
One Queue Is All You Need:
Resolving Head-of-Line Blocking in Large Language Model Serving

Archit Patke1 Dhemath Reddy1 Saurabh Jha2 Haoran Qiu1 Christian Pinto3

Shengkun Cui1 Chandra Narayanaswami2 Zbigniew Kalbarczyk1 Ravishankar Iyer1

1University of Illinois at Urbana-Champaign 2IBM Research 3IBM Research Europe

Abstract
Large language models (LLMs) have become an increasingly
important workload for cloud providers catering to both en-
terprise and consumer applications. LLM inference requests
from these applications have end-to-end latency SLOs that
must be adhered to in production settings. However, existing
LLM serving systems focus on optimization objectives such
as request serving throughput or request execution latency
rather than the end-to-end latency SLOs. Achieving end-to-
end SLOs for latency-sensitive requests is challenging due
to head-of-line (HOL) blocking in the request queue, which
results from bursty arrival rates and insufficient resources.

To address the above challenge, we propose QLM, a multi-
model queue management framework for LLM serving. QLM
uses stochastic programming to orchestrate the actions of
multiple LLM Serving Operations (LSOs) to reduce HOL
blocking and maximize SLO attainment. Specifically, QLM
uses the following LSOs: model swapping, request eviction,
GPU-CPU state swapping, load balancing, and warm model
start. Evaluation on heterogeneous GPU devices and mod-
els with real-world LLM serving dataset shows that QLM
improves SLO attainment by 40–90% and throughput by 20–
400% while maintaining or improving device utilization com-
pared to other state-of-the-art LLM serving systems.

1 Introduction

Motivation. The emergence of large language models (LLMs)
such as OpenAI GPT-4 and Google Gemini has enabled a
wide range of novel AI applications [3,56,58], including chat-
bots and coding assistants. Consequently, serving LLMs has
become an increasingly critical workload, catering to both
enterprise and consumer applications with service-level objec-
tives (SLOs) on end-to-end latency [20, 37, 53]. However, ex-
isting LLM-serving systems [21,25,38,45,48,49,55,57] focus
on optimization objectives such as request serving throughput,
device utilization, or request execution latency rather than ad-
dressing SLOs on the end-to-end latency, which encompasses

Single Multi

0.1

1.0

10.0

H
O

L
B

lo
ck

in
g

T
im

e
(s

)

vLLM
vLLM+QLM

	
0 1000 2000

Multi-Model Queue Size

10

100

1000

E
n

d
-t

o
-E

n
d

L
a

te
n

cy
(s

)

Lat-sensitive SLO

Batch SLO

vLLM (Batch + Latency-sensitive)
vLLM+QLM (Latency-sensitive)
vLLM+QLM (Batch)

Figure 1: QLM nearly eliminates HOL blocking time in both
single and multi-model serving scenarios and enables SLO
attainment for batch and latency-sensitive applications.

both request execution time and waiting time. Optimizing end-
to-end latency SLOs is critical as it is the prime metric valued
by the customers using LLM inferencing services [30, 31].

When maximizing end-to-end latency SLO attainment, min-
imizing request waiting time is just as important as execution
time due to the presence of request queues. Request queues
fill up when the serving throughput is unable to match the high
and bursty arrival rates of the incoming requests [53]. The is-
sue of increasing request queue sizes is further exacerbated by
device shortage and the need to serve multiple fine-tuned het-
erogeneous models with varying sizes [24], resulting in high
cold start time [12] and low device utilization [62]. Latency-
sensitive requests with strict SLOs may wait longer in the
queue because of head-of-line (HOL) blocking, leading to
potential SLO violations. Figure 1 (left) shows that requests
can suffer from HOL blocking in both single and multi-model
serving using production LLM-serving traces [36] (labeled
as “vLLM”, a state-of-the-art LLM serving system).
Our Work. Fundamentally, HOL blocking can be alleviated
by reordering the requests in the waiting queue and assigning
requests to appropriate devices. In the LLM serving context,
this assignment and reordering can be mapped to LLM serving
operations (LSOs) such as request pulling, request eviction,
load balancing, GPU-CPU state swap, and model warm start.
To orchestrate these LSOs and maximize SLO attainment, we

