). Note that latency
differs from round trip time that includes both forward and
reverse path latency.

(c) Bandwidth Delay (𝑏): The time required to push all the re-
maining packets onto the network link is the bandwidth
delay. Given the homogeneity of the network, the band-
width delays at the source and destination are typically equal.

Bandwidth delay is given by the ratio of message size to NIC
bandwidth ( msg size

bandwidth ).
Therefore, the total message delivery time for amessage from source
𝑠𝑟𝑐 to destination 𝑑𝑠𝑡 initiated at time 𝑡 is:

𝑀𝑠𝑟𝑐,𝑑𝑠𝑡 (𝑡) = 𝑜𝑠𝑟𝑐 + 𝐷𝑠𝑟𝑐,𝑑𝑠𝑡 + 𝑏 + 𝑜𝑑𝑠𝑡 (3)

Variations in end-host overheads can be considered noise when
the delay introduced by network congestion is the predominant
factor in runtime variation. Unlike the end-host overheads, band-
width delay and latency can vary significantly depending on the
application and network congestion conditions, which we can esti-
mate through network counters. Bandwidth delay can be estimated
from the application’s message size and injection bandwidth at the
network interface card. However, network latency is not directly
observable in the system. Therefore, we infer the network latency
metric through performance counters, such as link stall times7. Note
that 𝐷 is the one-way latency, which differs from the round-trip
time that can be computed directly from the network performance
counters. Also, note that one-way latency cannot be computed sim-
ply by halving round-trip time measurements because the return
path congestion may be significantly different from the forward
path congestion. If we did not consider reverse-path congestion,
our model would yield poor estimation of delay sensitivity. We will
use the network latency model to compute 𝐷 , as we discuss in §4.2.

Moreover, because of performance and cost constraints, there are
challenges associated with collecting network performance coun-
ters for each message individually. In particular, on our system,
there is a significant difference between the measurement gran-
ularity (1 second) and the message delivery times (on the order
of microseconds). Hence, we apply (3) for all messages sent in a
measurement interval.

The expected message delivery time is dependent on node place-
ment and on variation of congestion over space (spatial character-
istics) and time (temporal variation).

Accounting for Spatial Characteristics.We estimate expected
time to deliver a message between any two application nodes by
modeling spatial characteristics (i.e., application-to-node mapping
and congestion variation over network links). As we have no prior
information regarding application communication patterns, we
assume that any two nodes are equally likely to communicate.
However, when prior knowledge is available, we can deduce which
node pairs are more likely to communicate, and use that to improve
our estimations. In practice, we find that without prior knowledge of
communication characteristics, we can robustly correlate estimated
and actual application runtime, as shown in §6. Under the no-prior-
knowledge assumption, the expected message delivery time for any
node-to-node communication at time 𝑡 (denoted by𝑀𝑠 (𝑡)) for an
application with 𝑁 nodes is given by:

𝑀𝑠 (𝑡) =
∑
(𝑠𝑟𝑐,𝑑𝑠𝑡 ) ∈𝑁 𝑀𝑠𝑟𝑐,𝑑𝑠𝑡 (𝑡)( |𝑁 |

2
) (4)

Accounting for Temporal Variation. We model temporal
variation (i.e. congestion variation over time) by estimating the
expected message delivery time across measurement intervals. The

7Stall time in credit-based flow control networks refers to the time spent waiting to
transmit data due to the unavailability of egress buffer space.
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expected message delivery time across the application’s lifespan
(𝑀𝑎 (𝑡)) is estimated using the expected spatial message delivery
time (𝑀𝑠 (𝑡)), as given by (5):

𝑀𝑎 =

∑𝑇𝑎
𝑡=0𝑀𝑠 (𝑡)
𝑇𝑎

, (5)

where 𝑇𝑎 is the total application runtime.

4.2 System-specific Model
In this section, we present a model for estimating the network
latency (𝐷), i.e., the time required to deliver the first quanta of
data after the start of message transmission. We first present the
high-level system abstraction, followed by a model for estimating
the latency for a single link and its extension to a set of paths.
System Abstraction. In our system abstraction, we represent each
hop between the source and destination nodes as a link. In a high-
speed interconnect, examples of such links are connections be-
tween the processor, NIC, and network tiles/ports on intermediary
switches. The interconnect is lossless and uses a credit-based hop-
by-hop flow control mechanism [22]. To transmit data, the sender
requires credits from the receiver, which are calculated based on
queue occupancy. When there are insufficient credits available to
transfer the waiting data, the data transmission stalls, and the data
will be buffered in the link buffer until sufficient credits become
available. The process of waiting in the queue can cause head-of-
line blocking, which can lead to cascading backpressure in adjacent
links and formation of congestion trees across the interconnect [3].

