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Abstract

Multi-agent reinforcement learning (MARL) has primarily focused on solving a
single task in isolation, while in practice the environment is often evolving, leav-
ing many related tasks to be solved. In this paper, we investigate the benefits of
meta-learning in solving multiple MARL tasks collectively. We establish the first
line of theoretical results for meta-learning in a wide range of fundamental MARL
settings, including learning Nash equilibria in two-player zero-sum Markov games
and Markov potential games, as well as learning coarse correlated equilibria in
general-sum Markov games. Under natural notions of task similarity, we show that
meta-learning achieves provable sharper convergence to various game-theoretical
solution concepts than learning each task separately. As an important intermediate
step, we develop multiple MARL algorithms with initialization-dependent con-
vergence guarantees. Such algorithms integrate optimistic policy mirror descents
with stage-based value updates, and their refined convergence guarantees (nearly)
recover the best known results even when a good initialization is unknown. To our
best knowledge, such results are also new and might be of independent interest.
We further provide numerical simulations to corroborate our theoretical findings.

1 Introduction

Many real-world sequential decision-making problems involve multiple agents interacting in a
shared environment, a scenario commonly captured by game theory and addressed using multi-agent
reinforcement learning (MARL). Existing research in MARL has primarily focused on solving a
single task (i.e., a game) independently. In practice, however, one often needs to collectively solve a
set of similar tasks due to the dynamically evolving environment. For example, in sponsored search
auctions [48], the advertising spaces and search results are dynamic, and each bidder with an active
bid will participate in a sequence of related auctions. In multi-robot cooperation [31, 26], the learning
agents are often first pre-trained in simplified environments and are then asked to quickly adapt to
more complicated ones. In cloud computing [53, 70], a learning-based autoscaling policy needs to
achieve fast model adaptation to deal with varied application workloads or constantly evolving cloud
infrastructures. All of these intriguing applications call for the development of intelligent multi-agent
systems that can continuously build on previous experiences to enhance the learning of new tasks.
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Meta-learning, or learning-to-learn [64, 56, 65, 58], is a rapidly developing approach that is particu-
larly suitable for learning in a set of related tasks. In essence, meta-learning studies the use of data
from existing tasks to learn representations or model parameters that enable quick adaptation to new
tasks. By exploiting the knowledge obtained from prior tasks, the meta-learner can ideally solve
an unseen task using much fewer training samples than learning from scratch, especially when the
tasks share some inherent similarities. Despite many empirical successes [71, 31, 26], the theoretical
results of meta-learning in multi-agent scenarios are still relatively lacking. It remains elusive whether
meta-learning can provably expedite the convergence of MARL, and if so, what the proper task
similarity assumptions to impose are. In fact, it is even unclear whether a meta-learner converges at
all in a highly non-stationary system with loosely-coupled learning agents and diverse task setups.

In this paper, we make an initial attempt toward characterizing some of the central theoretical
properties of meta-learning in a wide range of fundamental MARL settings. We focus on the
classic model-agnostic meta-learning (MAML) [20] type of algorithms that aim to learn a good
initialization for quick adaptation to new tasks. To study the convergence rate of MAML, an
important prerequisite is to understand how the convergence of MARL algorithms depends on
the quality of policy initialization. However, the convergence guarantees of most existing MARL
algorithms are initialization-independent: They fail to track how the sub-optimality of the initial
policy propagates during the learning process, and only provide pessimistic guarantees with respect
to worst-case initialization. As a crucial intermediate step to meta-MARL, we need to establish
refined initialization-dependent convergence guarantees for MARL. Our main contributions are thus
summarized as follows.

Contributions. 1) For learning Nash equilibria (NE) in two-player zero-sum Markov games, we first
propose an MARL algorithm blessed with a refined convergence analysis that explicitly characterizes
the dependence on policy initialization (Section 3.1). Our algorithm runs optimistic online mirror
descent for policy optimization and performs stage-based value function updates. Even when
initialized with random policies, our algorithm still matches the best-known convergence rates in the
literature except for an extra logarithmic term. Our algorithm and analysis appear to be new and might
be of independent interest. 2) Based on such refined analysis, we show that meta-learning provably
achieves faster convergence to NE when learning a sequence of “similar” zero-sum games collectively,
where our similarity metric naturally depends on the closeness of the games’ NE policies (Section 3.2).
3) For learning NE in Markov potential games (MPGs), we show that a simple refinement of an
existing algorithm suffices to provide initialization-dependent guarantees. We establish sharper
convergence rates of meta-learning when the MPGs have similar potential functions (Section 4.1). In
addition, with a properly chosen policy update rule, we prove the non-asymptotic convergence of the
exact MAML algorithm in MPGs (Section 4.2), despite the convoluted learning dynamics of multiple
loosely-coupled agents. 4) For learning coarse correlated equilibria (CCE) in general-sum Markov
games (Section 5), we analogously start by designing an initialization-dependent MARL algorithm,
and then establish the sharper convergence rate of meta-learning under natural similarity metrics. 5)
We provide numerical results to corroborate our theoretical findings (Section 6).