1

introduce QLM, a multi-model queue management system.
Figure 1 (right) shows that QLM maximizes SLO attainment
for both latency-sensitive and batch jobs in a multi-model
serving workload setup. QLM leverages two major ideas in
its queue management framework:
(a) Virtual Queue Abstraction: Previous work tends to opti-

mize LSOs separately and in an ad-hoc manner [15, 46, 54].
An LLM serving framework that systematically investigates
the trade-offs amongst multiple LSOs for SLO attainment
is missing to date. To bridge this gap, QLM introduces the
concept of virtual queues that represent the dynamic order
and assignment of requests to be served, which provides a
necessary abstraction for optimizing LSO actions. Moreover,
selecting optimal LSOs per request is an NP-hard decision
problem that will not meet the acceptable overhead of exe-
cuting requests in production (e.g., < 10 ms per request). To
reduce the complexity of the decision problem, QLM uses re-
quest groups, where requests that share the same performance
characteristics are grouped together, and decisions are taken
per request group instead of per request.
(b) Plan Generator and Request Completion Time (RCT)

Estimator: When making decisions on request group ordering
in the virtual queues, the two key metrics that need to be esti-
mated are the request waiting time and execution time. How-
ever, estimating these metrics is challenging because the exe-
cution time for a request depends on its output token length,
which is unknown apriori before executing the request [21]
(i.e., stochastic in nature). QLM models this stochastic nature
and estimates the waiting and execution time distributions
using a Request Completion Time (RCT) estimator (described
in Section 6). Finally, QLM uses a Plan Generator (described
in Section 7) that leverages the completion time distribution
of request groups to create an optimal ordering and assign-
ment of request groups onto the virtual queues to maximize
SLO attainment. Because the key variables in the optimiza-
tion, output token length and completion times are stochastic
variables, the plan generator is based on a stochastic program-
ming solver. In comparison, other ML serving systems such
as Clockwork [16] and SHEPHERD [60] use variations of
linear programming solvers because the request completion
time and waiting time are deterministic for traditional ML
models (e.g., ResNet).
In summary, QLM enables the translation of end-to-end per-

request latency SLOs into backend LSO actions using a com-
bination of virtual queues, stochastic modeling of queue dy-
namics (in RCT estimator), and stochastic programming (in
plan generator).
Results. We demonstrate QLM on our internal production-
grade version of vLLM [21] as the backend LLM-serving
system. QLM supports the following five basic LSOs (see
Section 5 for details): (1) Request Pulling from the global
waiting queue into the running batch in the GPU, (2) Request
Eviction from the running batch back into the waiting queue,
(3) GPU-CPU Swapping for the internal LLM state, (4) Model

Warm Start from CPU memory instead of disk, and (5) Load
Balancing across multiple LLM model instances.

We evaluate QLM on three popular LLMs of varying sizes
(i.e., Mistral-7B [19], Vicuna-13B [5], and Llama-70B [50])
on heterogeneous GPU clusters with NVIDIA A10 and A100
GPUs. We adopt workloads from a real-world LLM dataset:
ShareGPT [43] using setups derived from our production
requirements. Our experiments demonstrate the following
major improvements with QLM:
(1) SLO Attainment: QLM achieves 40–90% higher SLO
attainment compared to the vanilla vLLM serving system and
50–90% higher SLO attainment compared to traditional ML
serving systems like SHEPHERD,
(2) Request Throughput: QLM improves the request through-
put in a multi-model serving system by 400% on average
and in a single-model serving system by 20% on average
compared to other LLM serving systems, and
(3) LSO Ablation Study: QLM demonstrates that all LSOs
contribute to SLO attainment and throughput improvement.
Notably, we find that model warm start improves through-
put by 300% in multi-model serving, and request eviction
improves SLO attainment by 80% in single-model serving.

2 Background

2.1 LLM Inference
Inference Primer. An inference process starts from a request
(prompt) with a list of input tokens (x1, . . . ,xn). The LLM
generates a list of output tokens (xn+1, . . . ,xn+T). Due to the
autoregressive pattern, the LLM can only generate new tokens
one by one, and the generation process of each new token de-
pends on all the previous tokens in that sequence, specifically
their key and value vectors. In this sequential generation pro-
cess, the key and value vectors of existing tokens are cached
for generating future tokens, known as KV cache.

