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Abstract

Reinforcement learning (RL) has gained increasing popularity for resource man-
agement in cloud services such as serverless computing. As self-interested users
compete for shared resources in a cluster, the multi-tenancy nature of serverless plat-
forms necessitates multi-agent reinforcement learning (MARL) solutions, which
often suffer from severe scalability issues. In this paper, we propose a mean-field
game (MFG) approach to cloud resource management that is scalable to a large
number of users and applications and incorporates function approximation to deal
with the large state-action spaces in real-world serverless platforms. Specifically,
we present an online natural actor-critic algorithm for learning in MFGs compati-
ble with various forms of function approximation. We theoretically establish its
finite-time convergence to the regularized Nash equilibrium under linear function
approximation and softmax parameterization. We further implement our algorithm
using both linear and neural-network function approximations, and evaluate our
solution on an open-source serverless platform, OpenWhisk, with real-world work-
loads from production traces. Experimental results demonstrate that our approach is
scalable to a large number of users and significantly outperforms various baselines
in terms of function latency and resource utilization efficiency.

1 Introduction

Serverless computing1 is an emerging cloud computing paradigm that allows users to develop and run
their applications without worrying about the configurations of the infrastructure (containers or virtual
machines) [7, 33]. In contrast to traditional cloud computing, serverless users are only charged by the
function execution time and their operational cost is reduced since the cloud provider takes care of
the resource management (e.g., serverless function provisioning and scheduling) on their behalf. The
tension between cloud providers and users incurs a more complex resource management problem: The
platform needs to meet various user-defined serverless function quality-of-service (QoS) guarantees
while the provider aims to keep the cluster resource utilization at a high level in the face of elastic
and bursty function requests. Numerous heuristics-based solutions (e.g., [63, 66, 68, 75]) have been

1We focus on Function-as-a-Service (FaaS), which is the most common serverless service in cloud computing.
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utilized, yet they inevitably rely on extensive system-specific domain knowledge and painstaking
tuning for specific workloads.

Recently, reinforcement learning (RL) based approaches have attracted increasing attention for
dynamic resource management as RL helps automatically adapt to a specific user workload. Each
function is managed by an RL agent, leaving human operators out of the loop. The fact that large-
scale cloud computing platforms have many users with independent (and sometimes conflicting)
requirements adds another layer of complication for serverless function resource management. Since
functions from multiple self-interested users coexist and compete for shared resources in a cluster,
cloud providers further need to take into account the potential strategic behavior of the users. The
multi-agent reinforcement learning (MARL) paradigm [39] is especially well-suited here, as it
naturally integrates game-theoretical thinking into the sequential decision-making problems of multi-
agent systems. However, a well-known challenge in multi-agent reinforcement learning is scalability,
as many MARL algorithms suffer from exponential computation & sample complexity in the number
of agents, a phenomenon known as “the curse of multiagents” [32, 64, 41, 19, 42, 18]. The scalability
bottleneck needs to be properly addressed before applying MARL to real-world cloud serverless
platforms, which typically involve a large number of users and functions in a cluster [1].

To circumvent the scalability challenge, we resort to the mean-field approximation [37, 30] and
propose a scalable mean-field game (MFG) approach to cloud resource management. The under-
lying principle of MFGs is to approximate the finite-agent game with an infinite-population limit,
where each agent’s influence on the overall system becomes infinitesimal. In an MFG with infinite
homogeneous agents, the collective behavior of all the agents can be effectively summarized as a
population distribution, which is usually specified as the empirical distribution of the agents’ states.
Such an approximation leads to a tractable solution to the otherwise challenging MARL problem,
as each agent no longer needs to keep track of the historical behavior of every other agent to reason
about their internal information, which typically incurs a prohibitive combinatorial complexity. Exist-
ing theory [53] also shows that the approximation scheme does not lose much of optimality when
applying the policies learned from the infinite-agent game back to the original finite-population game.

However, the convergence of learning algorithms in MFGs has been chiefly established either in the
tabular setting with small state & action spaces [65, 28], or in the linear-quadratic case with structural
assumptions on the system dynamics [23, 72]. Few results have considered function approximation
in mean-field games with large (and even infinite) state & action spaces, which is the typical case for
many real-world application scenarios including cloud computing. In this paper, motivated by the
large state & action spaces in cloud resource management problems, we make an initial attempt to
understand the effects of function approximation in MFGs with generic system dynamics. While we
believe that our proposed methodology is general enough to be applicable to a wide range of scenarios,
we demonstrate the effectiveness of our approach in a real-world cloud resource management problem
as an important application domain.

Contributions. Our contribution is threefold: (1) Algorithmically, we propose a natural actor-critic
(NAC) learning paradigm for MFGs that is compatible with various forms of function approximations.
Our method is particularly practical due to an online property, in the sense that it need not fix
the mean-field state to calculate the best response at each iteration, but instead let the mean-field
naturally evolve as the agents learn. (2) Theoretically, we establish the finite-time convergence of
NAC with linear function approximation and softmax parameterization as a critical stepping stone.
We prove that the resulting algorithm converges to the regularized Nash equilibrium (NE) of the
MFG at an Õ(T−1/5) rate. (3) Empirically, we evaluate NAC on classic MFG benchmarks and
demonstrate its convergence behavior. As an important motivating example and test bench, we also
incorporate a practical variant of NAC (with both linear and neural-network function approximations)
into the resource management module of an open-source serverless platform, OpenWhisk [22]. Our
experimental results on real-world production workloads show that NAC is scalable to a large number
of agents in serverless resource management and significantly outperforms various baselines in terms
of both function latency and resource utilization.

Related Work. Mean-field games have been introduced by [37] and [30] to study continuous-time
differential games with infinite identical agents. For discrete-time MFGs, the existence and/or
uniqueness of the Nash equilibrium have been studied in [26, 69, 45, 53]. The mean-field regime
has been investigated under various settings, including games with linear-quadratic structures [9, 71],
major and minor agents [47], partial observability [54], risk-sensitivity [55], and so on. When the
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environment dynamics are unknown, learning-based algorithms are commonly used to learn the
NE from data [78, 72, 23, 28, 20, 49, 5, 27, 16], but most of these works rely on a “double-loop”
fixed-point iterative process that can be time- & sample-inefficient. Single-loop methods like ours
have been studied in [65, 48, 76], but they do not consider function approximation to deal with
large state and action spaces, and [65] and [48] only yield asymptotic convergence guarantees. On
the application side, learning algorithms in MFGs have been applied to economics [6] and animal
behavior simulation [50], among others, while in this paper, we identify that large-scale cloud resource
management is also an ideal application domain.

Our work is also related to policy optimization in single-agent RL, especially natural policy gradient
(NPG) methods [35]. For the tabular setting, the (global) convergence of NPG has been established in
a series of works [62, 2, 43, 77, 14]. In particular, [2] has proved that unregularized NPG with softmax
parameterization achieves an O(1/T ) convergence rate, while [14] has further strengthened the result
by showing linear convergence of NPG when equipped with entropy regularization. In the regime of
function approximation, [2] has shown that NPG with linear function approximation and softmax
parameterization attains a O(1/

√
T ) convergence rate subject to some function approximation error.

[13] has established a linear convergence when further exploiting entropy regularization, which is
most related to our setting. In particular, a standard “double-loop” mean-field approach will lead
to a setting very similar to that of [13] because by fixing the population distribution, the learning
agent effectively faces a single-agent problem. However, since such double-loop solutions are hardly
practical, we instead consider an online setting where the environment simultaneously evolves as the
agents update their policies. The environmental non-stationarity adds another layer of complexity and
makes [13] not directly applicable. Going beyond linear function approximation, [74] has investigated
NPG with over-parameterized two-layer neural networks, a more powerful approximation scheme that
is not theoretically pursued but only empirically evaluated in our work. It is also worth mentioning
that many successful empirical algorithms, such as TRPO [57] and PPO [58], can be considered as
natural variants of NPG.

RL-based resource management approaches [8, 36, 40, 51, 56, 80] have been recently proposed to
achieve efficient resource utilization and application quality-of-service (QoS), which outperform base-
line rule-based methods. For instance, FIRM [51] is an RL-based resource management framework
for cloud microservices to tackle the under-utilization issue and QoS violations. Schuler et al. [56]
proposed a Q-learning-based autoscaler that decides the horizontal concurrency for a serverless
function. FaaSRank [80] is an RL-based serverless function scheduler that uses PPO [58] to assign
function requests to available servers, yet both [56] and [80] only consider the objective of minimizing
the function latency. Finally, existing works only consider single-agent RL approaches being trained
and evaluated in an isolated environment, while the cloud is multi-tenant environment by nature.

2 Preliminaries

We first consider a classic Markov game with N agents. Each agent has a state space S and an action
space A. At each time step t, the state of agent i ∈ [N ] is denoted by sit ∈ S, and the agent takes
an action ait ∈ A according to a certain policy. Given the current state profile st = (s1t , . . . , s

N
t ),

agent i receives a reward determined by a reward function r̃i(st, ait), and transitions to a new state
sit+1 ∼ P̃ i(· | st, ait) according to a transition function P̃ i. The goal of each agent is to find a
policy that maximizes its expected cumulative reward over time. When N is large, learning in such
an N -agent Markov game with generic reward structure is known to be notoriously hard [64, 18].
Mean-field games [37, 30], on the other hand, can be viewed as an infinite-population limit (N →∞)
of the finite-agent game, and provide a tractable approximation to the otherwise challenging problem.

A discrete-time mean-field game (MFG) considers an infinite-number of identical agents [37, 30]. The
collective behavior of all the agents is described by population distributon µt ∈ ∆(S), also termed a
mean-field state, which in practice can be interpreted as the limit of the empirical state distribution,
i.e., µt = limN→∞

1
N

∑N
i=1 δsit , where δs ∈ ∆(S) is the Dirac measure at s. Due to the homogeneity

of the agents, we focus on a single representative agent. At each time t, the (representative) agent’s
state is denoted by st ∈ S, and the mean-field state µt describes the probability distribution of st.
Upon taking an action at ∈ A at st, the agent receives a reward r(st, at, µt), and transitions to a
new state st+1 ∼ P (· | st, at, µt), where r : S × A × ∆(S) → [0, 1] is the reward function and
P : S × A × ∆(S) → ∆(S) is the state transition function. A (Markov) policy π : S → ∆(A)
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for the agent is a mapping from the state space to a distribution over the action space, and we use
Π to denote the set of all Markov policies. Given a population distribution flow µ = (µt)t≥0,
we define the value function of a policy π as V πµ (s)

def
= E [

∑∞
t=0 γ

tr(st, at, µt) | s0 = s] , where
at ∼ π(· | st), st+1 ∼ P (· | st, at, µt), and γ ∈ (0, 1) is the discount factor. In the special case of
a time-invariant mean-field, i.e., µt = µ,∀t ≥ 0, we slightly abuse the notation and write V πµ (s)
as V πµ (s). For an initial state distribution ρ ∈ ∆(S), we define the (discounted) state visitation

distribution as dπµ(s)
def
= (1 − γ)

∑∞
t=0 γ

tP(st = s | s0 ∼ ρ), where P(st = s|s0 ∼ ρ) is the
probability that the state s is visited at the t-th time step under policy π and mean-field µ.