Related Work. Gradient-based meta-learning is a simple and effective approach that can be easily
applied to any learning problem trained with gradient descent. The seminal MAML method [20]
tries to learn a good model parameter initialization that leads to quick model adaptation. Theoretical
properties of MAML have been investigated in a series of works [54, 17, 66, 18, 30]. In particular,
[17, 30] have established the convergence of MAML to first-order stationarity for non-convex
objectives. [18] has designed an unbiased gradient estimator for MAML in reinforcement learning
tasks. Various first-order approximations [20, 49, 17] of MAML have been proposed to avoid
the heavy computation of the Hessian. Meta-learning has also been studied in online convex
optimization [21, 4, 14, 35], where regret bounds have been established under different metrics of
task similarity. Another line of research [29, 51, 41] views meta-learning through the lens of task
inference, where an RL policy is conditioned on a belief over tasks and perform Bayesian updates
through interactions to adapt to different tasks.

MARL has been widely studied under the formulation of stochastic games (i.e., Markov games)
[57]. Due to the fundamental difficulty of computing NE in generic games [10], most MARL
research has focused on learning NE in games with special structures (such as zero-sum Markov
games [67, 2, 69, 3, 12, 68, 7, 72, 73] and Markov potential games [43, 38, 76, 25, 22, 15, 78]) or
learning weaker solution concepts such as (coarse) correlated equilibria [40, 44, 59, 33, 47, 16, 13].
The most relevant works are [77, 72], which have studied the convergence of optimistic no-regret
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learning and smooth value updates in MARL with full-information feedback. For learning NE in
MPGs, [38, 76, 15] have studied independent policy gradient methods and established their sample
complexity results. These works have focused on learning a single game in isolation but have not
considered exploiting the connections between multiple games to expedite the learning process.

Most related to ours, [27] has studied meta-learning in normal-form games. Under different notions
of game similarities, [27] has shown faster convergences of meta-learning in zero-sum, general-sum,
and Stackelberg games. [75] has investigated no-regret learning in time-varying zero-sum normal-
form games. Compared to [27, 75], we consider meta-learning in the more generic and challenging
Markov game setup with state transitions. Other related works include meta-learning for regret
minimization in a distribution of games [61] and meta-safe RL for quick adaptation in constrained
Markov decision processes (CMDPs) under task similarity [34]. Finally, meta-learning has also been
empirically applied to many important MARL scenarios, including multi-intersection traffic signal
control [71], multi-agent communication with natural language [26], and multi-agent collaboration
with first-person pixel observations in open-ended tasks [63].

2 Preliminaries

Markov game. An N -player episodic Markov game is defined by a tuple G =
(N , H,S, {Ai}Ni=1, {ri}Ni=1, P ), where (1) N = {1, 2, . . . , N} is the set of agents; (2) H ∈ N+ is
the number of time steps in each episode; (3) S is the finite state space; (4) Ai is the finite action
space for agent i ∈ N ; (5) ri : [H] × S × Aall → [0, 1] is the reward function for agent i, where
Aall = ×N

i=1Ai is the joint action space; and (6) P : [H]×S ×Aall → ∆(S) is the transition kernel.
The agents interact in an unknown environment for T episodes. Without loss of generality, we make
a standard assumption [33, 59] that each episode starts from a fixed initial state s1. Our results can
be easily generalized to the setting where the initial state is sampled from a fixed distribution. At
each time step h ∈ [H], the agents observe the state sh ∈ S, and take actions ah,i ∈ Ai, i ∈ N
simultaneously. Agent i then receives its reward rh,i(sh,ah), where ah = (ah,1, . . . , ah,N ), and the
environment transitions to the next state sh+1 ∼ Ph(·|sh,ah). Let S = |S|, Ai = |Ai|,∀i ∈ N , and
Amax = maxi∈N Ai.

Policy and Nash equilibrium. A (Markov) policy πi ∈ Πi : [H] × S → ∆(Ai) for agent i ∈ N
is a mapping from the time index and state space to a distribution over its own action space. Each
agent seeks to find a policy that maximizes its own cumulative reward. A joint, product policy
π = (π1, . . . , πN ) ∈ Π induces a probability measure over the sequence of states and joint actions.
We use the subscript −i to denote the set of agents excluding agent i, i.e., N\{i}. We can rewrite
π = (πi, π−i) using this convention. For a joint policy π, and for any h ∈ [H], s ∈ S , and a ∈ Aall,
we define the value function and Q-function for agent i as

V π
h,i(s) := Eπ

[ H∑
h′=h

rh′,i(sh′ ,ah′)|sh = s
]
, Qπ

h,i(s,a) := Eπ

[ H∑
h′=h

rh′,i(sh′ ,ah′)|sh = s,ah = a
]
.

For agent i, a policy π†
i is a best response to π−i if V π†

i ,π−i

1,i (s1) = supπi
V

πi,π−i

1,i (s1). A joint
(product) policy π = (πi, π−i) ∈ Π is a Nash equilibrium (NE) if πi is a best response to π−i

for all i ∈ N . Similarly, for any ε > 0, a joint policy π = (πi, π−i) is an ε-approximate NE if

V
πi,π−i

1,i (s1) ≥ V π†
i ,π−i

1,i (s1)− ε, ∀i ∈ N .