Therefore, given a LLM request prompt, the generation
computation can be decomposed into two phases: (1) A
prefill stage takes the whole user prompt (x1, . . . ,xn) as in-
put and computes the probability of the first output token
P(xn+1|x1, . . . ,xn). (2) A decoding stage (autoregressive gen-
eration) generates the remaining output tokens sequentially.
At iteration t, the model takes one token xn+t as input and
computes the probability P(xn+t+1|x1, . . . ,xn+t) with the key
vectors k1, . . . ,kn+t and value vectors v1, . . . ,vn+t . This phase
completes when an end-of-sequence (<eos>) token is emitted.
Continuous Batching. During LLM inference, the decoding
stage is memory-bound, as loading model weights from mem-
ory takes longer than computation. Therefore, state-of-the-art
LLM serving systems like vLLM [21], Orca [57], Tensor-
RT [48] and TGI [49] employ continuous batching with itera-
tive scheduling to enable dynamic addition of requests to a
batch as soon as others have finished generation.
PagedAttention. Static allocation of the KV cache can result

2

LLMModel
Registry

Chatbots,
Log Processing,
Recommenders,
Marketing, ….

Applications LLM

…

Prompt

Response

SLO

Figure 2: Interaction between LLM applications and a multi-
model LLM serving system.

in significant memory waste as the KV cache grows dynam-
ically during the decoding stage. PagedAttention [21] intro-
duces the idea of managing the KV cache, like OS memory,
via pages and enabling dynamic allocation. Such dynamic
allocation prevents fragmentation and enables nearly 100%
utilization of GPU memory and furthers throughput improve-
ment when combined with continuous batching [21].

2.2 LLM Serving Systems
Figure 2 shows the typical workflow of an LLM serving sys-
tem. User-facing applications such as chatbots, log process-
ing, and recommenders have specific end-to-end latency SLO
requirements [4, 20, 37, 39]. When interacting with LLMs,
each application generates requests that consist of the input
prompts and associated metadata (e.g., model type and SLO
value) to the LLM serving system. For example, chatbots re-
quire requests to complete by a deadline (e.g., p99 completion
time <10s [14]), and batch jobs like log processing have a
more relaxed SLO. Note that end-to-end SLOs do not specify
per-token metrics such as time per output token (TPOT) or
time to first token (TTFT) [10] as they cannot be directly
translated to the application’s latency requirements.

These requests are then served by an LLM serving sys-
tem such as vLLM [21], TGI [49], and Nvidia Triton [51]
that implement state-of-the-art inference optimizations such
as continuous batching and paged attention. However, even
though these systems are optimized for high throughput serv-
ing, served requests can suffer from head-of-line (HOL) block-
ing [38, 52] when the request arrival rate exceeds the LLM
serving system throughput [53]. In such cases, request queues
would form, and requests with strict SLOs at the end of the
queue would have to wait for earlier requests to complete,
resulting in potential SLO violations.

Managing these request queues is further complicated by
the growth of specialized, fine-tuned models [18, 44] for
various LLM-augmented applications. For example, Code
Llama [42] is fine-tuned for coding assistance, and Llama-
chat [50] is fine-tuned for chatbots. As maintaining a stan-
dalone LLM serving system for each of these models can be
expensive, they often have to be multiplexed together sharing
the same serving system [6,22,25,44]. However, serving mul-
tiple heterogeneous models with variable sizes results in high
cold start time (that is needed for loading the model to the

device memory) and low device utilization.
LLM serving systems have to manage these requests and

models with limited devices through various backend LLM
serving operations (LSOs) as defined in Def. 2.4 such as re-
quest eviction [54], load balancing [15], and GPU-CPU state
swap [46], in order to meet the SLO requirements. Managing
these LSOs can be complex because of (1) their inter-depen-
dency with each other, and (2) the auto-regressive nature of
LLMs where the length of output tokens is highly variable.

2.3 QLM Definitions
Before we present the motivation and characterization study,
below are definitions of the terms that we use.

Definition 2.1. Request: Each request consists of the prompt
(i.e., input tokens) and its associated metadata (e.g., model
type). Requests arrive at varying rates and burstiness, leading
to request queues with dynamically changing sizes.