The time quanta each link waits to send data is referred to as
a stall. Network counters record the total time each link is stalled
(𝑇𝑠 ). Using these link stall times, we compute the derived metric for
each link, Percent Time Stalled (𝑃𝑇𝑠 ).

𝑃𝑇𝑠 = 100 × 𝑇𝑠

𝑇𝑚
, (6)

where𝑇𝑠 is the total stall duration during the measurement interval
and 𝑇𝑚 is the measurement interval.
Single-Link Latency Estimation. To estimate the latency for a
single link, we break it down into the following components:

(a) Processing delay is the time the switch needs to process
packet headers and move the packet along the queue be-
fore further routing.

(b) Transmission delay is the time needed to push all of the
packet’s bits onto the wire.

(c) Queuing delay is the time that the data to be transmitted
spends in the link buffers awaiting transmission.

(d) Propagation delay is the time needed for data to transit the
wire, which depends on the number of hops needed to route
the message from ‘src’ to ‘dst’ and wire length.

Both the processing and the propagation delays are dependent
on the transmissionmedia latency and the packet header processing
overhead.Whenmodeling a single link, we assume that these delays
are constant. Queuing delays dominate over transmission delays
because we consider only a small quanta of data and the time
required to transmit the quanta into the link is negligible compared
to queuing delays.

For the sake of modeling, we represent whether the link buffers
are serviced or freed by a random probabilistic process. At each

time unit, the link state can be either stalled or non-stalled. During
the non-stalled state, the buffer is emptied and the data are allowed
to be transmitted. Thus, the link state at each time unit can be
represented by a Bernoulli random variable with parameter 𝑝 that
takes value 1 if the link is in a stalled state and 0 otherwise. To infer
the total waiting time, we need to compute the expected number of
consecutive time units for which the packet waits in the link buffer.
An appropriate discrete distribution to model the above-mentioned
constraints is a Geometric distribution.

𝑃 [𝑇 = 𝑡] = (1 − 𝑝)𝑝𝑡−1 (7)

The expected waiting time is given by Equation (8).

𝐸 [𝑇 ] =
∞∑︁
𝑡=1

𝑡 (1 − 𝑝)𝑝𝑡−1 = 1
1 − 𝑝 (8)

To estimate the parameter 𝑝 , we use the maximum likelihood
estimation (MLE) [23]. The log-likelihood of measuring 𝑇𝑠 units of
stall in the measurement interval 𝑇𝑚 is given by Equation (9).

𝑙𝑜𝑔(L) = 𝑙𝑜𝑔(𝑝𝑇𝑠 (1 − 𝑝)𝑇𝑚−𝑇𝑠 ) (9)
= 𝑇𝑠𝑙𝑜𝑔(𝑝) + (𝑇𝑚 −𝑇𝑠 )𝑙𝑜𝑔(1 − 𝑝)

The optimal parameter value can be obtained by setting the
gradient of 𝑙𝑜𝑔(L) to zero. Then the value of 𝑝 that maximizes the
log-likelihood of observing the given stalls is given by Equation
(10).

𝑝 =
𝑇𝑠

𝑇𝑚
=
𝑃𝑇𝑠

100
(10)

The expected queuing delay for the link (𝑄𝑙 ) is given by:

𝑄𝑙 = 𝐸 [𝑇 ] = 100
100 − 𝑃𝑇𝑠

(11)

Extension to Multiple Paths. To estimate the network latency us-
ing link-level queuing delays (𝑄𝑙 ), we use a linear regression model
(refer to (12). Let the possible paths (i.e., a set of links) between
two nodes 𝑛1 and 𝑛2 be represented by the sets 𝑆∗. Each set 𝑆𝑖 that
belongs to 𝑆∗ is composed of a set of links that make up a unique
path between the two nodes. Note that this path comprises all the
intermediary links that include connections between processors,
NICs, and network tiles on switches.

𝐷𝑛1,𝑛2 =
∑︁
𝑆𝑖 ∈𝑆∗

𝑘𝑠

∑︁
𝑙 ∈𝑆𝑖

𝑘𝑖1𝑄𝑙 + 𝑘𝑖2 , (12)

where 𝑆∗ is the set of all links on all possible paths as constrained
by the routing algorithm [20] between 2 nodes 𝑛1 and 𝑛2. The
constants 𝑘𝑖 are estimated using the least sum of squares fit.