Correlated policy and coarse correlated equilibrium. We define π = {πh : R× (S ×A)h−1 ×
S → ∆(A)}h∈[H] as a (non-Markov) correlated policy, where for each h ∈ [H], πh maps from
a coordination device z ∈ R and a history of length h − 1 to a distribution over the joint action
space. Let πi and π−i be the proper marginal distributions of π whose outputs are restricted to ∆(Ai)
and ∆(A−i), respectively. The value functions for non-Markov correlated policies at step h = 1
are defined in a similar way as for product policies. Given the PPAD-hardness of calculating NE
in general [11], people often study a relaxed solution concept named coarse correlated equilibrium
(CCE), which allows possible correlations in the policies: In particular, for any ε > 0, a correlated

policy π = (πi, π−i) is an ε-approximate CCE if V πi,π−i

1,i (s1) ≥ V π†
i ,π−i

1,i (s1)− ε,∀i ∈ N .
Two-player zero-sum Markov game. An important special case of Markov games is (two-player)
zero-sum Markov games, where there are two players (N = 2) with exactly opposite rewards
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(r1 = −r2). In a zero-sum game, we simply use r, V , and Q to denote the reward and (Q-)value
functions for the max-player, i.e., agent 1. Correspondingly, the min-player has −r,−V , and −Q.
For notational convenience, we denote the action space for the max-player (resp. min-player) by A
(resp. B), and let A = |A|, B = |B|. We also write their policies (π1, π2) as (µ, ν) for short. In
zero-sum games, it is known that although the NE policy (µ⋆, ν⋆) may not be unique, all the NE have
the same values. We use V ⋆

h and Q⋆
h to denote the NE value function and the NE Q-function. For any

fixed (h, s) ∈ [H]× S and an arbitrary function Q : S ×A× B → R, we may consider Q(s, ·, ·) as
an A×B matrix. Then, for any policy pair (µh, νh) at step h ∈ [H], we can write in shorthand:[

µ⊤
hQνh

]
(s) := Ea∼µh(·|s),b∼νh(·|s)[Q(s, a, b)] = ⟨µh, Qνh⟩ (s),[

µ⊤
hQ
]
(s, ·) := Ea∼µh(·|s)[Q(s, a, ·)], and [Qνh] (s, ·) := Eb∼νh(·|s)[Q(s, ·, b)].

Given the transition function P and an arbitrary function V : S → R, we define
[PhV ] (s, a, b) := Es′∼Ph(·|s,a,b) [V (s′)] .

The Bellman equations can hence be rewritten more succinctly as

V µ,ν
h (s) =

[
µ⊤
hQ

µ,ν
h νh

]
(s), and Qµ,ν

h (s, a, b) = rh(s, a, b) +
[
PhV

µ,ν
h+1

]
(s, a, b).

Markov potential game. Another important class of games is Markov potential games [43, 39, 76].
MPGs cover Markov teams [36], a fully cooperative setting where all agents share the same rewards.
A Markov game is an MPG if there exists a global potential function Φ : Π× S → [0,Φmax] that
can capture the variations of the agents’ individual values: Specifically, ∀i ∈ N and s ∈ S,

Φs(πi, π−i)− Φs(π
′
i, π−i) = V

πi,π−i

1,i (s)− V π′
i,π−i

1,i (s),∀πi, π′
i ∈ Πi, π−i ∈ Π−i.

Throughout the paper, we consider the classic full-information feedback setting [23, 8, 62, 68, 7],
where the players are assumed to have exact information of the consequences of each of their
candidate actions. In the case of zero-sum games, this implies that for any (h, s), the max-player
and min-player can query [Qhνh](s, ·) and [µ⊤

hQh](s, ·), respectively. Our meta-learning results
can be easily extended to the stochastic bandit feedback setting using standard techniques as in
[3, 44, 33, 15].

Meta-learning. Let G = {Gk} be a set of different Markov games. Each game is defined by Gk =
(N , H,S, {Ai}Ni=1, {rki }Ni=1, P

k), where we assume without loss of generality that the games share
the same agent set and state & action spaces, but can have different transition and reward functions.
Most of our results are established in the online learning setting where we encounter a sequence of K
games (G1, . . . ,GK) one by one. To achieve faster convergence, the learning agents should use the
knowledge obtained from previous games to expedite the learning process in future games.