Definition 2.2. SLO: Each request arrives with a service-
level objective (SLO) value that enforces the end-to-end time
required to complete the request (request waiting time and
execution time) [30]. Note that SLOs in QLM are defined per
query and not per token (e.g., TPOT or TTFT [10]). End-to-
end request completion time is the prime metric valued by the
customers using LLM inferencing services [30, 31] as it can
be directly converted into downstream application SLOs.

Definition 2.3. LLM Serving Instance: An LLM serving
system1 is capable of hosting LLM models by providing the
necessary infrastructure and resources to load the models
into memory and respond to requests. QLM is compatible
with existing LLM serving systems such as vLLM [21] and
TGI [49]. An LLM serving instance is composed of the LLM
serving system and an LLM model that is being served.

Definition 2.4. LLM Serving Operations (LSOs): In each
LLM serving instance, the models and requests in the queue
are managed by the LLM serving operations (LSOs). Ex-
amples of LSOs include request eviction [54], load balanc-
ing [15], GPU-CPU state swap [46]. Each LSO can trigger an
action that either depends on or alters the state of the request
queue (see Section 5 for details).

2.4 Motivation and Characterization
To meet end-to-end application SLOs, it is critical to under-
stand (1) the impact of LLM autoregressive patterns on the
request completion time, (2) the complex interrelationship
among individual LSOs, and (3) how end-to-end SLOs can
be translated to actions for backend LSOs.

1The difference between an LLM serving system and an LLM serving
instance is similar to JAVA classes and objects. For example, vLLM is an
LLM serving system while vLLM with a loaded model like Llama 70B is an
instance of the LLM serving system.

3

0 2000

Position in Queue

0

200

400

W
a

it
in

g
T

im
e

(N
or

m
.)

Vicuna-13B
Mistral-7B

Llama-70B

Figure 3: Requests have predictable
waiting times in a continuous batch-
ing system.

7B 13B 70B 7B 13B 70B

Model

1

2

3

4

R
eq

u
es

t
T

h
ro

u
g

h
p

u
t

(N
or

m
.)

Evict Throughput
Swap Throughput

Evict CPU Mem
Swap CPU Mem

1

5

10

15

20

C
P

U
M

em
U

sa
g

e
(N

or
m

.)

Figure 4: Choice between GPU-CPU state swap-
ping and request eviction depends on the model
setup.

A10,7B

A100,7B

A100,13B

1.0

1.5

2.0

2.5

Q
u

eu
e

D
ra

in
T

im
e

(N
or

m
.)

EDF Oracle

Figure 5: Model swapping and re-
quest pulling can jointly decrease
queue drain time.

We characterize the performance of a state-of-the-art LLM
serving system, vLLM [21], augmented with various LSOs
to motivate the design of QLM. We use ShareGPT [43] and
Azure LLM serving traces [36] from production environments.
We present three key insights below.
Insight #1: Request waiting times can be accurately es-
timated with analytical methods. While individual request
completion times in LLM inference can vary significantly,
the average waiting time for a request in the queue is pre-
dictable. The waiting time can be estimated by dividing the
total number of output tokens for requests ahead in the queue
with the token generation throughput. Both average number
of output tokens and throughput can be estimated by profil-
ing the workload over time. We empirically find that these
statistics do not change significantly for a workload and hence
can be assumed constant. We validate the above waiting time
estimation formula using real-world traces [36, 43]. Figure 3
illustrates this linear relationship between waiting time and
queue position when serving requests for three varying-sized
LLMs on NVIDIA A100 GPUs. Additionally, we find that
the estimator is highly accurate with a coefficient of deter-
mination (R2) of 0.99 (out of 1.0). In Section 6, we extend
this estimator further to support request completion times
estimation.
Insight #2: Selecting the optimal LSO depends on the model
and hardware setup. When multiple LSOs are enabled for
LLM inference, there can be conflicts between the goals of
two LSOs. For example, when a request is blocked in the
queue due to out-of-capacity on the GPU device serving the
running batch, two LSOs can be used to allow immediate
execution: request eviction and GPU-CPU state swapping.
This choice primarily depends upon the trade-off between
available CPU memory and the model/hardware-dependent
computation cost of swapping vs. eviction. If additional mem-
ory consumption per KV cache token is lower relative to
the KV recomputation time, then GPU-CPU state swapping
would become preferable (and vice-versa).