Entropy Regularization: We further consider an entropy-regularized value function by augmenting
the standard reward objective with an entropy term of the policy. For a fixed mean-field state µ, define

V π,λµ (s)
def
= V πµ (s) + λHπ

µ (s) = E

[ ∞∑
t=0

γt (r(st, at, µ)− λ log π(at | st)) | s0 = s

]
,

where λ > 0 is a parameter that controls the level of regularization, Hπ
µ (s)

def
=

E [
∑∞
t=0 γ

tH(π(·|st)) | s0 = s], and H(π(·|s)) = −∑a∈A π(a|s) log π(a|s) is the Shannon en-
tropy. Entropy regularization has been commonly used to encourage exploration and avoid premature
convergence to sub-optimal near-deterministic policies [29, 3]. In mean-field games, [5] has also
shown that with regularization, the uniqueness of NE is guaranteed under milder assumptions than
the unregularized case. We define the soft Q-function and shifted Q-function, respectively, as

Qπ,λµ (s, a)
def
= r(s, a, µ) + γEs′∼P (·|s,a,µ)

[
V π,λµ (s′)

]
, and qπ,λµ (s, a) = Qπ,λµ (s, a)− λ log π(a|s),

which are related to V π,λµ in the sense that V π,λµ (s) = Ea∼π(·|s)[qπ,λµ (s, a)]. For a distribution
ρ ∈ ∆(S), with a slight abuse of notation, we write V π,λµ (ρ) =

∑
s∈S ρ(s)V

π,λ
µ (s).

Policy Parameterization: We consider parametric policy classes. For each state-action pair (s, a),
suppose there exists a d-dimensional feature mapping ϕs,a ∈ Rd, such that ∥ϕs,a∥2 ≤ 1,∀s ∈ S, a ∈
A. A commonly used policy class is softmax parameterization of the form

Π̃ =

{
πθ(a|s) =

exp (fθ(s, a))∑
a′∈A exp (fθ(s, a′))

: θ ∈ Rd
}
,

where θ is a d-dimensional vector that parameterizes the policy, and fθ is a differentiable function
that can be typically instantiated as a linear function or a neural network. In Sections 3 and 4, we
focus on “log-linear” policies that use linear function approximation, where fθ takes the specific
linear form of fθ(s, a) = θ⊤ϕs,a,∀(s, a) ∈ S ×A. We will also instantiate fθ using neural networks
later in Section 5. Function approximation helps deal with large state and action spaces, as the feature
dimension is usually much smaller, i.e., d≪ |S||A|, where |S| can even be infinite in practice. It is
worth noting that a parametric policy class may not contain all Markov policies, i.e., Π̃ ⊂ Π. Hence,
we seek to do as well as the best policy in this class and obtain agnostic results.

Single-agent Policy Optimization. Given a fixed mean-field state µ, the representative agent faces
a single-agent policy optimization problem: maxπ∈Π V

π,λ
µ (s), which is equivalent to finding the

(entropy-regularized) optimal policy for a single-agent Markov decision process (MDP) induced
by µ. It has been shown that the optimal policy is unique whenever λ > 0 [25]. Hence, we can
use π⋆,λµ to denote the (unique) optimal solution to the optimization problem, and define a mapping
Γλ1 : ∆(S)→ Π such that Γλ1 (µ) = π⋆,λµ . We refer to Γλ1 as the policy optimization operator, which
maps a mean-field state µ to the optimal policy π⋆,λµ of the induced MDP.

Mean-field Dynamics. Since all agents follow the same policy π, we can define another mapping
Γ2 : Π ×∆(S) → ∆(S) to describe the evolution of the mean-field. Specifically, the mean-field
dynamics operator Γ2 is defined by Γ2(π, µ) = µ+, where

µ+(·) =
∫
S×A

P (·|s, a, µ)µ(s)π(a|s) da ds.

Intuitively, Γ2 characterizes the next mean-field state, given the current mean-field state and the
current policy adopted by all the agents. For notational convenience, we further introduce a composite
mapping Λλ : ∆(S)→ ∆(S) as Λλ(µ) = Γ2(Γ

λ
1 (µ), µ), which simply combines Γλ1 and Γ2.

Mean-field Equilibrium. In the following, we introduce the main learning objective of the paper.
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Algorithm 1: Natural Actor-Critic for MFGs with Linear Function Approximation
1 Input: Initial mean-field state µ0, and regularization level parameter λ;
2 Initialize θ0 ← 0;
3 for iteration t← 0 to T do
4 Policy evaluation: Calculate an εcritic-accurate estimate q̂λt of qπt,λ

µt
that satisfies Equation (2)

using, e.g. Algorithm 2;
5 Gradient estimation: Use q̂λt to calculate an εactor-accurate estimate ŵt of the gradient

(using, e.g., Algorithm 3) such that ∥ŵt∥2 ≤ R for some R > 0, and Equation (3) holds;
6 Mean-field update: µt+1 ← (1− βt)µt + βtΓ2(πt, µt), where βt = O(T−4/5);
7 Policy update: θt+1 ← θt + ηtgt, where gt = ŵt − λθt, and ηt = O(T−2/5)/λ;

Definition 1. A policy-population pair (π⋆, µ⋆) ∈ Π × ∆(S) is a stationary (time-independent)
entropy-regularized Nash equilibrium for the mean-field game if it satisfies: (1) Rationality: π⋆ =
Γλ1 (µ

⋆), and (2) consistency: µ⋆ = Γ2(π
⋆, µ⋆).

When λ = 0, the above definition reduces to that of the standard (unregularized) NE in MFGs [53, 28].
For λ > 0, the regularized NE (π⋆, µ⋆) also serves as a good approximation of the unregularized one,
as characterized by the following error bound [14] (established using the fact that Hπ

µ (s) ≤ log |A|
1−γ ):

V π
⋆

µ⋆ (ρ) ≤ max
π∈Π

V πµ⋆(ρ) ≤ V π⋆

µ⋆ (ρ) +
λ log |A|
1− γ . (1)

When the composite mapping Λλ is a contraction, one can show (using a standard Banach-fixed point
theorem) that the regularized NE exists and is unique [5]. Accordingly, the policy-population pairs
{(πt, µt) : t ≥ 0} given by the simple iterates πt ← Γλ1 (µt) and µt+1 ← Γ2(πt, µt) converge to the
regularized NE at a linear rate, assuming that the exact optimal policy can be computed for Γλ1 .

3 Natural Actor-Critic for MFGs with Function Approximation

In this section, we present an online natural actor-critic (NAC) algorithm with function approximation
to learn the regularized NE of a mean-field game (Algorithm 1). Four major steps are involved: policy
evaluation, gradient estimation, mean-field update, and policy update.

For the policy update step, policy gradient methods improve the policy parameter θ by ascending
along the direction of the gradient of the policy, i.e.,∇θV πθ,λ

µ (ρ). A direct extension of the policy
gradient theorem [67] shows that the policy gradient with entropy-regularization can be expressed as

∇θV πθ,λ
µ (ρ) =

1

1− γEs∼d
πθ
µ ,a∼πθ(·|s)

[
∇θ log πθ(a|s)qπθ,λ

µ (s, a)
]
.

Compared with the “vanilla” policy gradient method that follows the steepest direction in the
parameter space, the natural policy gradient (NPG) approach [35] proceeds along the steepest direction
with respect to the Fisher metric. NPG has the advantage of being invariant to the parameterization of
the policy [4] and enjoys faster convergence as it follows a more direct path to the optimal solution.
For a policy πθ parameterized by θ, NPG [35] defines a Fisher information matrix under policy πθ as:
F θ = Es∼dπθ

µ ,a∼πθ(·|s)

[
∇θ log πθ(a|s) (∇θ log πθ(a|s))⊤

]
. NPG then performs gradient updates

along the steepest direction induced by this matrix: θ ← θ + η(F θ)†∇θV π,λµ (ρ), where η is the
learning rate, and (F θ)† denotes the Moore-Penrose pseudoinverse of F θ. Leveraging the notion of
compatible function approximation, it can be shown that the above update rule can be equivalently
expressed as (see [35] for a proof of the unregularized case and [13] for the regularized counterpart)
θ ← θ + η

1−γw
θ
λ, where wθλ is a minimizer of the following regression problem:

wθλ ∈ argmin
w∈Rd

L̄(w, θ), where L̄(w, θ) def
= Es∼dπθ

µ ,a∼πθ(·|s)

[(
w⊤∇θ log πθ(a|s)− qπθ,λ

µ (s, a)
)2]

.

For variance reduction purposes, Algorithm 1 further subtracts a baseline from the Q-function and
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solves a variant of the regression problem at the t-th iteration instead:

wt ∈ argmin
w∈Rd:∥w∥2≤R

L(w, θt), where L(w, θ) def
= Es∼dπθ

µ ,a∼πθ(·|s)

[(
w⊤∇θ log πθ(a|s)−Aπθ,λ

µ (s, a)
)2]

,

where Aπ,λµ (s, a)
def
= Qπ,λµ (s, a)− Ea′∼π(·|s)[Qπ,λµ (s, a′)], and R > 0 is the gradient clipping radius.

Since the target function may not be perfectly represented by a linear function, we use the function
approximation error εapprox to denote the minimal possible error for our parametric class2:

εapprox
def
= sup

t≥0
min

w∈Rd:∥w∥2≤R
L(w, θt).

In practice, the values of Aπθ,λ
µ and wt in the above regression problem cannot be calculated precisely

and need to be computed from a finite number of samples, which further introduce statistical errors
(or excess risk). In particular, we use the policy evaluation step (Line 4 of Algorithm 1) to compute
an approximation q̂λt of the shifted Q-function qπt,λ

µt
, where πt

def
= πθt denotes the policy at the t-th

iteration of Algorithm 1, and we apply the gradient estimation step (Line 5) to further use q̂λt to
calculate a gradient estimate ŵt. For ease of presentation, in this section, we will assume that we
can obtain the estimated values q̂λt and ŵt from two black-box oracles. In Appendix C, we show that
such oracles can be accomplished by standard sample-based estimation techniques. Specifically, we
assume for now the existence of a policy evaluation oracle that returns an estimate q̂λt such that

Es∼dπt
µt ,a∼πt(·|s)

[(
q̂λt (s, a)− qπt,λ

µt
(s, a)

)2] ≤ εcritic, (2)

for some critic error εcritic ≥ 0. Let Q̂λt (s, a) = q̂λt (s, a)+λ log πt(a|s), and Âλt (s, a) = Q̂λt (s, a)−
Ea∼πt(·|s)[Q̂

λ
t (s, a

′)]. We further assume that a gradient estimation oracle provides an estimate ŵt
that satisfies:

E
[
(ŵ⊤

t ∇ log πt(a|s)− Âλt (s, a))2
]
−min

w
E
[
(w⊤∇ log πt(a|s)− Âλt (s, a))2

]
≤ εactor, (3)

for some actor error εactor ≥ 0, where the expectation is over s ∼ dπt
µt

and a ∼ πt(·|s). εcritic and
εactor together represent the statistical error that can be driven to 0 when we have more samples, while
εapprox accounts for the inherent modeling error due to the potential lack of expressiveness of the
parametric policy class. We further use εtotal = εapprox + εactor + εcritic to sum up all sources of errors.