The underlying principle of MAML [20] is to learn a good initialization such that running a few
training steps from this initialization can lead to well-performing model parameters on any new task.
An MAML-type algorithm in the context of RL typically involves two nested stages. The inner stage
(or “base algorithm”) ψ performs T iterations of policy updates to optimize for an individual task Gk:

πk,t ← ψ(πk,t−1;Gk),∀t ∈ [T ]. (1)

When task Gk is completed, the outer stage (or “meta-algorithm”) Ψ learns to form a good initializa-
tion πk+1,0 for a new task Gk+1 using all the knowledge obtained from all previous tasks:

πk+1,0 ← Ψ({πk′,t}k′∈[k],t∈[T ];G1, . . . ,Gk). (2)
In this paper, we seek to properly instantiate both the base algorithm ψ and the meta-algorithm Ψ for
a variety of MARL problems. We aim to show that a proper design of the meta-learning procedure
(ψ,Ψ) can largely reduce the number of iterations T required to find NE or CCE in a new game.

3 Meta-Learning for Two-Player Zero-Sum Markov Games

In this section, we study meta-learning for Nash equilibria in zero-sum Markov games, where players
are fully competitive. Since MAML-type algorithms seek to learn a good initialization for quick
adaptation, it is crucial to explicitly characterize how the convergence behavior of an MARL algorithm
depends on the initial policy. To our best knowledge, such results are not directly achievable using
existing algorithms. For this reason, in Section 3.1, we start by proposing a new base algorithm (1)
for zero-sum Markov games that has a refined initialization-dependent convergence guarantee. Based
on that, we present our meta-algorithm (2) in Section 3.2 and establish its sharper convergence rates.
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3.1 Initialization-Dependent Convergence in an Individual Zero-Sum Markov Game

Algorithm 1 presents our optimistic online mirror descent algorithm with stage-based value updates
for learning NE in a zero-sum Markov game. To establish initialization-dependent convergence,
Algorithm 1 performs optimistic online mirror descent (OMD) [55, 62] for policy updates (Lines 5
and 6), in contrast to the popular optimistic follow the regularized leader (FTRL) method in recent
MARL policy optimization [77, 72]. We choose the negative entropy as our regularizer R, in which
case the Bregman divergence DR(·, ·) reduces to the Kullback–Leibler divergence and optimistic
OMD becomes an optimistic variant of the classic multiplicative weights update (MWU) algorithm.

Algorithm 1: Optimistic Online Mirror Descent for Zero-Sum Markov Games
1 Input: Initial policies µ̃ : [τ̄ ]× [H]× S → ∆(A) and ν̃ : [τ̄ ]× [H]× S → ∆(B);
2 Set stage index τ ← 1, tstart

τ ← 1, and Lτ ← H;
3 Initialize: µ0

h = µ̂0
h ← µ̃1

h, ν0h = ν̂0h ← ν̃1h, and Qτ
h ← 0,∀h ∈ [H];

4 for iteration t← 1 to T do
5 Auxiliary policy update: for each step h ∈ [H] and state s ∈ S:

µ̂t
h(·|s)← argmax

µ̂∈∆(A)

η
〈
µ̂, [Qτ

hν
t−1
h ](s, ·)

〉
−DR(µ̂, µ̂

t−1
h (·|s));

ν̂th(·|s)← argmax
ν̂∈∆(B)

η
〈
ν̂, [(µt−1

h )⊤Qτ
h](s, ·)

〉
−DR(ν̂, ν̂

t−1
h (·|s));

6 Policy update: for each step h ∈ [H] and state s ∈ S:

µt
h(·|s)← argmax

µ∈∆(A)

η
〈
µ, [Qτ

hν
t−1
h ](s, ·)

〉
−DR(µ, µ̂

t
h(·|s));

νth(·|s)← argmax
ν∈∆(B)

η
〈
ν, [(µt−1

h )⊤Qτ
h](s, ·)

〉
−DR(ν, ν̂

t
h(·|s));

7 if t− tstart
τ + 1 ≥ Lτ then

8 tend
τ ← t, tstart

τ+1 ← t+ 1, Lτ+1 ← ⌊(1 + 1/H)Lτ⌋;
9 Value update: for each h ∈ [H], s ∈ S, a ∈ A, b ∈ B:

Qτ+1
h (s, a, b)← 1

Lτ

tend
τ∑

t′=tstart
τ

(
rh + Ph[(µ

t′

h+1)
⊤Qτ

h+1(ν
t′

h+1)]
)
(s, a, b);

10 τ ← τ + 1; µt
h = µ̂t

h ← µ̃τ
h, νth = ν̂th ← ν̃τh ,∀h ∈ [H];

11 Output policy: µ̄h(·|s) = 1
T

∑T
t=1 µ

t
h(·|s) and ν̄h(·|s) = 1

T

∑T
t=1 ν

t
h(·|s),∀s ∈ S, h ∈ [H].