5 CONGESTION MITIGATION
Netscope’s online congestion mitigation consists of the following
major components:

(a) The congestion signal, which is an estimation of the conges-
tion experienced by packets. It is calculated from network
performance counters sampled at the NIC.

(b) The delay injection module, which provides a mechanism for
controlling congestion at the source by introducing proba-
bilistic delays between consecutive message send requests.
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(c) Rate control, which uses the delay injection module to dy-
namically change the traffic injection rate based upon the
congestion signal and estimated delay sensitivity.

Congestion Signal. We choose to use stalls experienced when
injecting traffic from the NIC into the high-speed network (HSN)
as the signal for congestion. While network latency (described in
§4.2) would be an ideal congestion signal (as it can estimate the
impact of congestion on application runtime), such a metric is dif-
ficult to calculate during online mitigation as we have access to
network performance counters on local switches only. However,
our network latency model requires a global snapshot of system-
wide collected network counters. In lieu of network latency, we
use stalls experienced by the application traffic injected from the
NIC to the HSN (referred to as 𝑛𝑖𝑐2ℎ𝑠𝑛) as it captures both local
congestion (i.e., backpressure applied by the NIC) and outside con-
gestion (i.e., backpressure imposed by the network). We collected
the 𝑛𝑖𝑐2ℎ𝑠𝑛 counters by using the PAPI [19] interface with the
sampling frequency set at one second.

Delay Injection Module. As no direct traffic rate-throttling
method is available on the compute nodes, we introduce delays
between consecutivemessage requests sent out by every application
process. The delay is the time delta between traffic injection at the
line rate and traffic injection at the desired reduced rate:

Δ𝑇𝑖𝑛 𝑗 =
𝑅𝑙𝑖𝑛𝑒 − 𝑅𝑟𝑒𝑞

𝐵𝑛𝑖𝑐
, (13)

where Δ𝑇𝑖𝑛 𝑗 is the delay injected betweenmessages, 𝑅𝑙𝑖𝑛𝑒 is the line
rate at which messages are sent out, 𝑅𝑟𝑒𝑞 is the required reduced
rate, and 𝐵𝑛𝑖𝑐 is the NIC bandwidth.

It is possible that Δ𝑇𝑖𝑛 𝑗 may be on the order of nanoseconds;
however, Linux only supports process sleep with microsecond reso-
lution. To overcome this challenge, we use probabilistic delays. For
example, if the delay that must be introduced is 0.3𝜇s, we introduce
a 1𝜇s delay with a probability of 0.3. The probability is simulated
using a uniform random number generator from the Linux standard
library. We achieve the following using an MPI wrapper as shown
in Fig. 2.

Rate Control.While there are a plethora of rate-control algo-
rithms based on Additive Increase Multiplicative Decrease (AIMD)
rate control [11], we decided to adopt the rate-control algorithm
first proposed in DCTCP [4] for general-purpose datacenters and
later used in DCQCN [12] for RDMA over converged Ethernet
(RoCE) networks. We selected the DCQCN rate control algorithm
because it has been widely adopted in production networks because
of its inherent simplicity and consequent ease of deployment. The
sender maintains an estimate of stalled traffic called 𝛼 , which is
updated every measurement window using the following update:

𝛼 ← (1 − 𝑔)𝛼 + 𝑔 · 𝑛𝑖𝑐2ℎ𝑠𝑛, (14)

where 𝑔 ∈ (0, 1) is the weight given to past samples as opposed
to past measurements. Consequently, the traffic rate injected by
application 𝑎 at time 𝑡 (i.e., 𝑅𝑎) is updated as follows:

𝑅𝑎 ←
{
𝑅𝑎 (1 − 𝛼/(2 + 𝑐𝑎)), if 𝛼 > 0
𝑅𝑎 + 1, otherwise,

(15)

where 𝑐𝑎 ≥ 0 is the delay sensitivity of the application 𝑎. Thus,
𝛼 and 𝑐𝑎 together control the sending rate. A higher value of 𝛼

(high congestion) throttles the traffic rate more aggressively, while
a higher value of 𝑐𝑎 (more sensitive to network congestion) pre-
vents the traffic rate from being reduced more than necessary. Note
that 𝑐𝑎 is a term introduced by us in the multiplicative decrease
step. We leverage and extend the existing fairness and convergence
properties of the AIMD rate controller to ensure that the modified
AIMD controller also supports them [24].