A final remark on the policy update step is that we adopt the idea of gradient averaging from
[13] to encourage exploration. Specifically, the parameter update in Line 7 is effectively θt+1 ←
(1 − ηtλ)θt + ηtλ · ŵt

λ , which can be viewed as a convex combination of θt and ŵt/λ. Since
our gradient estimation step “clips” the gradient estimate to ensure that ∥ŵt∥2 ≤ R for some
R > 0 (Line 5), we can show by induction that the policy parameter is uniformly bounded, i.e.,
∥θt∥2 ≤ R/λ,∀t ≥ 0. Together with the softmax parameterization of the policy, this condition
ensures that our policy always explores the action space with some positive probability; that is, there
exists pmin > 0, such that πt(a|s) ≥ pmin,∀t ≥ 0, (s, a) ∈ S × A. Such a property is essential in
establishing the convergence of the policy. See Lemma 2 in Appendix A for a formal treatment.

In each iteration of the algorithm, we update the mean-field state (Line 6) as µt+1 ← (1− βt)µt +
βtΓ2(πt, µt), which can be considered as a “soft” step of mean-field evolution along the direction of
Γ2(πt, µt) with a step size βt. Similar to existing works [65, 28, 72, 76], this step assumes access to
a simulator that returns the new population distribution given the current mean-field and policy. In
practice, one can approximate the simulator by estimating the new population distribution through
randomly sampling the actual states of a large number N of agents, which incurs an estimation error
O(1/

√
N) that decays as more agents are sampled [76].

Finally, we emphasize that our algorithm enjoys the additional advantage of being online (also termed
“learning while playing” in [76]), in the sense that it lets the mean-field simultaneously evolve as the
agents play. Specifically, we perform only a single step of policy update for each iteration of mean-
field evolution, instead of computing the exact optimal policy with respect to the current mean-field.
This is achieved by carefully tuning the step sizes of the policy update (ηt ≈ T−2/5) and mean-field

2It has been shown that the approximation error is 0 for the realizable cases such as tabular (finite state-action)
MDPs or linear MDPs [31], where the value functions are linear in the given features.
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update (βt ≈ T−4/5) so as to let the policy converge at a faster timescale than the mean-field does.
Our online approach is in sharp contrast to the “double-loop” methods [23, 28, 5, 20, 49, 27] that
have to fix the mean-field state as an outer loop and use an iterative process as the inner loop to
learn an optimal policy with respect to each fixed population distribution, which can be more time
consuming and incurs oscillations in the learned policies (as evidenced by our simulations).

4 Convergence Analysis

In this section, we theoretically establish the convergence of the natural actor-critic algorithm with
linear function approximation to the regularized Nash equilibrium (π⋆, µ⋆) of the mean-field game.

We start by introducing a few notations. For any t ≥ 0, we use π⋆t to denote the optimal policy
of the representative agent w.r.t the mean-field state µt, i.e., π⋆t = Γλ1 (µt). Let d⋆t

def
= d

π⋆
t
µt be the

visitation distribution of π⋆t under µt, and d⋆ def
= dπ

⋆

µ⋆ be the one induced by the NE (π⋆, µ⋆). Our first
result establishes the improvement of the policy under natural actor-critic updates in terms of the KL
divergence. All missing proofs are deferred to Appendix B.
Lemma 1. (Policy improvement). For any time t ≥ 0, the policy update θt+1 = θt+ηtgt with softmax
parameterization and linear function approximation leads to the following policy improvement:

Es∼d⋆t [KL(π⋆t (·|s)∥πt+1(·|s))] ≤(1− ηtλ)Es∼d⋆t [KL(π⋆t (·|s))∥πt(·|s)]− ηtEs∼d⋆t [V πt,λ
µt

(s)]

− ηtEs∼d⋆t ,a∼π⋆
t (·|s)

[
g⊤t ∇θ log πt(a|s)− qπt,λ

µ (s, a)
]
+

1

2
η2t ∥gt∥22 .

The proof follows from the performance difference lemma [34] in the regularized case and the
smoothness of log πθ(a|s). Similar results have also been shown in [13, 76]. To proceed further, we
impose the following regularity assumptions on the visitation distribution.
Assumption 1. There exists a constant d0 > 0, such that for any mean-field states µ and µ′,
the state visitation distributions under their corresponding optimal policies π⋆ and π⋆′ satisfy
∥dπ⋆

µ − dπ
⋆′

µ′ ∥1 ≤ d0 ∥µ− µ′∥1 .
Assumption 2. (Finite concentrability coefficients). There exist constants C1, C2, C3 > 0, such that
for any t ≥ 0 and any encountered mean-field state µt,

sup
s∈S

d⋆t (s)

d⋆(s)
≤ C1, Es∼d⋆t

[∣∣∣∣d⋆(s)d⋆t (s)

∣∣∣∣2
]
≤ C2

2 , and Es∼dπt
µt

[∣∣∣∣ d⋆t (s)dπt
µt(s)

∣∣∣∣2
]
≤ C2

3 .

Assumption 1 states that the visitation distributions are smooth w.r.t the mean fields, which is
consistent with [76] and is reminiscent of the smooth visitation assumption for RL in non-stationary
environments [21]. Assumption 2 is a standard assumption in policy optimization [34, 62, 2, 76, 13]
that captures the difficulty of strategic exploration by requiring the visitation distributions of certain
policies to adequately cover that of an optimal policy. Together with Lemma 1, these assumptions
allow us to establish a recursive relationship of KL(π⋆t ∥πt) over time (Lemma 8 in Appendix B).

To characterize the convergence of πt, we useD(π, π′)
def
= Es∼d⋆ [∥π(·|s)− π′(·|s)∥1] as a measure of

distance between two policies. The following assumption is standard in the literature [28, 72, 76, 16]
that imposes the Lipschitzness of the two operators Γλ1 and Γ2 with respect to the D(·, ·) metric.
Assumption 3. (Lipschitz Operators). There exist constants d1, d2, d3 > 0, such that for any
policies π, π′ and mean-field states µ, µ′, it holds that: (1) D

(
Γλ1 (µ),Γ

λ
1 (µ

′)
)
≤ d1 ∥µ− µ′∥1,

∥Γ2(π, µ)− Γ2 (π
′, µ)∥1 ≤ d2D (π, π′) , and (2) ∥Γ2(π, µ)− Γ2 (π, µ

′)∥1 ≤ d3 ∥µ− µ′∥1.

The first condition states that Γλ1 (µ) is Lipschitz with respect to the mean-field state, and the second
and third conditions stipulate that Γ2(π, µ) is Lipschitz in each of its arguments when fixing the other.
Assumption 3 immediately implies that the composite operator Λλ is contractive when the Lipschitz
constants are small enough (Lemma 6 in Appendix A). We are now ready to state our main theoretical
guarantees on the convergence of the policy-population sequence {(πt, µt)}t≥0 to the NE (π⋆, µ⋆).

Theorem 1. Suppose that Assumptions 1 – 3 hold with d̄ = 1 − d1d2 − d3 > 0, and the policy
evaluation and gradient estimation oracles satisfy (2) and (3), respectively. The policy-population
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sequence {(πt, µt)}t≥0 generated by Algorithm 1 satisfies

D

(
π⋆,

1

T

T−1∑
t=0

πt

)
+

∥∥∥∥∥µ⋆ − 1

T

T−1∑
t=0

µt

∥∥∥∥∥
1

≤ Õ

 1

λT 1/5
+

√
|A| exp(1/λ)ε1/2total

λ


Theorem 1 establishes the finite-time convergence of Algorithm 1. After T iterations, the averaged
policy-population pair ( 1

T

∑T−1
t=0 πt,

1
T

∑T−1
t=0 µt) constitutes an Õ(T−1/5)-approximate NE, subject

to the approximation and statistical errors. As we collect more samples, the statistical errors can
be driven to 0. However, the approximation error εapprox is an inherent mis-modeling cost due to
using a (potentially not expressive enough) linear function to approximate the policy, which might
not diminish to 0 regardless of the number of iterations we run. While this seems to imply that
linear function approximation can be restrictive, our experimental results (Section 5) instead suggest
that linear functions are already satisfactory in most application scenarios that we are interested
in. The convergence rate in Theorem 1 is independent of the size of the state space |S|, implying
that our approach is applicable to MFGs with large state spaces. The dependence on the action
space |A| is also mild, and in mostly RL-related tasks the action space is adequately small [44]. The
convergence rate is also inverse proportional to the regularization parameter λ. This indicates that a
higher regularization level can accelerate the convergence of the algorithm while introducing a larger
regularization error according to (1) on the other hand. In practice, one can choose a regularization
level that balances the convergence rate and accuracy.

5 Experimental Results

5.1 Simulations on Classic MFGs

We first evaluate our natural actor-critic algorithm on two classic mean-field games considered in the
literature, including an SIS epidemics model [16, 38], and a linear-quadratic MFG [49, 38, 12, 45].
We refer to these two tasks as SIS and LQ, respectively. Detailed descriptions of the tasks and
the simulation setups are deferred to Appendix D. We implement Algorithm 1 with linear function
approximation (“NAC” for short) and use temporal difference (TD) learning also with linear function
approximation as the critic for policy evaluation. We utilize the standard notion of exploitability [82,
49, 16] to measure the sub-optimality of a policy. Intuitively, a higher degree of exploitability suggests
that an individual agent can be much better off by deviating from the given policy. As a comparison
baseline, we also implement a “double-loop” version of natural actor-critic (“DL-NAC”) that uses a
fixed point iteration in a similar fashion as existing works [28, 5, 27].

Simulation results on SIS and LQ are given in Figures 1 and 2, respectively. All results are averaged
over 10 runs. For both tasks, we can observe that the exploitability of NAC converges to 0, indicating
that NAC can efficiently learn the NE. DL-NAC also converges in general, but it suffers “zigzag”
fluctuations due to the fact that double-loop methods update the mean-field abruptly and hence nullify
the policies learned from the past. See Appendix D for a detailed discussion of this phenomenon.
Similar patterns have also been observed in the literature [16]. Hence, our online method enjoys faster
convergence and more smooth learning behavior than the fixed-point iteration. In Figure 3, we further
plot the evolution of the state distribution over time when applying NAC to LQ. The population starts
from a uniform distribution over the state space, and as time goes by, it quickly concentrates in a small
neighborhood of the state space, a desired behavior for linear-quadratic tracking-type problems [71].
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5.2 Experiments on a Serverless Platform

We apply our approach (with both linear and neural-network function approximations) to a resource
management problem in a serverless computing environment. Here, we directly consider a finite-agent
game and collect the empirical average of the local states as the mean-field.