To demonstrate this trade-off, we perform experiments
with varying-sized models on NVIDIA A100 GPUs. Figure 4

shows the request throughput and CPU memory usage across
these experiments. For models such as Mistral-7B, swapping
increases request throughput by∼20% with a relatively small
CPU memory overhead of 20 GB. On the other hand, for mod-
els such as Vicuna-13B, swapping increases CPU memory
requirements by 8.4× (from 26 GB to 220 GB) with negligible
throughput benefit. Therefore, the optimal LSO selection in
this example would be to prefer eviction for Vicuna-13B and
state swapping for Mistral-7B.
Insight #3: Multiple LSOs can work together to attain SLOs
while improving serving throughput. While some LSOs can
have conflicting actuation actions (as shown in Insight #2),
others, such as model swapping and request pulling, can work
together to attain end-to-end latency SLOs while improving
the throughput of the LLM serving system. Consider the
case where each LSO is being optimized independently. The
optimal request pulling strategy is to use the Earliest Deadline
First (EDF) scheduling to achieve the maximum number of
requests that meet their SLOs. However, this assumes that the
model swapping cost is negligible. Frequent model swaps can
happen (similar to thrashing) if multiple models are served to
time share the same GPU devices, leading to SLO violations
due to longer completion times to drain the queue and a drop
in throughput. For example, consider the case illustrated in
Figure 5. Requests with varying SLOs arrive in the queue,
and they are placed by an EDF policy, causing multiple model
swaps and substantially higher time to drain the entire request
queue. Specifically, we find that across models and GPUs,
the time required to serve all requests in the queue (i.e., the
queue drain time) is substantially higher for the EDF policy
compared to an Oracle policy that groups requests from the
same model together to prevent the overhead of repetitive
model swaps.

3 QLM Design Overview

QLM aims to maximize the end-to-end latency SLOs by pro-
viding a translation layer between the SLOs and the actions
for the LLM Serving Operations (LSOs).

4

3.1 Lifecycle of a Request in QLM

To explain the design of QLM (as shown in Figure 6), we first
walk through the lifecycle of a request generated from appli-
cations to completion. LLM-augmented applications generate
requests that are received at the QLM API gateway. These
requests are added to a global queue where they wait until
being served. To prevent the global queue from being a single
point of failure, it is implemented with a distributed message
broker such as RabbitMQ [40] that provides the requisite fault
tolerance and consistency properties.
Formation of Request Groups. Each request is grouped with
other requests that share common performance characteristics
(such as model type, SLO value, and token distribution) to
form Request Groups. This converts the complexity of the
optimization problem from per-request level to per-request-
group level. By doing so, it alleviates the scalability chal-
lenges and lowers optimization overheads. Request grouping
criteria and details are described in Section 4.
Assigning Request Groups to Virtual Queues. Requests in
a request group are then assigned to a Virtual Queue, repre-
senting a waiting queue for an LLM serving instance in the
cluster. The introduction of virtual queues creates a common
abstraction for setting the actions of backend LSOs. The or-
dering of the request groups in a virtual queue determines the
execution ordering of the requests on the corresponding LLM
serving instance. We refer readers to Section 4 for virtual
queue formation and Section 5 for the translation from virtual
queue ordering to LSO actions.
Virtual Queue Reordering for SLO Attainment Maximiza-
tion. While requests are assigned to virtual queues in a first-
come-first-serve manner, request groups in a virtual queue are
reordered to maximize the SLO attainment for all requests
being served. At the core of SLO attainment maximization are
QLM’s request completion time (RCT) estimator (see Section
6) and plan generator (see Section 7).
Request Execution. Each request, when being moved to the
head of the virtual queue, will be executed on the LLM serving

LLM Applications Global Queue

RabbitMQ

RCT
Estimator Bayesian

Model

Stochastic
Program

Plan
Generator

LLM Serving
Operations

QLM Control Plane

LLM Serving Instances

Virtual Queues

Request Groups

Queue State
Read

Detect SLO Violation

Reordering

Instance #1

Q
LM

A

ge
nt

s

Instance #2

Instance #3
Control
Path

Data
Path

Request Group
Creation

LSO Actions

Requests

…

(Sec. 5)

(Sec. 7)

(Sec. 6)
(Sec. 4)

Figure 6: Overview of QLM.

instance, and the output will be returned to the application.
This completes the lifecycle of a request.