6 EVALUATION
In this section, we evaluate the effectiveness of delay sensitivity
estimation and demonstrate the performance gain obtained using
our congestion mitigation. We performed the evaluation on two
Cray Aries [18] HPC systems:

(a) Voltrino consists of a chassis with 16 switches and 240 net-
work links.

(b) Cori is a production-scale supercomputer located at NERSC
comprising 34 electrical groups and 130,560 network links.

We used these systems to evaluate our models in testbed and
production settings. For example, Voltrino is a testbed system that
we used to conduct multiple application runs and rigorously val-
idate our models. We used Cori to validate our methodology in
production settings.

Our test application set consists of a mix of benchmarks and real
codes as described below:

(a) GPCNeT is a congestion-creation benchmark suite that cap-
tures four congestion patterns (all-to-all, RMA8 incast, point-
to-point incast, and RMA broadcast) commonly found in
HPC workloads [25].

(b) MILC is used to study quantum chromodynamics, the theory
of strong interactions of subatomic physics. It performs four-
dimensional lattice communication, and its performance lim-
iters include network latency [9].

(c) LAMMPS is a molecular dynamics program focused on mate-
rials modeling [14]. Performance limiters are dependent on
problem type and scale. They may include compute, memory
bandwidth, network bandwidth, and network latency [26].

(d) AMG is a parallel algebraic multigrid solver for linear sys-
tems [13]. Performance limiters include memory-access and
network latency [26].

Application a is an open-source congestion benchmark suite.
We chose applications (b–e) because (i) they are among the top 10
most commonly used applications on NERSC production systems,
and (ii) previous work has shown that these applications are very
susceptible to congestion-induced performance degradation [8].

6.1 Evaluating Application Delay Sensitivity
Training the Network Latency Model. The network latency
model uses round-trip time (RTT) measurements recorded using
a pingpong application to generate training labels, and network
performance counters and node endpoints as inputs. We use RTT
measurements because it is challenging to estimate one-way net-
work latency directly in the absence of perfect time synchroniza-
tion (which is infeasible in practice). We executed the pingpong
application multiple times (approximately forty) on two randomly

8RMA stands for remote memory access.
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Figure 4: Evaluating convergence and accuracy of delay sensitivity

Application Nodes System Congestion
Source

Placement
Decision

MILC-small 4 Voltrino GPCNeT Random
LAMMPS-small 4 Voltrino GPCNeT Random
AMG-small 4 Voltrino GPCNeT Random

MILC 384 Cori System Congestion Slurm Scheduler
LAMMPS 108 Cori GPCNeT Slurm Scheduler
AMG 768 Cori System Congestion Slurm Scheduler

Table 2: List of applications (and their configurations) used
for delay sensitivity estimation

chosen nodes in the presence of congestion created using GPCNeT.
During the pingpong application training runs, the percent time
stalled measurements (obtained using network counters) across all
links in the system ranged between 0% and 99%. Each pingpong
run involved 10,000 consecutive message exchanges (without any
compute), and the average RTT for each message exchange was
recorded. A large number of messages were sent to compensate
for the difference in network latency (2–100 𝜇s) and granularity of
measurements (1 s). To train the model, we sum the forward and
reverse path latencies that are calculated using Equation (12) to
estimate the round-trip time. Thus, we can calculate the constants
(𝑘𝑖 ) using the least sum of squares fit with training data (i.e. RTT
measurements obtained from the pingpong application).

Accuracy of Latency Model. We evaluate the accuracy of the
latency model, described in §4.2, which is used to estimate network
latency by using performance counters. The model was trained and
validated on Voltrino and Cori. Fig. 4a shows the percentage error
in estimating RTT for the two systems. For both of them, 75% of
the RTT measurements were estimated within an error bound of
30%. Moreover, we observed statistically high Pearson correlation
coefficients [27] of 0.71 and 0.67 between the measured and the
estimated round-trip time for Voltrino and Cori, respectively. We
also show in §6.2 how errors in delay sensitivity estimation (that
may propagate from errors in latency model) affect congestion
mitigation. The latency model remains accurate under large variation
in congestion and system scale.

Accuracy of Estimating Delay Sensitivity.We have designed
a comprehensive test suite for validating delay sensitivity (𝑐𝑎) esti-
mation (from Equation (2)) that uses the configurations described

Application Mean Runtime
(sec)

Runtime Fit
Correlation Delay Sensitivity

MILC-small 220 0.71 6.67
LAMMPS-small 23 0.81 0.47
AMG-small 45 N/A 0

MILC 848 0.73 45
LAMMPS 43 0.91 26
AMG 459 0.70 12.5

Table 3: Delay sensitivity estimated for different applications

in Table 2. For Voltrino, a smaller single-user testbed system, we
use synthetically generated congestion to create runtime variation.
However, on larger, multi-user systems like Cori, we find suffi-
cient natural runtime variation due to network contention between
different applications.