In order to establish convergence to (approximate) NE, we need to show that our optimistic OMD
policy updates achieve “no regret” with respect to the value estimate sequence at each state, i.e., to
upper bound (3). If we were to use the celebrated αt =

H+1
H+t learning rate [32] to update the value

function estimates, we will inevitably need to show a no-weighted-regret guarantee for optimistic
OMD, because such a time-varying learning rate assigns non-uniform weights to each history step.
However, incorporating OMD with a dynamic learning rate is known to be challenging and can
easily lead to linear regret [50]. While a stabilization technique [19] has been introduced to tackle
this challenge, we take a different route by resorting to an alternative value update method, namely
stage-based value updates [79]. Specifically, we divide the total T iterations into multiple stages
and only update our value estimates at the end of a stage (Line 9). We let the lengths of the stages
grow exponentially at a rate of (1 + 1/H) (Line 8) [79, 45]. The exponential growth ensures that
the total T iterations can be covered by a small number of stages, while the (1 + 1/H) growth
rate guarantees that the value estimation error does not blow up during the H steps of recursion
(Lemma 9). Compared with the incremental αt =

H+1
H+t update rule that modifies the value estimates

at every step, stage-based updates are more stationary and allow us to assign uniform weights to each
history step. This leads to a simpler no(-average)-regret problem [47] that can be easily addressed by
(optimistic) OMD.
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We introduce a few notations before presenting the convergence analysis of Algorithm 1. Let τ(t)
denote the index of the stage that iteration t belongs to. We denote by τ̄ the total number of stages,
i.e., τ̄ := τ(T ). For any (τ, h, s) ∈ [τ̄ ]× [H]× S , define the per-state regrets for the max-player as

regτh,1(s) := max
µτ,†
h (·|s)∈∆(A)

1

Lτ

tend
τ∑

j=tstart
τ

〈
µτ,†
h − µ

j
h, Q

τ
hν

j
h

〉
(s). (3)

The per-state regret regτh,2(s) for the min-player can be defined symmetrically (see (14) in Ap-
pendix B). We define the maximal regret (over the states and the two players) as regτh :=
maxs∈S maxi=1,2{regτh,i(s)}. An upper bound for the per-state regrets is provided in Lemma 8
of Appendix B, which is useful in the analysis of Algorithm 1. We use the standard notion of

NE-gap(µ, ν) := V †,ν
1 (s1)− V µ,†

1 (s1)

to measure the optimality of a policy pair (µ, ν). The initialization-dependent convergence rate of
Algorithm 1 is as follows.
Theorem 1. If Algorithm 1 is run on a two-player zero-sum Markov game for T iterations with a
learning rate η ≤ 1/(8H2), the output policy pair (µ̄, ν̄) satisfies:

NE-gap(µ̄, ν̄) ≤ 192H3

T

H∑
h=1

τ̄∑
τ=1

max
s

(
DR(µ

τ,†
h (·|s), µ̃τ

h(·|s)) +DR(ν
τ,†
h (·|s), ν̃τh(·|s))

)
.

In addition, if the players’ policies are initialized to be uniform policies, i.e., µ̃τ
h(·|s) = 1/A and

ν̃τh(·|s) = 1/B, ∀s ∈ S, τ ∈ [τ̄ ], h ∈ [H], we further have

NE-gap(µ̄, ν̄) ≤ 768H5 log T log(AB)

T
. (4)

Compared to existing results [77, 72], Theorem 1 directly associates the convergence rate with
the quality of the initial policy (µ̃, ν̃). Even when a good policy initialization is unknown and the
algorithm is initialized with uniformly random policies, our convergence rate in (4) still matches the
best-known result in the literature [72] except for an extra factor of O(log T ). When suppressing the
logarithmic terms, Theorem 1 immediately implies that for any ε > 0, Algorithm 1 takes no more
than T = Õ(H5/ε) steps to learn an ε-approximate NE in an individual zero-sum Markov game.

3.2 Sharper Convergence with Meta-Learning

Having settled the initialization-dependent convergence in a zero-sum game, we proceed to show
how meta-learning can learn a set of related games collectively and more rapidly. We consider an
online setting with a sequence of K games G = (G1, . . . ,GK). For the max-player, let µ̃k and µ̄k,
respectively, denote the initial policy and output policy of Algorithm 1 on game Gk. By putting
together µτ,†

h (·|s) over all (τ, h, s) ∈ [τ̄ ]× [H]×S , we let µk,† : [τ̄ ]× [H]×S → ∆(A) denote the
best fixed policies in hindsight on Gk. Define ν̃k, ν̄k and νk,† analogously for the min-player. Let
µ⋆ = 1

K

∑K
k=1 µ

k,† and ν⋆ = 1
K

∑K
k=1 ν

k,† be the empirical averages of the best response policies.
To ensure that the knowledge gained from previous games is useful for learning future tasks, we need
to impose some similarity assumptions on the games G. We consider the following similarity metric:

∆µ,ν :=

K∑
k=1

(
KL
(
µk,†∥µ⋆

)
+KL

(
νk,†∥ν⋆

))
.

Intuitively, since {νk,t}t∈[T ] converges to an equilibrium policy for Gk when T is large, the best
fixed responses µk,† can be considered as an approximation of the max-player’s NE policy on Gk. In
this sense, ∆µ,ν essentially measures the distances between the NE policies of different games. It
considers a set of games G to be “similar” if their NE policies lie in a close neighborhood of each
other. We remark that there might be multiple NE policies (with the same value) in a zero-sum game,
and ∆µ,ν only takes into account the NE policy pairs that Algorithm 1 actually delivers.