Serverless Platform and Workload. We use a production-grade open-source serverless platform,
OpenWhisk [22], and deploy it on IBM Cloud with 22 VMs. The OpenWhisk cluster consists of one
master node (that runs the serverless controller) and 21 worker nodes (each of which runs the function
containers). Figure 4 shows the architecture of a distributed OpenWhisk cluster and how RL agents
work with the OpenWhisk cluster to manage resources of each function. The master node runs the
API gateway (labeled as 1 ), FaaS controller ( 2 ), data store ( 3 ), and other management modules.
Each of the worker nodes (labeled as 4 ) runs the function containers. We deploy the workload
generator and RL agents from two separate nodes in the same cluster and use FaaSProfiler [59] to
trace requests for function latency measurements. We select diverse function benchmarks from widely
used open-source FaaS benchmark suites [15, 59, 81], including web applications (e.g., HTML-Gen),
multimedia application (e.g., Image-Resize), scientific functions (e.g., PageRank), and ML-model
serving (e.g., Sentiment-Analysis). To drive the benchmarks, we sample and replay the function
invocations from Azure function traces [60]. Unlike [51], however, we do not explicitly consider
function dependencies, but we believe that our approach is orthogonal to [51] and can be potentially
integrated with the critical component localization of [51] to model function dependencies. More
detailed descriptions of the OpenWhisk setup are relegated to Appendix E.

RL Pipeline in OpenWhisk. We model the resource management for each serverless function as a
sequential decision-making problem that can be captured by RL. At each step in the sequence, an
RL agent (labeled as 5 in Figure 4) monitors the system and application conditions from both the
OpenWhisk data store and the Linux cgroups. The collected measurements include function-level
performance statistics (i.e., tail latencies on execution time, waiting time, and cold-start time for
serving function requests) and system-level resource utilization statistics (e.g., CPU utilization of
function containers). These measured telemetry data are pre-processed and used to define RL states
and rewards, which is then mapped to a resource management decision by the RL agent. The decision
is finally executed by FaaS controller and takes effect on the OpenWhisk platform. After applying
the action, the RL agent receives another state and reward in the next time step.
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MARL Formulation. We formulate the function resource management problem on a multi-tenant
serverless platform as a Markov game where each function is assigned to one agent. At each step, the
agent perceives available system and application conditions (e.g., resource utilization and function
latencies) from the platform monitor as the state. The action space includes both horizontal scaling
(i.e., scaling the number of function containers) and vertical scaling (i.e., scaling the container size).
Since the objective is to meet QoS objectives while keeping the resource utilization at a high level, we
consider a reward function as rt = α·QP (t)+(1−α)/2·(RUcpu(t)+RUmem(t))+penalty, where
QP (t) and RU(t) are the QoS preservation ratio and resource utilization at time t, and penalty is set
to -1 (and 0 otherwise) for illegal or undesired actions (e.g., dangling decisions). We implement and
evaluate two variants of our method: one exploits linear function approximation for both the actor and
the critic (“NAC-Linear” for short), and the other one leverages a two-layer fully-connected neural
network as function approximation (i.e., “NAC-NN”). Since serverless functions usually have diverse
resource requirements and behaviors, we resort to a multi-type formulation of MFGs (see [48, 73, 24]
for more extensive discussions) to allow for heterogeneous agents.

Policy Training. For training, we create 50 functions3 on OpenWhisk, each of which is randomly
selected from the function benchmarks. Figure 5 shows the total reward achieved by NAC-Linear
and NAC-NN at each training iteration. We observe that NAC-NN takes about 300 fewer episodes
to converge and achieves an 18.8% higher reward after convergence compared to NAC-Linear. We
attribute this to the fact that linear function approximation cannot fully capture the complex system
dynamics and decision-making policies compared to neural networks.

Policy Serving. We measure the policy-serving performance using two metrics: the 99th percentile
function latency (commonly used in user-defined QoS objectives) and the number of function contain-
ers in use. We take the model checkpoints of NAC agents after convergence and leverage the learned
policies to manage resources for each function. Figure 6 shows the function performance managed by
NAC-Linear and NAC-NN compared with two heuristics-based approaches ENSURE [66] and Open-
Whisk’s original resource manager (Appendix E). As shown in Figure 6, NAC-NN achieves the best
performance and has 33.6% to 67.3% (for Image-Resize) lower latency compared to OpenWhisk’s
original algorithm. NAC-NN also has 14.8% to 29.6% (for Sentiment-Analysis) lower latency
compared to ENSURE. Additionally, NAC-NN uses 29% fewer function containers than ENSURE
and 37% fewer than OpenWhisk’s design, indicating a higher resource utilization level. NAC-Linear
also outperforms ENSURE regarding function tail latency (by up to 25.5%, for Uploader) and
resource utilization (by up to 24% fewer function containers overall), which suggests that the simple
linear function approximation can already lead to reasonable performances in practice.

6 Concluding Remarks

In this paper, we have proposed a mean-field game approach to large-scale cloud resource man-
agement. We have presented an online natural actor-critic algorithm and proved its finite-time
convergence to the regularized Nash equilibrium with linear function approximation. We have
evaluated our solution on a serverless platform using both linear and neural-network function ap-
proximations, which has demonstrated superior performances in terms of scalability, latency, and
resource utilization. Interesting future directions include further tightening the convergence rate and
investigating alternative forms of function approximations for other application scenarios.
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divided into a couple of sub-clusters [17]. In this case, our method can be applied to each system sub-cluster to
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scale Markov potential games: Sharper rates, function approximation, and game-agnostic
convergence. arXiv preprint arXiv:2202.04129, 2022.

[20] R. Elie, J. Perolat, M. Laurière, M. Geist, and O. Pietquin. On the convergence of model free
learning in mean field games. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 7143–7150, 2020.

[21] Y. Fei, Z. Yang, Z. Wang, and Q. Xie. Dynamic regret of policy optimization in non-stationary
environments. Advances in Neural Information Processing Systems, 33:6743–6754, 2020.

[22] A. S. Foundation. OpenWhisk. https://github.com/apache/openwhisk, 2022. Accessed:
2022-05-10.

[23] Z. Fu, Z. Yang, Y. Chen, and Z. Wang. Actor-critic provably finds Nash equilibria of linear-
quadratic mean-field games. In International Conference on Learning Representations, 2020.

[24] S. Ganapathi Subramanian, P. Poupart, M. E. Taylor, and N. Hegde. Multi type mean field
reinforcement learning. In International Conference on Autonomous Agents and Multiagent
Systems, pages 411–419, 2020.

[25] M. Geist, B. Scherrer, and O. Pietquin. A theory of regularized Markov decision processes. In
International Conference on Machine Learning, pages 2160–2169. PMLR, 2019.

[26] D. A. Gomes, J. Mohr, and R. R. Souza. Discrete time, finite state space mean field games.
Journal de mathématiques pures et appliquées, 93(3):308–328, 2010.

[27] H. Gu, X. Guo, X. Wei, and R. Xu. Mean-field controls with Q-learning for cooperative MARL:
convergence and complexity analysis. SIAM Journal on Mathematics of Data Science, 3(4):
1168–1196, 2021.

[28] X. Guo, A. Hu, R. Xu, and J. Zhang. A general framework for learning mean-field games. arXiv
preprint arXiv:2003.06069, 2020.

[29] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning, pages 1861–1870. PMLR, 2018.

[30] M. Huang, R. P. Malhamé, and P. E. Caines. Large population stochastic dynamic games: closed-
loop McKean-Vlasov systems and the Nash certainty equivalence principle. Communications
in Information & Systems, 6(3):221–252, 2006.

[31] C. Jin, Z. Yang, Z. Wang, and M. I. Jordan. Provably efficient reinforcement learning with linear
function approximation. In Conference on Learning Theory, pages 2137–2143. PMLR, 2020.

[32] C. Jin, Q. Liu, Y. Wang, and T. Yu. V-learning–a simple, efficient, decentralized algorithm for
multiagent RL. arXiv preprint arXiv:2110.14555, 2021.

[33] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu, V. Shankar,
J. Carreira, K. Krauth, N. Yadwadkar, et al. Cloud programming simplified: A berkeley view on
serverless computing. arXiv preprint arXiv:1902.03383, 2019.

[34] S. Kakade and J. Langford. Approximately optimal approximate reinforcement learning. In
International Conference on Machine Learning, 2002.

[35] S. M. Kakade. A natural policy gradient. Advances in Neural Information Processing Systems,
14, 2001.

[36] S. Kardani-Moghaddam, R. Buyya, and K. Ramamohanarao. ADRL: A hybrid anomaly-aware
deep reinforcement learning-based resource scaling in clouds. IEEE Transactions on Parallel
and Distributed Systems, 32(3):514–526, 2020.

[37] J.-M. Lasry and P.-L. Lions. Mean field games. Japanese Journal of Mathematics, 2(1):229–260,
2007.

12

https://github.com/apache/openwhisk


[38] M. Laurière, S. Perrin, S. Girgin, P. Muller, A. Jain, T. Cabannes, G. Piliouras, J. Pérolat, R. Élie,
O. Pietquin, et al. Scalable deep reinforcement learning algorithms for mean field games. arXiv
preprint arXiv:2203.11973, 2022.

[39] M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine Learning, pages 157–163. Elsevier, 1994.

[40] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource management with deep reinforce-
ment learning. In Proceedings of the 15th ACM Workshop on Hot Topics in Networks (HotNet
2016), pages 50–56, 2016.
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[53] N. Saldi, T. Başar, and M. Raginsky. Markov–Nash equilibria in mean-field games with
discounted cost. SIAM Journal on Control and Optimization, 56(6):4256–4287, 2018.
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A Technical Lemmas

Lemma 2. (Persistence of excitation, Lemma 2 of [13]). For any λ > 0, the entropy-regularized
natural actor-critic update with averaging satisfies

∥θt∥2 ≤ R/λ,∀t ≥ 0, and pmin = inf
t≥0

min
(s,a)∈S×A

πt(a|s) ≥
exp(−2R/λ)

|A| > 0.

Proof. We prove the first statement by induction. The statement holds for t = 0 due to our initializa-
tion θ0 = 0. Expanding the recursive policy update rule

θt+1 = (1− ηtλ)θt + ηtŵt = (1− ηtλ)θt + ηtλ ·
ŵt
λ
.

Applying the triangle inequality,

∥θt+1∥2 ≤ (1− ηtλ) ∥θt∥2 + ηtλ ∥ŵt/λ∥2 ≤ R/λ,
where the last step holds because of the induction hypothesis, the fact that our gradient estimation
step guarantees ∥ŵt∥2 ≤ R, and that 0 < ηtλ < 1. Invoking the induction completes the proof of
∥θt∥2 ≤ R/λ,∀t ≥ 0.

Further, using the condition that ∥ϕs,a∥2 ≤ 1, the Cauchy-Schwarz inequality implies that
∣∣θ⊤t ϕs,a∣∣ ≤

R/λ,∀(s, a) ∈ S ×A. Under softmax parameterization,

pmin = inf
t≥0

min
(s,a)∈S×A

πt(a|s) ≥
exp(−R/λ)
|A| exp(R/λ) =

exp(−2R/λ)
|A| > 0.

This completes the proof of the lemma.

Lemma 3. Let Qmax = 1+γλ log |A|
1−γ . For any mean-field state µ, the optimal policy π⋆,λµ with respect

to the MDP induced by µ satisfies that

π⋆,λµ (a|s) ≥ 1

|A| exp(Qmax/λ)
,∀(s, a) ∈ S ×A.