To test whether delay sensitivity estimation is sensitive to appli-
cation node placement, we randomly varied the application-to-node
mapping for the above-mentioned applications on the smaller-scale
systems. For Cori, the node placement was determined by the Slurm
scheduling policy [28]. Applications on Cori were run over a year
to ensure sufficient diversity in application-to-node mapping and
system congestion.

Table 3 provides the delay sensitivity values for our test suite.
We found that expected runtime and actual runtime have a strong
correlation between 0.7 and 0.9 for all applications in the test suite
except for AMG-small. Correlation cannot be calculated for AMG-
small as it has a negligible variance in runtime even under the
presence of congestion.

The estimated delay sensitivity could vary between zero (imply-
ing negligible increase in application runtime due to congestion;
e.g., AMG-small) to a high value (implying a significant increase
in application runtime due to congestion; e.g., MILC). The delay
sensitivity is calculated with respect to the pingpong application,
i.e., the pingpong application has a delay sensitivity equal to one.
The proposed delay sensitivity metric is robust as it captures the
relationship between application size and congestion. In our exper-
iments, we observed that increasing the application size increased
the delay sensitivity, thereby confirming our intuition that applica-
tions with larger sizes have larger number of communication paths,
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and thus link delays are more likely to stall the entire iteration.
For example, delay sensitivity increases by a factor of 6.7× (from
6.67 to 45) for MILC when the number of nodes increases from 4 to
384. A similar trend of increase in delay sensitivity with increasing
application size was observed for LAMMPS and AMG. In addition,
as expected, we observed that applications that are only latency-
bound have higher delay sensitivity than applications that have
multiple performance limiters, such as compute and memory. For
example, MILC, which is solely latency-bound, has a higher delay
sensitivity than LAMMPS, which is also limited by memory and
compute. We find that the delay sensitivity estimation is accurate for
a wide range of applications, scales, congestion, and placements.

Training Requirements for Delay Sensitivity Estimation.
We quantify the cost of training our models to accurately estimate
the delay sensitivity (𝑐𝑎)in terms of the number of application
runs. Fig. 4b shows the error in estimating the delay sensitivity
with an increasing number of production training runs for MILC
and AMG. The error in delay sensitivity at the 𝑖th run is given
by 𝑐𝑖𝑎−𝑐𝑎

𝑐𝑎
× 100. For both applications, we observe that the delay

sensitivity fluctuates significantly at the beginning of the training,
but stabilizes to within 10% of the final estimated delay sensitivity
(𝑐𝑎) after ∼25 runs. However, we can further reduce the training
time significantly by exposing the application to both extremes of
congestion (i.e., no congestion and high congestion), thus providing
early benefits to the user. As we show in Fig. 4c, the training time
is reduced by 5× (from 25 runs to 5 runs) in the case of MILC-
small running under synthetic congestion. Similarly, for LAMMPS
delay sensitivity converges quickly under 5 runs as well. Our model
converges fast, especially under synthetic congestion.

6.2 Evaluating Congestion Mitigation
We compared Netscope’s delay sensitivity-based congestion mitiga-
tion mechanism (described in §5) to DCQCN rate control (deployed
in RDMA networks) and the static rate control mechanism in Cray.
In these experiments, we ran three applications—MILC, LAMMPS,
and AMG—under a range of congestion conditions induced via
GPCNeT. These applications were selected as they cover an entire
spectrum of delay sensitivity, from high (MILC: 6.67), to medium
(LAMMPS: 0.47), to low (AMG: 0). These applications are described
at the beginning of §6. Varying levels of congestion were generated
by randomizing node allocations (i.e., application to node mapping)
and GPCNeT parameter tuning (refer to Section 4.5 in [25]). The
applications were run on Voltrino. We only run two applications
at a time because mitigation is performed individually for each
application, and is dependent only on network congestion (created
by the workload) and not on the number of applications. Overall,
we executed 200 runs to compare each application with every con-
gestion mitigation mechanism separately. We also evaluate these
applications with larger node counts on Cori.