We illustrate the rationale of QLM’s design choices and
workflow in the next section (Section 3.2).

3.2 QLM Design Principles

We highlight the major design principles underpinning QLM,
derived from large-scale production LLM serving workload
requirements at a major cloud provider.
Design Principle #1: Scaling to a high request arrival rate
and burstiness. QLM must be able to handle a high volume
of requests for SLO attainment without the overhead that
compromises the serving throughput. Existing model-serving
frameworks that leverage optimization techniques such as
linear programming have exponential or cubical complexity,
which limits the scalability to larger workloads and longer
queues. QLM instead introduces request groups (see Section
4) to reduce the input space of the optimization solvers, thus
lowering the computational overhead and enabling scalability.
Design Principle #2: Handling a diverse set of LSOs with
complex inter-relationships. In Section 2.4 (Insight #2 and
Insight #3), we demonstrate that multiple LSOs can either
conflict with each other or have a synergistic effect to enhance
overall serving performance. To attain model-serving latency
SLOs, it is thus critical to translate an end-to-end SLO to
the appropriate backend LSO actions. QLM models these
complex inter-relationships with a two-step approach. First,
virtual queues (see Section 4) enable the necessary abstraction
to enable actions for multiple backend LSOs. Second, the plan
generator (see Section 7) models the impact of ordering on
multiple LSOs with a stochastic programming solver. We
specifically prefer a stochastic programming solver over other
optimization methods because it: (1) allows us to represent
the stochastic nature of LLM’s autoregressive generation, and
(2) systematically considers various constraints introduced by
multiple LSOs.
Design Principle #3: Handling heterogeneous models and
hardware device configurations. LLM serving workloads
consist of diverse model types with vastly different compu-
tational requirements, SLOs, and token length distributions.
Hardware device configurations are also heterogeneous in
terms of computing power, GPU memory capacity, and GPU-
CPU memory bandwidth. To efficiently map LLM requests to
the appropriate hardware resources, QLM’s plan generator has
to consider each device’s computing power, memory capacity,
and memory bandwidth. The RCT estimator (see Section 6)
estimates this impact of heterogeneity for the plan generator.
The profiling costs for the RCT estimator are minimal, only
a single batch run for a given combination of request group
and GPU device is needed. Hence, QLM does not require
significant training when adding new LLM models or GPU
devices into the serving cluster.

5

Algorithm 1 Request Group Creation
1: groups← kMeansClustering(requests)
2: for i← 1 to length(groups) do
3: if groups[i].size()> avg_batch_size×δ then
4: newGroups← groups[i].splitHal f ()
5: groups.append(newGroups)
6: end if
7: end for

4 Virtual Queues

In this section, we describe the concept of virtual queues
and the process of classifying LLM requests into request
groups and assigning request groups to virtual queues. QLM’s
virtual queues draw inspiration from virtual output queu-
ing (VOQ) [32, 47], a popular architecture used in network
switches to address head-of-line blocking.

Definition 4.1. Request Group: Each request group is a col-
lection of multiple requests that are relatively homogeneous,
i.e., sharing similar performance demand or requirement char-
acteristics. We identify that input/output token distributions,
model type, and SLO values are sufficient for the RCT esti-
mator (as explained in Section 6).

Definition 4.2. Virtual Queues: Each virtual queue is a se-
quence of request groups that denotes the relative order in
which requests will be served. There is a one-to-one mapping
between an LLM serving instance and a virtual queue.