Proof. It has been shown [46] that the optimal policy π⋆,λµ can be expressed as a Boltzmann distribu-
tion of the form

π⋆,λµ (a|s) ∝ exp

(
Q⋆,λµ (s, a)

λ

)
,

where Q⋆,λµ (s, a) is the optimal soft Q-function. From the definition of Qπ,λµ and the facts that
r(s, a, µ) ∈ [0, 1] and H(p) ≤ log |A| for any distribution p over A, we can easily see that
Q⋆,λµ (s, a) ≤ Qmax = 1+γλ log |A|

1−γ . Therefore, for any (s, a) ∈ S ×A,

π⋆,λµ (a|s) = exp
(
Q⋆,λµ (s, a)/λ

)
∑
b∈A exp

(
Q⋆,λµ (s, b)/λ

) ≥ 1∑
b∈A exp (Qmax/λ)

=
1

|A| exp(Qmax/λ)
.

Lemma 4. (Lemma 3 of [76]). For any x, y, z ∈ A, if x(a) ≥ α1, y(a) ≥ α1, and z(a) ≥ α2,∀a ∈
A, then

KL(x∥z)− KL(y∥z) ≤
(
1 + log

1

min {α1, α2}

)
· ∥x− y∥1.
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Lemma 5. Under the same conditions as Lemma 8, it holds that
σπt+1 ≤ Ed⋆t [KL(π⋆t ∥πt+1)] + (1 + C1) · κd0 ∥µt+1 − µt∥1 ,

where κ = 2 log |A|
1−γ + 1+2R(1−γ)

λ(1−γ) .

Proof. From the definition of σπt+1,

σπt+1 = Ed⋆t+1

[
KL(π⋆t+1∥πt+1)

]
≤Ed⋆t+1

[KL(π⋆t ∥πt+1)] +
∣∣∣Ed⋆t+1

[
KL(π⋆t+1∥πt+1)− KL(π⋆t ∥πt+1)

]∣∣∣
=Ed⋆t [KL(π⋆t ∥πt+1)] + (Ed⋆t+1

− Ed⋆t ) [KL(π⋆t ∥πt+1)] +
∣∣∣Ed⋆t+1

[
KL(π⋆t+1∥πt+1)− KL(π⋆t ∥πt+1)

]∣∣∣
(4)

In the following, we upper bound each term in (4) separately. We first define pmin
def
=

inft≥0 min(s,a)∈S×A πt(a|s), and apply the persistence of excitation condition from Lemma 2 to
obtain that pmin ≥ exp(−2R/λ)

|A| > 0. To upper bound the second term in (4), we first show that for
any s ∈ S,

KL(π⋆t (·|s)∥πt+1(·|s)) =
∑
a∈A

π⋆t (a|s) log
π⋆t (a|s)
πt+1(a|s)

≤
∑
a∈A

π⋆t (a|s) log
1

pmin
≤ log |A|+ 2R/λ.

If we define KLmax
def
= log |A|+ 2R/λ, we will have that

(Ed⋆t+1
− Ed⋆t ) [KL(π⋆t ∥πt+1)] =Es∼d⋆

[
d⋆t+1(s)− d⋆t (s)

d⋆(s)
· KL(π⋆t ∥πt+1)

]
≤KLmax · Es∼d⋆

[∣∣d⋆t+1(s)− d⋆t (s)
∣∣

d⋆(s)

]
≤KLmax · d0 ∥µt+1 − µt∥1 , (5)

where the last step follows from Assumption 1. This gives an upper bound of the second term.

We proceed to upper bound the third term in (4). Let τ = 1
|A| exp

(
− 1+γλ log |A|

λ(1−γ)

)
. From Lemma 3,

we know that
π⋆t (a|s) ≥ τ, and π⋆t+1(a|s) ≥ τ,∀(s, a) ∈ S ×A.

Since both πt(a|s) and π⋆t (a|s) are lower bounded, we can apply the Lipschitzness of KL-divergence
(Lemma 4) and obtain∣∣∣Ed⋆t+1

[
KL(π⋆t+1∥πt+1)− KL(π⋆t ∥πt+1)

]∣∣∣
≤
(
1 + log

1

min{τ, pmin}

)
Es∼d⋆t+1

[∥∥π⋆t (·|s)− π⋆t+1(·|s)
∥∥
1

]
≤κEs∼d⋆

[
d⋆t+1(s)

d⋆(s)
·
∥∥π⋆t (·|s)− π⋆t+1(·|s)

∥∥
1

]
≤κC1D(π⋆t , π

⋆
t+1)

=κC1D(Γλ1 (µt),Γ
λ
1 (µt+1))

≤κC1d0 ∥µt − µt+1∥1 , (6)
where the third inequality is by Assumption 2, the last step is due to Assumption 1, and

κ
def
=
2 log |A|
1− γ +

1 + 2R(1− γ)
λ(1− γ)

≥1 + max

{
log |A|+ 1 + γλ log |A|

λ(1− γ) , log |A|+ 2R/λ

}
≥1 + log

1

min{τ, pmin}
.

This gives an upper bound of the third term in (4). Combining (4), (5), and (6) completes the proof of
the lemma.
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Lemma 6. Under Assumption 3, it holds for any mean-field states µ, µ′ that∥∥Λλ(µ)− Λλ (µ′)
∥∥
1
≤ (d1d2 + d3) ∥µ− µ′∥1 .

In particular, Λλ is a contraction if d1d2 + d3 < 1.

Proof. By the definition of the composite operator,∥∥Λλ(µ)− Λλ (µ′)
∥∥
1
=
∥∥Γ2

(
Γλ1 (µ), µ

)
− Γ2

(
Γλ1 (µ

′) , µ′)∥∥
1

≤
∥∥Γ2

(
Γλ1 (µ), µ

)
− Γ2

(
Γλ1 (µ

′) , µ
)∥∥

1
+
∥∥Γ2

(
Γλ1 (µ

′) , µ
)
− Γ2

(
Γλ1 (µ

′) , µ′)∥∥
1

≤ d2D
(
Γλ1 (µ),Γ

λ
1 (µ

′)
)
+ d3 ∥µ− µ′∥1

≤ (d1d2 + d3) ∥µ− µ′∥1 ,
where the second inequality uses the Lipschitzness of Γ2, and the last inequality is due to the
Lipschitzness of Γλ1 .

Lemma 7. (Lemma 8 of [76]). Suppose that Assumptions 2 and 3 hold with d̄ = 1− d1d2 − d3 > 0,
we then have

∥µt+1 − µ⋆∥1 ≤ (1− βtd̄) ∥µt − µ⋆∥1 + d2C2βt
√
σπt ,∀t ≥ 0.

Proof. For notational convenience, define σµt
def
= ∥µt − µ⋆∥1. Since Algorithm 1 updates the mean-

field state µt in the same way as [76], our σµt also exhibits the same recursive behavior as characterized
in Lemma 8 of [76], and we reproduce the proof here for completeness. Using the update rule of the
mean-field state in Algorithm 1,

∥µt+1 − µ⋆∥1
= ∥(1− βt)µt + βtΓ2(πt, µt)− µ⋆∥1
=
∥∥(1− βt) (µt − µ⋆) + βt

(
Γ2

(
Γλ1 (µt) , µt

)
− µ⋆

)
− βt

(
Γ2

(
Γλ1 (µt) , µt

)
− Γ2 (πt, µt)

)∥∥
1

≤(1− βt) ∥µt − µ⋆∥1 + βt
∥∥Γ2(Γ

λ
1 (µt), µt)− Γ2(Γ

λ
1 (µ

⋆), µ⋆)
∥∥
1

+ βt
∥∥Γ2(Γ

λ
1 (µt), µt)− Γ2(πt, µt)

∥∥
1
,

≤(1− βtd̄) ∥µt − µ⋆∥1 + βtd2D(π⋆t , πt), (7)

where the first inequality uses the fact that Γ2(Γ
λ
1 (µ

⋆), µ⋆) = µ⋆, the second inequality follows from
the Lipschitzness of the operators Λλ (Lemma 6) and Γ2. To further upper bound the second term on
the RHS of (7), we recall the definition that

D(π⋆t , πt) =Es∼d⋆ [∥π⋆t (·|s)− πt(·|s)∥1]

=Es∼d⋆t

[
d⋆(s)

d⋆t (s)
· ∥π⋆t (·|s)− πt(·|s)∥1

]

≤
(
Es∼d⋆t

[∣∣∣∣d⋆(s)d⋆t (s)

∣∣∣∣2
]
· Es∼d⋆t

[
∥π⋆t (·|s)− πt(·|s)∥21

]) 1
2

≤C2

√
Es∼d⋆t [KL(π⋆t (·|s))∥πt(·|s)], (8)

where the last step follows from Assumption 2 and Pinsker’s inequality. Plugging (8) back to (7)
completes the proof.

B Proofs for Section 4

B.1 Proof for Lemma 1

Proof. First, notice that for any fixed (s, a) ∈ S ×A, the log-linear policy log πθ(a|s) is a 1-smooth
function in θ:

∥∇θ log πθ(a|s)−∇θ log πθ′(a|s)∥2 ≤ ∥θ − θ′∥2 ,∀θ, θ′ ∈ Rd.
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A standard result for an L-smooth function f on Rn is that (e.g., Lemma 3.4 of [11])

f(y) ≥ f(x) +∇f(x)⊤(y − x)− L

2
∥y − x∥22 ,∀x, y ∈ Rn.

We hence obtain that

Es∼d⋆t [KL(π⋆t (·|s)∥πt+1(·|s))]− Es∼d⋆t [KL(π⋆t (·|s)∥πt(·|s))]

≤Es∼d⋆t

[∑
a∈A

π⋆t (a|s) (log πt(a|s)− log πt+1(a|s))
]

≤− ηtEs∼d⋆t ,a∼π⋆
t (·|s)

[
g⊤t ∇θ log πt(a|s)

]
+
η2t
2
∥gt∥22

=− ηtEs∼d⋆t ,a∼π⋆
t (·|s)

[
g⊤t ∇θ log πt(a|s)− qπt,λ

µ (s, a)
]
− ηtEd⋆t ◦π⋆

t

[
qπt,λ
µ (s, a)

]
+
η2t
2
∥gt∥22 .

The performance difference lemma in the regularized case (e.g., Lemma 5 of [13]) implies that for
any two policies π and π′, we have that

V π,λµ (ρ)−V π′,λ
µ (ρ) =

1

1− γEs∼dπµ,a∼π(·|s)
[
qπ

′,λ
µ (s, a)− V π′,λ

µ (s)
]
− λ

1− γEs∼dπµ [KL(π(·|s)∥π′(·|s))] .