Our meta-learning procedure proceeds as follows: Within each game Gk, we run Algorithm 1 as our
base algorithm (1) to find a NE of Gk. In a new game Gk+1, the initial policy of Algorithm 1 is given
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by the following meta-updates in the outer loop (2), which essentially averages the best response
policies of the previous tasks under α-greedy parameterization:

µ̃k+1 =
1

k

k∑
k′=1

[µk′,†]α, and ν̃k+1 =
1

k

k∑
k′=1

[νk
′,†]α. (5)

In particular, for any vector x ∈ Rd, we define its α-greedy parameterization [x]α := (1−α)x+ α
d1

to be a weighted average with a uniform vector 1/d ∈ Rd of a proper dimension, where α ∈ (0, 1/2).
Since µk,† denotes a set of vectors, we apply the operator [·]α element-wise to each of the vectors.
The reason for using α-greedy is mainly technical: KL (·∥·) is not Lipschitz continuous near the
boundary of the probability simplex, and α-greedy parameterization helps to stay α-distance away
from the boundary. We are now ready to present our sharper convergence rates for meta-learning.
Theorem 2. In a sequence of K two-player zero-sum Markov games, if Algorithm 1 is run for T
iterations as the base algorithm and (5) with α = 1/

√
K as the meta-updates, we have

1

K

K∑
k=1

NE-gap(µ̄k, ν̄k) ≤ 192H5

T

(
∆µ,ν

KH2
+

10(A+B) logK√
KH2

+
16 log T log(ABK)√

K

)
. (6)

Consequently, for any ε > 0, T = Õ(H
3

ε (
∆µ,ν

K + A+B+H2
√
K

)) steps on average suffice to find an
ε-approximate Nash equilibrium in each game.

When the number of gamesK is large, the last two terms on the RHS of (6) become negligible. Hence,
compared to the best-known results Õ(H5/T ) of learning each game individually, Theorem 2 implies
a significantly sharper convergence rate when the games are similar, i.e., when ∆µ,ν ≪ KH2.

4 Meta-Learning for Markov Potential Games

In this section, we study meta-learning for NE in Markov potential games. We show that a straight-
forward refinement to the analysis of an existing algorithm [15] provides initialization-dependent
bounds. Building on it, in Section 4.1, we first investigate the sharper convergence of meta-learning in
a sequence of similar MPGs. Further, since there exists an optimization objective universally agreed
on by all the players in an MPG (i.e., the potential function), we can formulate the meta-learning
problem in the same way as MAML [20]. In Section 4.2, by choosing a proper base algorithm,
we establish the non-asymptotic convergence of MAML in the highly non-stationary multi-agent
scenario, without even imposing any smoothness assumptions as in existing works [17, 18, 30].

4.1 Sharper Rates in Similar Games

To be consistent with existing results in the literature, in this section, we consider an infinite-horizon
γ-discounted reward setting for MPGs [43, 39, 76, 15]. A detailed description of the setup is provided
in Appendix C for completeness. Equivalent results for the finite-horizon episodic setting (as we
defined in Section 2) can be derived in a straightforward way. We choose an existing state-of-the-art
algorithm, namely independent projected Q-descent [15], as our base algorithm (1). Specifically, in
an MPG Gk, each agent independently runs policy gradient ascents to update its own policy for T
iterations:

πk,t
i (·|s)← Proj∆(Ai)

(
πk,t−1
i (·|s) + αQ̄πk,t−1

i (s, ·)
)
,∀t ∈ [T ], (7)

where Q̄π
i is the “averaged” Q-function formally defined in Appendix C. Let Φ(· ;Gk) denote the

potential function of Gk. Through a simple refinement of the analysis in [15], we can establish the
following initialization-dependence bound for our base algorithm (7).
Proposition 1. (Theorem 1 in [15]) Suppose that all players in a Markov potential game Gk run
independent projected Q-descent (7) for T iterations with α ≤ (1−γ)4

8κ3NAmax
. Then, we have

1

T

T−1∑
t=0

NE-gap(πk,t) ≤
√
κ(Gk)(Φ(πk,T ;Gk)− Φ(πk,0,Gk))

αT (1− γ)2 ,

where κ(Gk) is the standard distribution mismatch coefficient for Gk formally defined in Appendix C.
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Proposition 1 immediately implies that if we learn each MPG individually, it takes T =

O(NAmaxκ
4Φmax

(1−γ)6ε2 ) steps to find an ε-approximate NE. To show the effectiveness of meta-learning, we
consider the following similarity metric for a sequence of K games, which measures the maximal
point-wise deviations of the potential functions:

∆Φ :=

K−1∑
k=1

max
π

(
Φ(π;Gk)− Φ(π;Gk+1)

)
. (8)

As for the meta-updates, we simply instantiate (2) as πk,0
i ← πk−1,T

i , which lets each agent play
the converged policy in the previous game. The intuition is that after running T steps on Gk−1, the
agents will converge to an approximate NE policy of Gk−1. Since (8) requires the potential functions
to be close, the converged policy πk−1,T should serve as a good starting point to search for NE in
Gk. We formally characterize such an intuition in the following theorem, which shows the sharper
convergence of meta-learning in a large set of similar MPGs (i.e., when K is large and ∆Φ is small):
Theorem 3. In a sequence of K Markov potential games, if (7) is run for T iterations as the base
algorithm and πk,0

i ← πk−1,T
i as the meta-updates, then, for any ε > 0, T = O(NAmaxκ

4(Φmax+∆Φ)
K(1−γ)6ε2 )

steps on average suffice to find an ε-approximate Nash equilibrium in each game.

