
QLM: Queue Management for Large Language Model Serving

Archit Patke1 Dhemath Reddy1 Saurabh Jha2 Christian Pinto3 Haoran Qiu1

Shengkun Cui1 Chandra Narayanaswami2 Zbigniew Kalbarczyk1 Ravishankar Iyer1

1University of Illinois at Urbana-Champaign 2IBM Research 3IBM Research Europe

Background. The emergence of language models such as
OpenAI GPT4 and Google Gemini has enabled a wide range
of new applications, including chatbots, log summarization
tools, and coding assistants. Consequently, serving large lan-
guage models (LLMs) has become an increasingly impor-
tant workload for cloud providers, catering to both enterprise
and consumer applications. LLM serving systems need to be
scalable, ensure high throughput, reduce SLO violations all
while maximizing resource utilization across compute units.
However, achieving these goals simultaneously is challenging
due to: (i) High variation in number of output tokens: LLMs
fundamentally differ from other ML models due to their au-
to-regressive nature. This auto-regressive nature causes LLMs
to generate their output sequentially from the input prompt,
while updating their internal state (also known as the key–
value (KV) cache) via the attention mechanism. The number
of output tokens cannot be directly deduced from the input
prompt. (ii) Continuous batching: State-of-the-art LLM serv-
ing systems such as vLLM [1], Orca, tensorRT-LLM, and
TGI use the notion of continuous batching to dynamically
fit requests in memory. The size of the GPU memory and
length of the KV cache decides the continuous batch size. If
the GPU memory is fully utilized, requests have to wait in
the queue causing Head-Of-Line (HOL) blocking and adding
variability in serving latency. (iii) Variable model size and
request arrival rates: An LLM serving system needs to serve
different models of variable size and arrival rates. These can
lead to high cold start time and low compute utilization.

To address these challenges, LLM serving systems are
often combined with a decision-making framework for re-
source provisioning mechanisms (RPMs) such as batch siz-
ing, scheduling, load balancing, request preemption, operator
placement, etc. The objective of this work is to develop a
decision-making framework that is able to satisfy SLOs while
ensuring high resource utilization by dynamically deciding
the RPMs at runtime.

Limitations of Related Work. The auto-regressive nature
of LLMs along with continuous batching impacts decision-
making frameworks for resource provisioning mechanisms
(RPMs). These frameworks rely on profiling the cost of neural
network inference ahead-of-time and solving resource allo-
cation as an optimization problem using techniques such as
linear programming [3] and black-box ML optimization [2]
. However, these frameworks fail to apply to LLMs because

output time-per-query is variable and cannot be directly de-
duced at query time.
QLM Design. QLM is a queue management system that
enables decision-making for RPMs targetting LLM serving.
QLM consists of the LLM request waiting queue, optimizer
loop, and RPMs enabled by the downstream LLM serving sys-
tem. Incoming requests join the request queue, are assigned
priorities by the optimizer, and sent to the LLM serving sys-
tem that actuates the RPMs. The QLM optimizer enables per-
formance service-level objectives (SLOs) by assigning higher
priorities to requests with longer wait times and stricter SLO
requirements. The optimizer is based on Bayesian statistics
and hierarchical optimization strategies that estimate request
completion times and assigns a priority to each request. QLM
currently supports the following four RPMs and is being ac-
tively extended to support additional mechanisms:
- Priority Scheduling: (shown by 1 ) The waiting queue is
reordered based on assigned request priority levels. High-
priority requests would be placed ahead in the waiting queue
while others would be moved back, leading to a re-balancing
in waiting times for requests in the queue.
- Request Eviction: (shown by 2 ) High-priority requests
in the waiting queue evict the low-priority requests in the
continuous batch currently running on the GPU. The cost of
eviction is the time required to recompute the KV cache for
the evicted requests.
- GPU-CPU State Swapping: (shown by 3 ) The KV cache is
proactively swapped between GPU and CPU memory to make
space for high-priority requests on demand. Swapping time is
determined by the GPU-CPU memory bandwidth barrier.
- Model Warm Start: (shown by 4 ) Models with high-
priority requests can have their weights loaded into CPU
memory ahead of time such that incoming requests do not
have to wait for expensive loading times. This involves using
CPU memory even during idling.
Evaluating QLM QLM can be paired together with any exist-
ing LLM inference server that supports these RPMs. However,
we use vLLM to evaluate QLM. vLLM is a state-of-the-art
serving system that uses PagedAttention [1] and continu-
ous batching to serve requests at high throughput. We eval-
uate QLM on two models of varying sizes: Mistral-7B and
Vicuna-13B and two GPUs of varying compute power: Nvidia
A10 and A100. For the workload, we sample requests from
ShareGPT [?] dataset. Our experiments with QLM demon-

1



Priority 
Assignment 
Low / High

Incoming 
Requests

Bayesian 
Model

Completion Times 

Optimizer

QLM Core Resource Provisioning Mechanisms (RPMs)

Priority 
Scheduling

1

2
Request 
Eviction

GPU

KV Cache

3 GPU-CPU 
State Swap

4 Warm Model 
Swap

Model Weights 

CPU Mem

KV cache 
store

Model 
weight store

Figure 1: Overview of QLM.