Reduced Runtime Variability. To evaluate the efficacy of the
CC mechanisms, we calculated the runtime increase, defined as the
ratio of runtime to isolated runtime ( runtime

isolated runtime ). Isolated run-
time is obtained in the absence of external congestion, i.e., when no
other applications are executing on the system. Fig. 5 shows the
barplot of the tail (i.e., the 99th percentile) of the runtime increase
for the three applications (MILC, LAMMPS, and AMG) across three

Latency (𝜇s) Traffic (Flits/sec)

Median 90%ile Median 90%ile
Cray 10.1 52 2.9e7 5.4e7

DCQCN 3.4 11.9 2.1e7 5.1e7
Netscope 9.7 12.2 4.2e7 5.2e7

Table 4: Comparing traffic and latency for Cray, Netscope,
and DCQCN.

CC mechanisms. We found that Netscope outperforms both Cray
and DCQCN in reducing the tail of the runtime increase for each
application. For example, the tail of the runtime increase for MILC
with Netscope is 1.11× , which is 11% higher than that of isolated
runtime. In contrast, the tail of the runtime increase with DCQCN
and Cray static control was found to be 2.3× (130% increase) and
2.8× (180% increase). Thus, compared to Cray rate control and
DCQCN, Netscope provides a 16.3× (180% to 11%) and 11.8× (130%
to 11%) reduction in the tail of the runtime increase. Netscope is
significantly better than DCQCN and Cray in the following re-
spects. (i) Compared to Cray static rate control, Netscope prevents
extreme congestion cases because it dynamically adjusts traffic
rates (throttles) based on measured congestion. (ii) Compared to
DCQCN, Netscope penalizes the delay sensitive application less
aggressively than GPCNeT as the delay sensitive application has
a smaller multiplicative decrease factor (described in §5). We also
found that benefits of Netscope improve with increase in applica-
tion delay sensitivity. For example, Netscope reduces the tail of the
runtime increase in MILC (delay sensitivity: 6.67) by 16.3× (180%
to 11%) compared to 5× (25% to 5%) in LAMMPS (delay sensitivity:
0.47). Netscope provides greater benefit for MILC than for LAMMPS
and AMG, as effects of congestion and incorrect penalization are
exacerbated in applications with higher delay sensitivity.

Increased System Utilization. To compare the performance of
CC mechanisms, decreased runtime variability is not sufficient as it
may come at the cost of system utilization. For example, reducing
the MILC runtime increase may come at the cost of increasing run-
time for GPCNeT, thereby lowering system utilization. Hence, we
also measured the overall system utilization of the CC mechanisms
in terms of the node seconds required to complete the workload.
Our comparison metric is the increase in nodeseconds, defined as
the ratio of the nodeseconds required to complete the workload,
and the sum of the nodeseconds required to complete all of the ap-
plications in the workload in isolation. Fig. 6 shows the tail (i.e., the
99th percentile) of the increase in node seconds required to run the
workloads using the three congestion mitigation mechanisms. For
example, with MILC, we found that the increases in nodeseconds
for Netscope, Cray, and DCQCN were 1.02× , 1.32× , and 1.24× .
Overall, across all applications, we found that the reduction in run-
time increase offered by Netscope does not adversely reduce system
utilization in the way that isolation-based QoS mechanisms [29] do.

Impact on Traffic and Congestion. Table 4 shows the network
latency (i.e., the time required to deliver a flit) and traffic for the
three rate-control algorithms across all experiments. We found that
DCQCN has a lower network latency than either Cray or Netscope
(by 2.9× ) at the 50th percentile. Thus, DCQCN is significantly bet-
ter at reducing network congestion than either Netscope or Cray.
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Figure 7: Impact of error in estimating
delay sensitivity on MILC runtime

However, solely attempting to lower congestion (i.e., minimizing
queuing at link buffers) may adversely affect delay sensitive ap-
plications, leading to worse system utilization as discussed above.
Unsurprisingly, static rate control, which does not adapt to vary-
ing levels of congestion, performs worse at the 90th percentile, as
seen for the Cray rate-control mechanism. Overall, we found that
Netscope outperforms both DCQCN and the Cray static rate control
mechanism at reducing application runtime variation and improving
system throughput.