4.2 Convergence to MAML Objective

In this subsection, we study meta-learning for MPGs under exactly the same formulation as in the
seminal work of MAML [20]. Let G = {Gj} be a set of different MPGs, where the games are now
drawn from a fixed distribution p that we can sample from. We consider parametric policy classes
where agent i’s policy is parameterized by θi = {θi(ai|s) ∈ R}s∈S,ai∈Ai

. We focus on softmax
parameterization where

πθi(ai|s) =
exp(θi(ai|s))∑

a′
i∈Ai

exp(θi(a′i|s))
.

Let ζ(· ;G) denote the operator of performing one step of policy gradient update on game G, i.e.,
ζ(θ;G) := θ + α∇Φ(θ;G), where α > 0 is the learning rate. The T -step MAML objective
[20, 18, 30] can be formulated as

max
θ∈Θ

FT (θ) := EG∼p(G) [Φ (ζ(. . . (ζ(θ;G)) . . . );G)] , (9)

where θ = (θ1, . . . , θN ) ∈ Θ, and the operator ζ(· ;G) is applied T times. Intuitively, MAML tries
to find a good parameter initialization from which running T steps of gradient ascents on any new
task G leads to well-performing policy parameters.

Similar to Section 2, the MAML procedure consists of two nested stages. For the inner stage (1), we
let each agent independently run T steps of policy gradient ascents to update its policy parameter θ(t)i
on each encountered MPG. It is known (Theorem 5 of [78]) that T = O(1/ε2) steps will find an ε-
approximate NE for each individual MPG. For the outer stage (2), MAML directly performs gradient
ascents with respect to the meta-objective (9). The gradient of FT can be written in closed-form as

∇FT (θ) = EG∼p(G)

[( T−1∏
t=0

(
I + α∇2Φ(θ(t);G)

))
∇Φ(θ(T );G)

]
. (10)

A detailed discussion of MAML and its instantiation in our problem are provided in Appendix D.
Most importantly, Appendix D shows that both the policy gradient ∇Φ(θ) and the policy Hessian
∇2Φ(θ) can be written in closed-form, which allows us to construct unbiased estimators of (10) from
samples. Despite the fact that the learning agents update their policies independently in an intertwined
multi-agent system, our next result shows that the MAML updates converge to a stationary point
of the meta-objective (9) in a non-asymptotic manner. A key step of the proof is to prove (rather
than assume, as in existing works [17, 30]) that the meta-objective is Lipschitz smooth in the policy
parameter θ. The smoothness constant can also be written in a closed form (Lemma 14).
Theorem 4. Suppose that the agents run independent policy gradient ascents with softmax parame-
terization on each encountered MPG as the inner stage, and perform gradient ascents w.r.t the MAML
objective as the outer stage. For any ε > 0, K = 4NLF

(1−γ)ε2 iterations of MAML updates can find a
policy θ⋆ such that ∥∇FT (θ

⋆)∥ ≤ ε, where LF is given in Lemma 14 of Appendix D.
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5 Meta-Learning for General-Sum Markov Games

In this section, we consider learning coarse correlated equilibria in general-sum Markov games with
no assumption on reward structures. Similar to Section 3, we start by developing an initialization-
dependent algorithm, followed by investigating the sharper convergence of meta-learning.

Our base algorithm for learning CCE also uses optimistic OMD with stage-based value updates.
Detailed descriptions are deferred to Algorithm 2 in Appendix E due to space limitations. Algorithm 2
follows a similar structure as Algorithm 1, but the output policy π̄ of Algorithm 2 is no longer a
state-wise average policy and is instead a correlated policy [3, 44, 33]. For any correlated policy π,
we use the notion

CCE-gap(π) := max
i∈N

V
†,π−i

1,i (s1)− V π
1,i(s1)

to measure its distance to a CCE. Let τ̄ denote the total number of stages of Algorithm 2. Similar to
zero-sum games (3), for any (τ, h, s) ∈ [τ̄ ]× [H]× S , we define the per-state regret for each player
i ∈ N as

regτh,i(s) := max
πτ,†
h,i(·|s)∈∆(Ai)

1

Lτ

tend
τ∑

j=tstart
τ

〈
πτ,†
h,i − π

j
h,i, Q

τ
h,iπ

j
h,−i

〉
(s),

where Qτ
h,i is player i’s Q-function estimate at stage τ . We define the maximal regret (over all states

and players) as regτh := maxs∈S maxi∈N {regτh,i(s)}. The initialization-dependent convergence rate
of Algorithm 2 is established in the following theorem.