By letting µ = µt, π
′ = πt and π = π⋆t , we further have that

Es∼d⋆t [KL(π⋆t (·|s)∥πt+1(·|s))]− Es∼d⋆t [KL(π⋆t (·|s)∥πt(·|s))]
≤− ηtEs∼d⋆t ,a∼π⋆

t (·|s)
[
g⊤t ∇θ log πt(a|s)− qπt,λ

µ (s, a)
]
− ηt(1− γ)

(
V
π⋆
t ,λ

µt (ρ)− V πt,λ
µt

(ρ)
)

− ηtλEs∼d⋆t [KL(π⋆t (·|s)∥πt(·|s))]− ηtEs∼d⋆t
[
V πt,λ
µt

(s)
]
+
η2t
2
∥gt∥22

≤− ηtEs∼d⋆t ,a∼π⋆
t (·|s)

[
g⊤t ∇θ log πt(a|s)− qπt,λ

µ (s, a)
]
− ηtλEs∼d⋆t [KL(π⋆t (·|s)∥πt(·|s))]

− ηtEs∼d⋆t
[
V πt,λ
µt

(s)
]
+
η2t
2
∥gt∥22 ,

where the last step uses the fact that π⋆t is the optimal (regularized) policy with respect to µt, and
thus V π

⋆
t ,λ

µt (ρ) ≥ V πt,λ
µt

(ρ). Rearranging the terms completes the proof.

B.2 Recursive Relationship of KL(π⋆t ∥πt)

We define σπt
def
= Es∼d⋆t [KL(π⋆t (·|s))∥πt(·|s)] =

∑
s∈S d

⋆
t (s)

∑
a∈A π

⋆
t (a|s) log π⋆

t (a|s)
πt(a|s) as a mea-

sure of distance between πt and π⋆t . Built upon Assumptions 1 and 2 and the policy improvement
lemma, our next result characterizes the recursive relationship of σπt in terms of the approximation
and statistical errors as well as the evolution of the mean-field. Such a recursion is critical to establish
the convergence of the policy.

Lemma 8. Under Assumptions 1 and 2, it holds that for every iteration t ≥ 0 of Algorithm 1:

σπt+1 ≤ (1− ηtλ)σπt + 3C3ηt(1 +
1

pmin
)
√
εtotal + 2η2tR

2 + (1 + C1) · κd0 ∥µt+1 − µt∥1 ,

where κ = 2 log |A|
1−γ + 1+2R(1−γ)

λ(1−γ) , and pmin ≥ exp(−2R/λ)
|A| .

Proof. From Lemma 1, we know that

Es∼d⋆t [KL(π⋆t (·|s)∥πt+1(·|s))] ≤(1− ηtλ)σπt − ηtEs∼d⋆t ,a∼π⋆
t (·|s)

[
g⊤t ∇θ log πt(a|s)− qπt,λ

µ (s, a)
]

− ηtEs∼d⋆t [V πt,λ
µt

(s)] +
1

2
η2t ∥gt∥22 .

In order to show the recursive relationship between σπt and σπt+1, we first need to establish the
relationship between σπt+1 and Es∼d⋆t [KL(π⋆t (·|s)∥πt+1(·|s))], which is shown in Lemma 5 of
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Appendix A. By applying the result of Lemma 5, we obtain that
σπt+1 ≤(1− ηtλ)σπt −ηtEs∼d⋆t ,a∼π⋆

t (·|s)
[
g⊤t ∇θ log πt(a|s)− qπt,λ

µ (s, a)
]︸ ︷︷ ︸

1

−ηtEs∼d⋆t [V πt,λ
µt

(s)]︸ ︷︷ ︸
2

+
1

2
η2t ∥gt∥22 + (1 + C1) · κd0 ∥µt+1 − µt∥1 . (9)

In the following, we upper bound each term on the RHS separately. With the compatible function
approximation condition, we have that (see, e.g., [67])

∇θ log πθ(a|s) = ϕs,a −
∑
a′∈A

πθ(a
′|s)ϕs,a′ .

We can hence rewrite 1 as

1 =− ηt
∑
s,a

d⋆t (s)π
⋆
t (a|s)

(
ϕ⊤s,agt −

∑
a′∈A

πθ(a
′|s)ϕ⊤s,a′gt − qπt,λ

µ (s, a)

)

=− ηt
∑
s,a

d⋆t (s)π
⋆
t (a|s)

(
ϕ⊤s,agt −

∑
a′∈A

πθ(a
′|s)ϕ⊤s,a′gt −Qπt,λ

µ (s, a) + λθ⊤t ϕs,a

)
+ ληt

∑
s,a

d⋆t (s)π
⋆
t (a|s)

∑
a′∈A

πt(a
′|s)θ⊤t ϕs,a′ ,

where in the last step we used the fact that qπt,λ
µ (s, a) = Qπt,λ

µ (s, a)−λ log πt(a|s) and the expression
of log πt(a|s). Similarly, by using the relation that

V π,λµ (s) = Ea∼π(·|s)[Qπ,λµ (s, a)− λ log π(a|s)],
we can also rewrite 2 as

2 =− ηt
∑
s,a

d⋆t (s)πt(a|s)
(
Qπt,λ
µt

(s, a)− λ log πt(a|s)
)

=− ηt
∑
s,a

d⋆t (s)πt(a|s)
(
Qπt,λ
µt

(s, a)− λθ⊤t ϕs,a
)
− ληt

∑
s,a

d⋆t (s)πt(a|s)
∑
a′∈A

πt(a
′|s)θ⊤t ϕs,a′ .

Since the value of
∑
a′∈A πt(a

′|s)θ⊤t ϕs,a′ is independent of a, we have that∑
s,a

d⋆t (s) (π
⋆
t (a|s)− πt(a|s))

∑
a′∈A

πt(a
′|s)θ⊤t ϕs,a′ = 0.

We can hence combine the expressions of 1 and 2 , and deduce that

1 + 2 =− ηt
∑
s,a

d⋆t (s)π
⋆
t (a|s)

(
ϕ⊤s,agt −

∑
a′∈A

πθ(a
′|s)ϕ⊤s,a′gt −Qπt,λ

µt
(s, a) + λθ⊤t ϕs,a

)
− ηt

∑
s,a

d⋆t (s)πt(a|s)
(
Qπt,λ
µt

(s, a)− λθ⊤t ϕs,a
)

=− ηt
∑
s,a

d⋆t (s)π
⋆
t (a|s)

(
ϕ⊤s,agt −Qπt,λ

µt
(s, a) + λθ⊤t ϕs,a

)
+ ηt

∑
s,a,a′

d⋆t (s)π
⋆
t (a|s)πθ(a′|s)ϕ⊤s,a′gt

− ηt
∑
s,a

d⋆t (s)πt(a|s)
(
−ϕ⊤s,agt +Qπt,λ

µt
(s, a)− λθ⊤t ϕs,a

)
− ηt

∑
s,a

d⋆t (s)πt(a|s)ϕ⊤s,agt

=− ηt
∑
s,a

d⋆t (s) (π
⋆
t (a|s)− πt(a|s))

(
ϕ⊤s,agt −Qπt,λ

µt
(s, a) + λθ⊤t ϕs,a

)
,

where the last step holds because∑
s,a

d⋆t (s)π
⋆
t (a|s)

∑
a′

πt(a
′|s)ϕ⊤s,a′gt −

∑
s,a

d⋆t (s)πt(a|s)ϕ⊤s,agt

=
∑
s

d⋆t (s)

(∑
a

π⋆t (a|s)− 1

)∑
a′

πt(a
′|s)ϕ⊤s,a′gt

=0.
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Using the update rule that gt = ŵt − λθt, we further have

1 + 2 =− ηt
∑
s,a

d⋆t (s) (π
⋆
t (a|s)− πt(a|s))

(
ϕ⊤s,aŵt −Qπt,λ

µt
(s, a)

)
=− ηt

∑
s,a

d⋆t (s) (π
⋆
t (a|s)− πt(a|s))

(
ϕ⊤s,aŵt − Ea′∼πt(·|s)

[
ϕ⊤s,a′ŵt −Qπt,λ

µt
(s, a′)

]
−Qπt,λ

µt
(s, a)

)
=− ηt

∑
s,a

d⋆t (s) (π
⋆
t (a|s)− πt(a|s))

(
ŵ⊤
t ∇ log πt(a|s)−Aπt,λ

µt
(s, a)

)
, (10)

where the second step uses the fact that∑
a

(π⋆t (a|s)− πt(a|s))Ea′∼πt(·|s)
[
ϕ⊤s,a′ŵt −Qπt,λ

µt
(s, a′)

]
= 0,

and the third step is again due to ∇ log πt(a|s) = ϕs,a −
∑
a′∈A πt(a

′|s)ϕs,a′ and the definition of
Aπt,λ
µt

(s, a). We define

Lt(w)
def
= Es∼dπt

µt ,a∼πt(·|s)

[(
w⊤∇ log πt(a|s)−Aπt,λ

µt
(s, a)

)2]
,

and L̂t(w)
def
= Es∼dπt

µt ,a∼πt(·|s)

[(
w⊤∇ log πt(a|s)− Âλt (s, a)

)2]
,

where recall that Âλt (s, a) = Q̂λt (s, a)−Ea∼πt(·|s)[Q̂
λ
t (s, a

′)] is an estimate ofAπt,λ
µt

(s, a) calculated
using the policy evaluation oracle. From Jensen’s inequality,

−
∑
s,a

d⋆t (s)π
⋆
t (a|s)

(
ŵ⊤
t ∇ log πt(a|s)−Aπt,λ

µt
(s, a)

)
≤
∑
s,a

dπt
µt
(s)πt(a|s)

√(
ŵ⊤
t ∇ log πt(a|s)−Aπt,λ

µt (s, a)
)2
· d

⋆
t (s)

dπt
µt(s)

· π
⋆
t (a|s)
πt(a|s)

≤ C3

pmin

√
Lt(ŵt), (11)

where the last step uses Assumption 2 and the definition of Lt(w). Recall that the policy evaluation
oracle satisfies

E
[(
q̂λt (s, a)− qπt,λ

µt
(s, a)

)2] ≤ εcritic,∀(s, a) ∈ S ×A,

which immediately implies that

E
[(
Âλt (s, a)−Aπt,λ

µt
(s, a)

)2]
≤ εcritic,∀(s, a) ∈ S ×A.

Let w⋆t = argminw∈Rd Lt(w). From the simple fact that (x+ y)2 ≤ 2x2 + 2y2, we have

L̂t(w
⋆
t ) =Es∼dπt

µt ,a∼πt(·|s)

[(
(w⋆t )

⊤∇ log πt(a|s)−Aπt,λ
µt

(s, a) +Aπt,λ
µt

(s, a)− Âλt (s, a)
)2]

≤2Lt(w⋆t ) + 2εcritic.

A similar argument shows that

Lt(ŵt) ≤ 2L̂t(ŵt) + 2εcritic.