Impact of Training Errors on Congestion Mitigation. Here,
we evaluate the impact on congestion mitigation efficacy of inaccu-
rately estimating delay sensitivity. We define the error in estimating
delay sensitivity as 𝑐𝑒𝑟𝑟𝑎 −𝑐𝑎

𝑐𝑎
× 100, where 𝑐𝑒𝑟𝑟𝑎 is the erroneous delay

sensitivity estimate and 𝑐𝑎 is the correct delay sensitivity. Such
errors could be introduced because of insufficient training or errors
in measurement data. A negative error in estimated delay sensitiv-
ity, i.e., one that causes the estimated value to be lower than the
true value, may increase application runtime. The reason is that
a delay sensitive application would have a more aggressive throt-
tling during the rate control step, leading to severe penalization.
At the same time, a positive error in estimating delay sensitivity
is unfavorable, as it leads to less aggressive throttling and slower
congestion mitigation. Fig. 7 shows the runtime for MILC (when
MILC and GPCNeT are running) with the error introduced in the
delay sensitivity estimation for MILC. We found that the runtime
increase is close to isolated runtime when the error in estimating
delay sensitivity is close to 0%. As the negative error increases, the
MILC runtime increases. In particular, at an error of -100% in esti-
mating delay sensitivity, Netscope’s performance is no worse than
that of DCQCN. If there is a negative error in estimated delay sensi-
tivity, Netscope’s performance worsens (but does not become worse
than DCQCN’s). However, at the same time, we also want to minimize
positive estimation error, to ensure timely congestion mitigation.
Testing Netscope in Production Systems.We tested Netscope
on Cori with scaled-up versions of applications, i.e., MILC (108
nodes, isolated runtime 149 s), AMG (108 nodes, isolated runtime
21 s), LAMMPS (108 nodes, isolated runtime 14 s), and GPCNeT
(108 nodes, isolated runtime 70 s). We collected a total of 30 runs
across all applications on Cori. GPCNeT was used as the primary

Application Cray DCQCN Netscope

MILC 1.3 1.2 1.02
AMG 1.3 1.1 1.03

LAMMPS 1.7 1.3 1.10
Table 5: Comparing runtime increase of CC mechanisms on
Cori

source for inducing congestion, and placement was decided by the
Slurm job scheduler.

Table 5 summarizes the average runtime increase for each of
the three applications for the CC mechanisms. Recall that we de-
fined runtime increase as the ratio of runtime to isolated runtime
( runtime
isolated runtime ). The maximum runtime increase observed with
Netscope is 1.1× (i.e., less than 10% deviation from isolated run-
time). Compared to Cray and DCQCN, Netscope can offer between
7× and 15× improvement in reduction in average runtime increase.
For example, in the case of LAMMPS, with Netscope the runtime
increase is 1.1× (a 10% increase) whereas the Cray runtime increase
is 1.7× (a 70% increase). Thus, Netscope offers a 7× (70% to 10%)
improvement. Moreover, we expect that Netscope’s performance
benefits will increase with large-scale applications because their
theoretical peak congestion is much higher than the congestion
observed in our experiments. For example, the authors of [25]
found that the peak congestion latency that can be induced in a
Cray Aries supercomputer can be as high as 6000𝜇s, whereas we
observed 100𝜇s in our experiments. Despite the constraints intro-
duced in production, we find that the performance benefits of Netscope
continue to hold with larger application sizes.
Overhead of Netscope. Although Netscope increases the
congestion-free runtime for the tested applications by up to 2%,
the benefits of Netscope are realized in the presence of congestion.
Without Netscope, congestion could cause runtime variation as
high as 200% (see Fig. 5). Netscope’s overhead is negligible in terms
of memory (∼0.8KB) and computation.

7 DISCUSSION
Can Netscope apply to other HPC network technologies?
Application performance variation has been observed across other
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HPC network technologies, such as Infiniband [25], Cray Gem-
ini [7], and Cray Slingshot [30]. Netscope can readily adapt to
such network technologies because architectural features such as
availability of network counters, adaptive routing, credit stall flow
control, and use of MPI communication primitives are universal
in most HPC systems and applications. Therefore, the system and
application model (described in §4.2) and control mechanism (de-
scribed in §5) remain the same.

We expect Netscope to provide additional performance improve-
ments over the mechanisms of Slingshot and Infiniband networks,
because the rate controllers in these networks do not characterize
the delay sensitivity of the applications. Thus, the highly delay sen-
sitive application may be penalized more than necessary, leading
to worse system utilization.

Does Netscope need to be retrained with variation in ap-
plication scale? The delay sensitivity metric is dependent on the
application node count. Therefore, Netscope needs to be retrained
for a variant of the application that uses a different node count.
However, there exist numerous HPC applications that are executed
with fixed node count. For example, our analysis of jobs on Cori
run over two weeks reveal that MILC was run with only 5 distinct
node counts. The impact of errors in estimated delay sensitivity
that can be introduced by different application node counts has
been discussed in §6. In our future work, we will develop models
to characterize the relationship between delay sensitivity and node
count.