A10,7B A100,7B A100,13B

10−2

10−1

100

101

H
O

L
B

lo
ck

in
g

T
im

e
(s

)

vLLM vLLM+QLM

Figure 2: QLM reduces Head-Of-Line
blocking time of requests.

0 1 2 3 4 5

SLO Scale

0

25

50

75

99
C

D
F

P
er

ce
n

ti
le

s

A10 vLLM+QLM
A10 vLLM

A100 vLLM+QLM
A100 vLLM

Figure 3: QLM reduces tail latency for
high-priority requests.

A10,7B A100,7B A100,13B

2

4

6

8

10

R
eq

u
es

t
T

h
ro

u
g

h
p

u
t/

s

vLLM vLLM+QLM

Figure 4: QLM improves overall request
throughput.

strate the following characteristics of the LLM serving sys-
tem:

QLM can eliminate head-of-the-line (HOL) blocking time
for high-priority requests under bursty workloads. Under
bursty workloads, priority scheduling reorders requests such
that high-priority requests are placed ahead in the waiting
queue. However, priority scheduling is not sufficient by itself
because existing requests running in the GPU (continuous
batch) prevent allocation of the high-priority request resulting
in Head-Of-Line blocking. Therefore, in such scenarios, evict-
ing requests from the GPU is required as supported by QLM.
Figure 2 illustrates the HOL blocking time when run with a
mixed workload comprising low-priority and high-priority re-
quests. Request eviction can significantly reduce the waiting
time because high-priority requests only need to wait for a sin-
gle decoding iteration before they can be scheduled, resulting
in a 100–1000× reduction in waiting time.

QLM selects between multiple RPMs to satisfy SLOs for
high-priority requests. QLM is able to significantly lower tail
latency by selecting between multiple RPMs. For example,
when a high-priority request is blocked because of the already
running requests in the GPU, two mechanisms can be used
to allow immediate execution: request eviction and GPU-
CPU state swapping. This choice primarily depends upon
the memory bandwidth between GPU and CPU memory the
compute power of the GPU, and the model architecture itself.
As the GPU computation cost decreases, less time is required
to recompute using the partially completed query and request
eviction is preferable over swapping. If the size of the KV

cache per output token increases relative to the time required
to compute it, swapping would become preferable. QLM
using posterior inference on the Bayesian model to decide
which of these mechanisms to use. By deciding between
tradeoffs such as swapping vs eviction, QLM better satisfies
SLOs compared to the original LLM serving system. Figure 3
shows that QLM offers upto 3–6× reduction in SLO scale (i.e.
ratio between tail latency and SLO latency) for high-priority
requests compared to using vLLM only.

QLM can improve the throughput of vLLM even when SLOs
are relaxed. While QLM prevents SLO violations for higher
priority requests, it can also improve the throughput of vLLM
even when no SLO constraints are present. For example, the
benefit of QLM is noticeable during swapping vs preemption
decision-making in vLLM. As an artifact of continuous batch-
ing, vLLM periodically preempts currently running requests
out of the GPU, and later recomputes them or loads their
saved KV cache from the CPU memory. By default, vLLM
chooses the recompute option. However, QLM shows that
this choice depends upon the GPU compute power and model
size and the correct choice leads to improvement in request
throughput. Figure 4 shows that request throughput for QLM
can be 20% higher compared to vLLM.
Future Directions In this work, we showed the importance
of using a decision engine to automatically manage RPMs
through QLM. In future, we plan to enhance QLM in several
ways: (i) incorporate additional RPMs such as auto-scaling,
MIG partitioning, and configuration optimization of inferenc-
ing servers. (ii) improve fault tolerance and scalability by

2



adopting principles of distributed system design. (iii) accom-
modate emerging models and deployment options such as
s-LoRA and RAG.
References
[1] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,

Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory
management for large language model serving with pagedattention. In Proceedings
of the 29th Symposium on Operating Systems Principles, pages 611–626, 2023.

[2] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yuefeng
Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device
placement optimization with reinforcement learning. In International conference
on machine learning, pages 2430–2439. PMLR, 2017.

[3] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and Ion Stoica. {SHEPHERD}:
Serving {DNNs} in the wild. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), pages 787–808, 2023.

3