By creating the abstraction of request groups and virtual
queues, the ordering of request groups in a virtual queue
allows QLM to configure actions for multiple downstream
LSOs to attain end-to-end latency SLOs for the LLM-serving
requests in a scalable manner (described in Section 5).
Request Group Creation. Request groups are created in two
steps: (i) clustering similar requests based on Def. 4.1, and
(ii) splitting large request groups. Algorithm 1 describes the
request group creation process. The parameters identified for
the request grouping include model types, input/output to-
ken distribution, and SLO values. Grouped requests based on
such parameters exhibit predictable request completion time
distribution (compared to that of each individual request) as
explained in Section 6. Additionally, we also limit the size of
each request group to a small multiple (δ) of batch size. We re-
fer the reader to Section 8.3 for the trade-off analysis between
overhead and decision-making granularity: (1) Larger request
groups would decrease the number of request groups and thus
the overhead of the plan generation; (2) However, restricting
the size of request groups is beneficial as it allows for more
fine-grained decisions. Since requests within a request group
are relatively homogeneous, QLM treats the ordering of the
requests within a group using a first-come-first-serve (FCFS)
policy.
Handling New Incoming Requests. As new requests join
the global queue, they are classified into the existing request

groups, and the RCT estimator calculation (Section 6) is trig-
gered to find out whether any SLOs are being violated. Upon
any SLO violation, the plan generator (Section 7) is called to
reorder the request groups in the virtual queues to maximize
SLO attainment given the current states (estimations).
Fault Tolerance in Queue Management. QLM only stores a
single replica of the requests and their metadata in the global
queue, which avoids the need to maintain consistency between
multiple queues. The global queue is implemented using a
distributed message queue broker such as RabbitMQ [40] that
provides the necessary replication, fault tolerance, and persis-
tence mechanisms. The data structure that implements virtual
queues records orderings of subsets of requests in the global
queue. These virtual queues are implemented as lightweight
data structures that maintain pointers or references to the
actual requests stored in the global queue. By using virtual
queues, QLM can achieve the following: (1) Fault Isolation:
If an LLM serving instance fails, only the corresponding vir-
tual queue is affected, and the remaining virtual queues can
continue processing requests without interruption. Request
groups from the lost virtual queue are assigned to other virtual
queues using the plan generator. (2) Consistency: Since the
actual requests are stored in the global queue, virtual queues
can be reconstructed or reassigned without compromising the
consistency of the request data.

5 LLM Serving Operations

The LLM serving instances serve requests from the corre-
sponding virtual queue and execute backend LSO actions
when necessary. The LSOs by themselves are merely action
actuators, and the intelligence required to configure when and
which action to set comes from the virtual queue ordering set
by the plan generator (as described in Section 7).

Fig. 7 shows the five basic LSOs that QLM currently sup-
ports. A QLM agent resident on each LLM serving instance
monitors the virtual queue ordering and converts it into LSO
actions. When the virtual queue state changes or new requests
are added, QLM agents initiate request pulling and load bal-
ancing. Similarly, when the head request group changes, the
QLM agent initiates request eviction or GPU-CPU state swap.
Model warm start is initiated by the QLM agent for models
at the head of the virtual queue. Each of these LSOs modifies
the internal state of the LLM serving instance, which includes
the running batch of requests, KV cache store, and model
weights. Below, we describe each of these LSOs in detail and
their action setup based on the virtual queue ordering.
Request Pulling (1 in Fig. 7). Request pulling refers to the
operation that dequeues the requests in the virtual queue us-
ing a pull-based model and adds it to the running batch, i.e.,
whenever the total tokens of the running batch are below the
GPU capacity, a pull signal is issued to retrieve a request from
the global queue. The exact pulled request is determined by
the request group at the head of the virtual queue. Within the

6

Request
Pulling

GPU Device &
Memory

CPU Memory &
Disk Storage

Model

GPU-CPU
State Swap

Model Warm
Start

Request
Eviction

KV Cache

Running
Batch

QLM Agent 1

KV Cache
Store

LLM Model
Registry

…

QLM Agent 2

ModelAgent 2
Virtual Queue

Agent 1
Virtual Queue

Load
Balancing

Figure 7: Basic LLM serving operations (LSOs) for an LLM-
serving instance that a QLM agent manages.