How does Netscope handle multiple congestors with high
delay sensitivity? If multiple applications act as sources of con-
gestion while also being highly delay-sensitive, the control mech-
anism of Netscope will converge more slowly, leading to a lag in
congestion mitigation. However, as the control mechanism has a
multiplicative decrease step, congestion is mitigated exponentially,
and the time required to mitigate congestion only grows logarithmi-
cally. Moreover, we have been unable to find congestion-inducing
workloads for which multiple applications have high delay sensi-
tivity.

Can simulation be used to reduce the cost of estimating
delay sensitivity? Indeed, simulation of applications on a network
simulator (such as [31, 32]) can be used for delay sensitivity estima-
tion to further reduce the number of application runs required on a
real system. However, simulations do not accurately mimic system
behavior [33, 34]. Delay sensitivity obtained from simulation could
be used as a prior to bias the estimation of delay sensitivity on the
real system and further accelerate training.

Is constant delay sensitivity a reasonable assumption? Re-
call from §4.1, delay sensitivity is assumed to be constant through-
out the application lifespan. To validate this assumption, we char-
acterize traffic injection of two applications with non-zero delay
sensitivity: MILC and LAMMPS. Fig. 8 shows the variation in cu-
mulative traffic injection for the two applications. We observed
iterative communication behavior across the run for both applica-
tions. An iterative communication behaviour ensures that network
characteristics of applications do not significantly vary across time
and delay sensitivity is constant. Moreover, such iterative behaviour
has also been demonstrated for multiple other commonly used HPC
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Figure 8: Variation in cumulative per node traffic injection
across the application’s lifespan for MILC and LAMMPS

applications [35–37]. As a part of future work, we could model de-
lay sensitivity as a distribution dependent on application progress
in an execution.

How does Netscope work across varying input sets?
Netscope is well suited for applications such as weather forecast-
ing (WRF) and ML training/inference that have mostly identical
communication patterns despite variation in input datasets. Fig. 7
shows how an error in estimating delay sensitivity that may be
introduced because of changing input sets can impact the perfor-
mance of Netscope. Even in the worst case, Netscope performs no
worse than other approaches (i.e., DCQCN and Cray Aries).

8 RELATEDWORK
Modeling the impact of congestion on applications. Several
researchers have studied the effects of network congestion on the
performance of applications. [8, 38] has proposed blackboxmachine
learning models to estimate application runtime from network
counters. [7] has proposed a congestion region-based approach to
characterize congestion in torus networks. [39] proposed inferring
latency requirements of applications using delay injection. However,
these approaches do not provide application characteristics that
can be consumed by the CC algorithm.
Rate Control for Congestion Mitigation. Traditionally, Infini-
band congestion mitigation [40] has been the defacto standard for
CC in credit-based flow control networks. In addition, researchers
have proposed additional schemes [1–3] to mitigate congestion for
HPC systems. Moreover, there are a large number of application-
oblivious (e.g., [4, 5, 12]) and application-aware (e.g., [41–43])
CC mechanisms proposed for cloud datacenters. However, the
application-oblivious CC mechanisms end up incorrectly penal-
izing applications whereas the application-aware CC mechanisms
require complicated parameter tuning that is difficult to achieve
without an automated framework. Cray Slingshot [44] proposes
to alleviate congestion by selectively targeting the true sources of
congestion using network features only. The use of programmable
switches has also been proposed to provide explicit traffic feedback
for congestion control [45, 46].
In-network Mechanisms. [47] proposed a mechanism to sup-
port routing dependent on a per-application basis in Cray Aries
networks. However, the primary goal of the work was to reduce
self-congestion created by the application as opposed to interfer-
ence between applications. Our proposed delay sensitivity metric
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can also be used to assign priority classes to provide quality-of-
service. For example, we can use the delay sensitivity metric to
assign priority classes in Cray Slingshot [44]. In addition, there has
been a large body of work on using different packet scheduling
policies [48–50] at the switches to minimize the impact of conges-
tion on applications that do not contribute to congestion. However,
these policies have yet to be deployed on real switch hardware.

9 CONCLUSION AND FUTUREWORK
We propose Netscope, a delay sensitivity-based framework for con-
gestion mitigation. We comprehensively evaluate Netscope on two
Cray Aries systems (including a production supercomputer) and
commonly used scientific applications. Netscope is shown to re-
duce the application tail runtime variability on a Cray Aries testbed
system by 16.3× while increasing median system utilization by 12%.

There are several open questions and research challenges regard-
ing Netscope (discussed in §7). As a part of future work, we will
extend Netscope to use delay sensitivity for driving in-network
mechanisms such as QoS classes and programmable packet sched-
uling.
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