Theorem 5. If Algorithm 2 is run on a general-sum Markov game for T iterations with a learning
rate η > 0, the output policy π̄ satisfies:

CCE-gap(π̄) ≤ 3

ηT

τ̄∑
τ=1

H∑
h=1

max
i∈N ,s∈S

DR(π
τ,†
h,i(·|s), π̃τ

h,i(·|s)) + 36N2η2H4.

In addition, if the players’ policies are initialized to be uniform policies π̃τ
h,i(·|s) = 1/Ai,∀i ∈ N

and η is chosen as η = H−2/3T−1/3(N − 1)−2/3, then we have

CCE-gap(π̄) ≤ 12N
2
3H

8
3 log T logAmax

T
2
3

. (11)

Compared to existing results, Theorem 5 directly associates the convergence rate with the quality
of the initial policy π̃. With uniform initialization, the convergence rate in (11) has a slightly worse
dependence on T than the best known result Õ(

√
NH11/4/T 3/4) [77]. Such deterioration is due to

the potential lack of a smoothness condition for optimistic OMD that directly connects the stability
of policies to the stability of utility functions (Lemma 18), unlike in optimistic FTRL. Although we
believe that our rate in (11) can almost certainly be improved via a refined stability analysis, we leave
the tightening of it to our future work as it would be a departure from the main focus of this work.

Let π̃k and π̄k, respectively, denote the initial policy and output policy of Algorithm 2 on game Gk.
For player i ∈ N , by putting together πτ,†

h,i(·|s) over all (τ, h, s), we use πk,†
i : [τ̄ ]×[H]×S → ∆(Ai)

to denote the best fixed policies in hindsight on Gk. We consider a game similarity metric defined as

∆π :=

K∑
k=1

N∑
i=1

KL(πk,†
i ∥π⋆

i ), where π⋆
i =

1

K

K∑
k=1

πk,†
i .

The following theorem presents the convergence rate of meta-learning, which again is sharper than
learning each game individually when the games are similar, i.e., when ∆π is sufficiently small.

Theorem 6. In a sequence of K general-sum Markov games, if Algorithm 2 is run for T iterations
as the base algorithm and the meta-updates π̃k

i = 1
k−1

∑k−1
k′=1[π

k′,†
i ]α,∀i ∈ N are used with

α = 1/
√
K for policy initializations, then, for any ε > 0, T = Õ(HN

ε3/2
(
∆3/2

π

K5/4 +
A3/2

max+H3

K1/2 )) steps on
average suffice to find an ε-approximate CCE in each game.
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6 Simulations

We numerically evaluate our meta-learning algorithms from Sections 3 and 4 on a sequence of
K games. In this section, we evaluate on a sequence of K = 10 zero-sum Markov games and
Markov potential games with two states, two players, and two candidate actions for each player. In
Appendix F, we further demonstrate the scalability of our methods by providing numerical results on
larger-scale tasks, including a simplified version of the Poker endgame considered in [27] and a 1D
linear-quadratic tracking problem [37] with 4 cooperative players.
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(a) Zero-sum Markov game
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Figure 1: NE-gap of policies output by individual learning and meta-learning in (a) zero-sum Markov
games, and (b) Markov potential games. Shaded areas denote the standard deviations. (c) visualizes
the NE policies of the K games in the normalized space [0, 1]× [0, 1] to illustrate their closeness.

We generate the K = 10 games by first specifying a “base game” and then adding random pertur-
bations to its reward function to get K slightly different games. Each of the K games is run for
T = 1000 iterations. To better visualize the similarity level of these games, in Figure 1(c), we plot
the NE policies of the perturbed zero-sum matrix games at each of the two states for the K = 10
games. We remark that due to the existence of state transitions, the NE policies with respect to the
stage Q-functions can be more diversified than Figure 1(c). Detailed descriptions of the simulation
setup are deferred to Appendix F.

We evaluate the convergences of the algorithms in terms of NE-gap. Figures 1(a) and 1(b) compare
the average NE-gap over the K games between individual learning and meta-learning for zero-sum
Markov games and Markov potential games, respectively. We see that meta-learning can utilize
knowledge from previous tasks to attain better policy initialization in a new task and converges to an
approximate NE policy using much fewer iterations.

7 Concluding Remarks

In this paper, we have introduced meta-learning to solve multiple MARL tasks collectively. Under
natural similarity metrics, we have shown that meta-learning achieves provably sharper convergence
for learning NE in zero-sum and potential games and for learning CCE in general-sum games.
Along the way, we have proposed new MARL algorithms with fine-grained initialization-dependent
convergence guarantees. Our work appears to be the first to investigate the theoretical properties
of meta-learning in MARL and provide reliable justifications for its usage. As for the limitations,
our convergence rate for learning CCE (Theorem 5) is slightly less competitive than the best-known
results when our policies are initialized conservatively, which might be improved via a refined policy
stability analysis. Other future directions include further generalization of our results to alternative
game similarity metrics and broader types of games (e.g., stochastic Stackelberg games).
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