Further, the gradient estimation oracle (3) guarantees that L̂t(ŵt) −minw L̂t(w) ≤ εactor, and we
hence obtain

Lt(ŵt) ≤2L̂t(ŵt) + 2εcritic ≤ 2min
w
L̂t(w) + 2εactor + 2εcritic

≤2L̂t(w⋆t ) + 2εactor + 2εcritic ≤ 4Lt(w
⋆
t ) + 2εactor + 6εcritic

≤4εapprox + 2εactor + 6εcritic,
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where the last step follows from the definition of εapprox. Plugging the above inequality back to (11),
and using the fact that εtotal = εapprox + εactor + εcritic, we obtain that

−
∑
s,a

d⋆t (s)π
⋆
t (a|s)

(
ŵ⊤
t ∇ log πt(a|s)−Aπt,λ

µt
(s, a)

)
≤ 3C3

pmin

√
εtotal. (12)

Similarly, we can also get∑
s,a

d⋆t (s)πt(a|s)
(
w⊤
t ∇ log πt(a|s)−Aπt,λ

µt
(s, a)

)
≤ 3C3

√
εtotal. (13)

Substituting (10), (12), and (13) back to (9), we obtain that

σπt+1 ≤(1− ηtλ)σπt + 3C3ηt(1 +
1

pmin
)
√
εtotal +

1

2
η2t ∥gt∥22 + (1 + C1) · κd0 ∥µt+1 − µt∥1

≤(1− ηtλ)σπt + 3C3ηt(1 +
1

pmin
)
√
εtotal + 2η2tR

2 + (1 + C1) · κd0 ∥µt+1 − µt∥1 ,

where the second step holds because ∥gt∥2 ≤ ∥wt∥2 + λ ∥θt∥2 ≤ 2R due to Lemma 2..

B.3 Proof for Theorem 1

Proof. First, we know from Lemma 8 that

σπt+1 ≤ (1− ηtλ)σπt + 3C3ηt(1 +
1

pmin
)
√
εtotal + 2η2tR

2 + (1 + C1) · κd0 ∥µt+1 − µt∥1 , (14)

where κ = 2 log |A|
1−γ + 1+2R(1−γ)

λ(1−γ) , and pmin ≥ exp(−2R/λ)
|A| . Using the mean-field state update rule

that µt+1 = (1− βt)µt + βtΓ2(πt, µt), we have that

∥µt+1 − µt∥1 = βt ∥µt − Γ2(πt, µt)∥1 ≤ 2βt.

Substituting the above equation back to (14) and rearranging,

σt ≤
1

ηtλ
(σt − σt+1) +

3C3

λ
(1 +

1

pmin
)
√
εtotal +

2ηtR
2

λ
+

2(1 + C1) · κd0βt
ηtλ

Let ηt = η = O(T−2/5)/λ, βt = β = O(T−4/5). Summing over t = 0, 1, . . . , T − 1 leads to

1

T

T−1∑
t=0

σπt ≤
σ0
Tηλ

+
3C3

λ
(1 +

1

pmin
)
√
εtotal +

2ηR2

λ
+

2(1 + C1) · κd0β
ηλ

≤Õ
(

1

λ2T 2/5
+
|A| exp (1/λ)

λ

√
εtotal

)
. (15)

We can then apply the Cauchy-Schwarz inequality and Pinsker’s inequality to obtain that

1

T

T−1∑
t=0

D(πt, π
⋆
t ) =Eτ [D(πτ , π

⋆
τ )]

=EτEs∼d⋆τ

[
d⋆(s)

d⋆τ (s)
· ∥π⋆τ (·|s)− πτ (·|s)∥1

]

≤

√√√√EτEs∼d⋆t

[∣∣∣∣d⋆d⋆τ
∣∣∣∣2
]
· EτEs∼d⋆τ

[
∥π⋆τ (·|s)− πτ (·|s)∥21

]
≤C2

√
EτEs∼d⋆t [2KL (π⋆τ (·|s)∥πτ (·|s))]

≤Õ

 1

λT 1/5
+

√
|A| exp(1/λ)ε1/2total

λ

 ,
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where the last step follows from (15). This characterizes the convergence of the policy πt. In
the following, we follow a similar analysis as in [76] and analyze the convergence behavior of the
mean-field state µt. From Lemma 7, we know that

∥µt+1 − µ⋆∥1 ≤ (1− βtd̄) ∥µt − µ⋆∥1 + d2C2βt
√
σπt ,∀t ≥ 0.

Rearranging and using the definition that σµt = ∥µt − µ⋆∥1, we have

σµt ≤
1

βtd̄
(σµt − σµt+1) +

d2C2

d̄

√
σπt .

With βt = β = O(T−4/5), we sum over t = 0, 1, . . . , T − 1 and obtain

1

T

T−1∑
t=0

σµt ≤
1

Tβd̄
(σµ0 − σµT ) +

d2C2

T d̄

T−1∑
t=0

√
σπt

≤ σµ0
Tβd̄

+
d2C2

d̄

√√√√ 1

T

T−1∑
t=0

σπt

≤Õ
(

1

T 1/5
+

√
1

λ2T 2/5
+
|A| exp (1/λ)

λ

√
εtotal

)
(16)

≤Õ

 1

λT 1/5
+

√
|A| exp(1/λ)ε1/2total

λ

 , (17)

where the second step uses the Cauchy-Schwarz inequality, and the third step follows from (15).
Finally, using the triangle inequality,

D(πt, π
⋆) ≤D(πt, π

⋆
t ) +D(π⋆t , π

⋆)

=D(πt, π
⋆
t ) +D(Γλ1 (µt),Γ

λ
1 (µ

⋆))

≤D(πt, π
⋆
t ) + d1 ∥µt − µ⋆∥1 , (18)

where the last step holds due to Assumption 3. Combining (14), (15), and (17),

D

(
π⋆,

1

T

T−1∑
t=0

πt

)
+

∥∥∥∥∥µ⋆ − 1

T

T−1∑
t=0

µt

∥∥∥∥∥
1

≤ 1

T

T−1∑
t=0

D (π⋆, πt) +
1

T

T−1∑
t=0

∥µ⋆ − µt∥1

≤ 1

T

T−1∑
t=0

(D (πt, π
⋆
t ) + d1 ∥µt − µ⋆∥1) +

1

T

T−1∑
t=0

∥µ⋆ − µt∥1

≤Õ

 1

λT 1/5
+

√
|A| exp(1/λ)ε1/2total

λ

 .

This completes the proof of the theorem.

C Instantiation of the Oracles

Section 3 assumes access to two black-box oracles that can return relatively accurate evaluations of a
policy and estimations of the policy gradient. In this appendix, we discuss possible ways that the two
oracles can be instantiated using standard techniques.

We start with the policy evaluation oracle, which provides an εcritic-accurate estimate q̂ of the shifted
Q-function qπ given a policy π. One viable approach is to instantiate such a critic oracle using
temporal difference (TD) learning with linear function approximation [10, 70], a simple and widely
used iterative method for policy evaluation. Specifically, we consider the case where the shifted
Q-function is approximated as qπ(s, a) = ψ⊤ϕs,a, where ϕs,a ∈ Rd is the d-dimensional feature
vector, and ψ ∈ Rd is the parameter vector to be optimized. The optimal ψ should minimize the
mean-squared projected Bellman error. A formal description of the projected TD(0) algorithm is
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Algorithm 2: Projected Temporal Difference Learning with Linear Function Approximation
1 Input: Policy π to be evaluated;
2 Initialize ψ0 ← 0;
3 for iteration k ← 0 to K − 1 do
4 Execute policy π to collect sample (sk, ak, rk, sk+1, ak+1);
5 ψ̃k+1 ← ψk + αk

(
rk − λ log π(ak|sk) + γψ⊤

k ϕsk+1,ak+1
− ψ⊤

k ϕsk,ak
)
ϕsk,ak ;

6 ψk+1 ← argminψ∈Rd,∥ψ∥2≤B ∥ψ − ψ̃k+1∥22;

7 Output: q̂(s, a) = 1
K

∑K−1
k=0 ϕ⊤s,aψk.

Algorithm 3: Stochastic Gradient Descent for Gradient Estimation
1 Input: Shifted Q-function estimates q̂ from Algorithm 2;
2 Initialize w̄0 ← 0;
3 for iteration k ← 0 to K − 1 do
4 Sample sk ∼ dπ and ak ∼ π(·|sk) using a sampler;

5 w̄k+1 ← w̄k − 2ᾱk

(
w̄⊤
k ∇ log π(ak|sk)− Â(sk, ak)

)
∇ log π(ak|sk);

6 w̄k+1 ← argminw∈Rd:∥w∥2≤R ∥w − w̄k+1∥22;

7 Output: ŵ = 1
K

∑K−1
k=0 w̄k.

presented in Algorithm 2. It starts with an initial ψ0 parameter. At each iteration k, it executes
the given policy π, and observe a sample Ok = (sk, ak, rk, sk+1, ak+1) of the current state and
action, the current reward, and the next state and action. The algorithm then takes a step in the
direction along the negative gradient of the squared Bellman error induced by the sample Ok. In the
entropy-regularized case, it can be shown [13] that the negative gradient is expressed as

gk =
(
rk − λ log π(ak|sk) + γψ⊤ϕsk+1,ak+1

− ψ⊤ϕsk,ak
)
ϕsk,ak .

The algorithm further projects the parameter ψ back to a Euclidean ball of radius B to ensure that the
gradient norms are uniformly bounded over time. Finally, Algorithm 2 outputs an estimate of the
shifted Q-function using the averaged iterate of the parameter.

Under proper assumptions (realizability and uniform mixing of the induced Markov chain, see [10]
for an extensive discussion), the finite-time convergence of projected TD learning with linear function
approximation is characterized in the following proposition.
Proposition 1. (Theorem 3 of [10]). Under certain regularity assumptions, Algorithm 2 with a
decaying step size αk = 1

ω(k+1)(1−γ) ensures that

E
[
∥q̂ − qπ∥2dπ×π

]
≤ Õ

(
τmix(αK)

K(1− γ)2ω

)
,

where τmix(ε) is the ε-mixing time of the induced Markov chain, and ω is the smallest eigenvalue of
the steady-state feature covariance matrix

∑
s,a d

π(s)π(a|s)ϕs,aϕ⊤s,a.

Therefore, in order to obtain an εcritic-accurate estimate of the shifted Q-function in expectation, it
suffices to run Algorithm 2 for Õ(1/ε2critic) iterations.

Next, we instantiate the gradient estimation oracle in Algorithm 1, which provides an εactor-accurate
estimate ŵ of the gradient w, given a policy π and an estimated value function Â. Since (3) solves
a standard convex optimization problem, we can simply use a stochastic gradient descent (SGD)
method for the actor update, which is formally described in Algorithm 3. Specifically, we first
initialize the gradient estimate as w̄0 = 0. At each iteration k, Algorithm 3 takes a step along the
opposite direction of the gradient of loss function. The gradient is given by

ḡk = 2
(
w̄⊤
k ∇ log π(ak|sk)− Â(sk, ak)

)
∇ log π(ak|sk),

where (sk, ak) is drawn from the distribution dπ × π (for simplicity of notations dropped the
dependence on the population distribution) using a sampler (e.g., [2]), and Â is calculated from q̂
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provided by the critic. The algorithm finally averages w̄k over the iterations as the output. A standard
result shows that Algorithm 3 with a learning step size of ᾱk = R

Qmax

√
K

finds the optimum at a rate

of O(1/
√
K), where recall that Qmax = 1+γλ log |A|

1−γ :

Proposition 2. (Combining Theorem 14.8 and Lemma 14.9 of [61]). Let f : Rd → R be a convex
function, and let x⋆ = argminx∈Rd:∥x∥2≤R f(x). Assume that the gradient norm at each step is
bounded by ρ > 0 with probability 1. Suppose the (projected) stochastic gradient descent algorithm
is run for K iterations with the learning step size ᾱk = R

ρ
√
K

. Then,

E

[
f

(
1

K

K∑
k=1

xk

)]
− f (x∗) ≤ Bρ√

K
.

The above result immediately implies that, in order to obtain an εactor-accurate gradient estimation in
expectation, it suffices to run Algorithm 3 for O(1/ε2actor) iterations.

D Simulations Setup

In Subsection 5.1, we adopt two classic mean-field game tasks from the literature, including an SIS
epidemics model [16, 38], and a linear-quadratic MFG [49, 38, 12, 45]. Simulations are done in an
episodic setting. In our implementation, we use the collected empirical trajectory to estimate the
policy gradient and the Fisher information matrix (instead of formally calculating the state visitation
distribution), which turns out to serve as accurate estimates of the true values. The mean-field states
are not directly observed by the learning agent, but instead only influence the environment implicitly
as a parameter of the transition and reward functions.

SIS Epidemics Model. The SIS task describes a toy mean-field game model for epidemics. In our
simulations, we consider the same setting as has been proposed in [16]. This task has two states:
susceptible (S) and infected (I). At each time step, each agent may choose between two actions:
social distancing (D) or going out (U). A susceptible agent will not get infected if it practices social
distancing, i.e., P (st+1 = I | st = S, at = D,µt) = 0. When a susceptible agent chooses to
go out, it has a higher probability of becoming infected if a larger proportion of the population
is infected. Specifically, the state transition is given by P (st+1 = I | St = S,At = U, µt) =
0.92 · µt(I), where µt(I) denotes the ratio of the population that is infected at time step t. An
infected agent has a constant probability of recovery at each step, regardless of its choice of action,
i.e., P (st+1 = S | St = I, At = U, µt) = P (st+1 = S | St = I, At = D,µt) = 0.3. For
each individual agent, both practicing social distancing and being in the infected state have an
associated cost, regardless of the rest of the population. Specifically, the reward function is given
by r(s, a, µ) = −1{s = I} − 0.5 · 1{a = D}, where 1{·} is the indicator function. It is worth
remarking that even though this task has only two states, the transitions are also influenced by
the population distribution, which is a real-valued quantity that makes this task significantly more
challenging than a simple tabular MDP.

Linear-Quadratic MFG. The second task we consider is a 1D linear-quadratic mean-field game. We
adopt the same discrete setting as has been utilized in [49, 38], which is in turn an approximation
of the classic linear-quadratic MFG formulations [12, 45]. For each individual agent, the transition
function of this task is given by:

st+1 = st + at∆t + σεt
√
∆t,

where ∆t is the time duration, and εt is the i.i.d noise taking values from {−3, . . . , 3} approximately
following a normal distribution N (0, 1). Let µ̄t denote the empirical average of the population states
at time step t. The reward function for each agent is then specified as:

r(st, at, µt) =

(
−1

2
|at|2 + qat(µ̄t − st)−

κ

2
|µ̄t − st|2

)
∆t.

Intuitively, this reward function incentivizes agents to track and stay close to the mean state of the
population (despite the random drift εt), but discourages agents from taking large-magnitude actions.
We set the parameters as ∆t = 1, σ = 1, q = 0.01, κ = 0.5, and |S| = 25. We do not consider
terminal costs in our simulations.
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Exploitability. We utilize the standard notion of exploitability [82, 49, 16] to measure the sub-
optimality of the algorithm. Specifically, the exploitability of a policy π is defined as

E(π) = max
π⋆

V π
⋆,λ

µπ
(ρ)− V π,λµπ

(ρ),

where µπ is the mean-field distribution generated by following the policy π, and recall that ρ is the
initial state distribution. Intuitively, a higher degree of exploitability suggests that an individual agent
can be much better off by deviating from the given policy. On the other hand, an exploitability of 0
suggests that the policy π and its induced mean-field distribution constitute a Nash equilibrium of the
mean-field game.

Hyperparameter Configuration. In the task of SIS, we set βt = 0.01 for NAC, and ηt = 0.05 for
both NAC and DL-NAC. This corroborates our theoretical findings in Algorithm 1 that the policy
should evolve at a faster rate than the mean-field estimate. The learning rate of the critic is set to 0.001
for both algorithms. In the task of LQ, we choose βt = 0.05 for NAC, and ηt = 0.1, and a critic
learning rate of 0.001 for both NAC and DL-NAC. We use dynamic programming and the model
information to calculate the exploitabilities of the policies exactly, but our algorithms do not have
access to these values as they reveal information about the underlying environment. All simulation
results are averaged over 10 runs.

“Zigzags” for Fixed-Point Iterations. The “zigzag” fluctuations of DL-NAC in Figures 1 and 2 are
due to the fact that double-loop methods update the mean-field abruptly: In each “segment” of the
zigzag plot, DL-NAC fixes the population distribution and learns an approximately optimal policy
with respect to it. At the end of the segment, DL-NAC abruptly updates the mean-field estimate
by applying one step of the mean-field dynamics operator Γ2 under the learned policy. Such an
abrupt change in the environment dynamics nullifies the policies learned from the past, and the
algorithm needs to learn a new policy from scratch. This accounts for the sharp spikes in the plots of
DL-NAC. Similar patterns have also been observed in the literature [16] for other fixed-point iteration
methods. Our online method hence enjoys a more smooth learning behavior than standard fixed-point
iteration. It is also worth remarking that the seemingly converging behavior of DL-NAC on each
zigzag segment does not imply its convergence to NE, because DL-NAC fixes the mean-field estimate
for each segment and does not let it get closer to the equilibrium mean-field state. In fact, even if we
run each segment of DL-NAC for a sufficiently long time, there will still be a non-zero exploitability
gap due to the inherent error of the mean-field estimate.

E Serverless FaaS Platform Setup

OpenWhisk Cluster Setup. A serverless Function-as-a-Service (FaaS) platform runs functions
in response to invocations (i.e., function requests) from end-users or clients. Since all serverless
platforms have similar master-worker architectures, we choose to use an production-grade open-
source serverless platform, OpenWhisk [22], and deploy a distributed OpenWhisk cluster on IBM
Cloud with 22 VMs in us-south-2. OpenWhisk manages the infrastructure, servers and scaling using
Docker containers. Figure 4 shows the architecture of a distributed OpenWhisk cluster and how RL
agents work with the OpenWhisk cluster to manage resources of each function. The OpenWhisk
cluster that we deploy consists of one master node and 21 worker nodes. The master node runs the
API gateway (labeled as 1 ), FaaS controller ( 2 ), data store ( 3 ), and other management modules.
Each of the worker nodes (labeled as 4 ) runs the function containers. All nodes have 8 cores and
16-32GB RAM, running Ubuntu 20.04 LTS. There is no interference from external jobs. We run
the workload generator [59] and the RL agents from two separate nodes in the same cluster and use
FaaSProfiler [59] to trace requests to measure function latencies.

Serverless Function Workflow. The FaaS controller creates function containers, allocates CPU
and RAM for each function container, and assigns the containers to worker nodes. When end-user
requests arrive via the API gateway, the controller distributes the requests to worker nodes. If the
function code exists on the worker node, the worker node will execute the function after it receives a
request and the execution results are written to the data store; otherwise, the worker node will first
pull function code from the data store before function execution. A container is evicted after an idle
timeout of 10 minutes (the default value set in OpenWhisk).
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Serverless Workloads. We select diverse function benchmarks from widely used open-source FaaS
benchmark suites [15, 59, 81]4. These benchmarks include web applications (HTML-Gen, Uploader),
machine learning model serving (Sentiment-Analysis,Image-Inference), multimedia appli-
cations (Image-Resize, Compression), scientific functions (Primes, PageRank, Graph-BFT,
Graph-MST), and utility functions (Base64, Markdown2HTML). The basic description of each func-
tion benchmark is listed here:

i. Base64: Encode and decode an input string with the Base64 algorithm.
ii. Primes: Find the list of prime numbers less than 107.

iii. Markdown2HTML: Render a Base64 uploaded text string as HTML.
iv. Sentiment-Analysis: Generate a sentiment analysis score for the input text.
v. Image-Resize: Resize the input Base64-coded image with new sizes.

vi. HTML-Gen: Generate HTML files randomly from templates.
vii. Uploader: Upload a file from a given URL to Cloud storage.

viii. Compression: Compress given images and upload to Cloud storage.
ix. Image-Inference: Image recognition on a given image with a pre-trained ResNet-50 model.
x. Page-Rank: Calculates the Google PageRank for a specified graph.

xi. Graph-BFT: Traverse the given graph with breath-first search.
xii. Graph-MST: Generate the minimum spanning tree given a graph.

These function benchmarks have different runtime behaviors and resource demands in terms of CPU,
memory, and I/O utilization. For example, Image-Resize and Image-Inference are computation-
intensive functions; Base64 and Markdown2HTML are memory-intensive functions; Uploader and
Compression are I/O-bound functions; Page-Rank and Graph-BFT/MST are data-intensive func-
tions (cpu- and memory-intensive). The functions are written in either Python or Java. Function-
latency-based QoS objectives are defined on a per-function basis. In our experiments, we follow the
common practice and use the 99th percentile latency when running in isolation on the serverless
platform with 15% relaxation as the QoS latency. To drive the benchmarks, we sample and replay the
function invocations from Azure function traces [60]5.

NAC Implementation. In the implementation of NAC-Linear and NAC-NN, due to the complexity
of computing the Fisher information matrix in a large-scale environment, we use a standard gradient
descent method with adaptive KL divergence penalty to approximate the policy update step, which
leads to a similar procedure as the Proximal Policy Optimization algorithm [58]. We set the learning
rate for both the actor and the critic networks to 3×10−4. The discount factor is set to 0.99. NAC-NN
has one hidden layer that consists of 64 hidden units. We set the mini-batch size and number of SGD
epochs to be both 5. The reward coefficient α is set to 0.3, which results in the highest reward after
convergence in our sensitivity study.

Comparison Baselines. We compare our approach with a heuristics-based approach ENSURE [66]
and OpenWhisk’s original resource manager. ENSURE allocates R+ c

√
R containers to a function

with function request arrival rate R, scales the resources within a worker node based on a latency
degradation threshold, and scales the number of worker nodes based on a memory capacity threshold.
OpenWhisk sets CPU shares for each container proportional to its requested memory capacity and
tries to place as many containers as possible on the same worker node to maximize the utilization.
We do not include the comparison results with single-agent RL algorithms proposed for resource
management (e.g., FIRM [51], MIRAS [79], and FaaSRank [80]) because these solutions are proposed
under different assumptions from ours and it is hardly possible to make fair comparisons. Specially,
single-agent RL solutions typically assume that the agent is in an isolated environment where there is
only the application that the agent manages, but do not address the competitions for shared resources
in a cluster. In fact, a very recent work [52] has shown that applying single-agent RL algorithms to the
multi-agent domain leads to severe performance degradation due to the environment’s non-stationarity,
which makes the single-agent solution even worse than the heuristics-based baseline that we choose.

4The benchmark FaaSProfiler uses MIT License; [15] uses BSD 3-Clause License; [81] uses Mulan Permis-
sive Software License.

5The dataset [60] uses the Creative602 Commons Attribution 4.0 International Public License
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