head request group, requests are ordered in an FCFS man-
ner, therefore the first request to join the head request group
would be the first to be dequeued from the virtual queue and
added to the GPU’s running batch. Note that request pulling
is insufficient to immediately serve a request with a low SLO
value (i.e., stricter SLO) because a pull operation to the virtual
queue can only happen if spare token capacity exists on the
GPU device (i.e., without head-of-line blocking).
Request Eviction (2 in Fig. 7). As request pulling by it-
self may not be sufficient to enable the immediate serving of
requests with low SLO values due to head-of-the-line block-
ing, QLM also supports request eviction. Request eviction is
invoked when the RCT estimator detects an SLO violation,
and the plan generator replaces an existing request group by
placing a request group at the head of the virtual queue. In
request eviction, requests of the head request group are pulled
into the running batch based on available capacity, and pre-
viously running requests are evicted (back) into the global
queue. As each request is evicted, it loses its KV cache, which
needs to be regenerated in the future. However, the regenera-
tion process is faster than the original prompt generation as
the output tokens generated so far are appended to the input
prompt to generate the remaining output tokens. Therefore,
the original prefill and multiple decode steps are replaced by
a single prefill step.
GPU-CPU State Swapping (3 in Fig. 7). Request evic-
tion requires repeating the prefill step when re-executing the
evicted requests, leading to repetitive and redundant compu-
tation. The prefill step could be costly for less powerful GPU
hardware or complicated model types. An alternative to re-
quest eviction is to migrate the KV cache of evicted requests
into the CPU memory. However, the GPU-to-CPU memory
bandwidth is typically at least 10× less than the GPU memory
bandwidth, and if the evicted request has a large KV cache, it
leads to significant transfer overhead and consequent perfor-
mance degradation. QLM hides this performance degradation
using the asynchronous GPU memory copy available in most
GPU programming libraries. As an alternative to request evic-
tion, GPU-CPU state swapping can also be invoked when the
head request group is updated.
Load Balancing (4 in Fig. 7). As each LLM serving in-
stance is associated with a separate virtual queue, the plan

generator’s assignment of request groups to a virtual queue
inherently performs load balancing. Each instance would only
pull from its associated virtual queue, thus ensuring the dis-
tribution of requests across all the serving instances. Note
that QLM does not implement preemptive load balancing,
i.e., once request groups start executing on an LLM serving
instance, they cannot be migrated to another instance.
Model Warm Start (5 in Fig. 7). Each LLM serving instance
can serve multiple models by switching the underlying model
weights and flushing out the KV cache. QLM assumes a two-
tier hierarchy of memory and disk storage. Therefore, any
model that needs to be served from the LLM model registry
(located in the storage) has to undergo two distinct swaps:
(1) Storage-CPU swapping: The model is first swapped from
the LLM model registry to CPU memory, and (2) CPU-GPU
swapping: The model located in the CPU memory is swapped
into GPU memory for inferencing. QLM is able to decide the
state of each model by checking the virtual queue order. The
model for the head request of the virtual queue is currently
active and should be placed in the GPU memory. Models
present later in the virtual queue are warm and placed in the
CPU memory until all the CPU memory is exhausted. The
remaining models (cold models) are not swapped out from
the LLM model registry (located in the storage).
LSO Implementation. We implement the abovementioned
LSOs on top of vLLM, a state-of-the-art LLM serving sys-
tem. QLM agents are responsible for triggering each LSO
action. Request pulling and load balancing are implemented
by async pull calls to the virtual queues when there is spare
token capacity on the LLM serving instance. Request evic-
tion and GPU-CPU state swapping require instrumentation to
the vLLM scheduler. In each iteration, the vLLM scheduler
attempts to generate a new token for all the running requests
and preempts any request that exceeds the total GPU capacity.
At the end of an iteration, QLM agent checks if either request
eviction or state swapping is required and performs the op-
eration. For both operations, current requests are removed
from the running batch to make space for the incoming re-
quests at the head of the virtual queue. For request eviction,
the scheduler only saves the output tokens generated, and for
state swapping, it uses an asynchronous GPU transfer of the
KV cache. Model swapping into the GPU is implemented
by changing the underlying model of the vLLM instance and
flushing out the KV cache.

6 Request Completion Time (RCT) Estimator

For requests within each request group, the RCT estimator
leverages a Bayesian statistical approach to generate probabil-
ity distributions of the completion times and waiting times. To
create such RCT estimator, we extend the estimator described
in Section 2.4 further by accounting for the variance per re-
quest in completion times. The process is explained below
with variable definitions listed in Table 1.

7

Table 1: Glossary of symbols used in the RCT estimator.

Symbol Description

Cq Completion time for a request q
Wq Request waiting time for a request q
P Prefill time for a request

Dq Total decode time for a request q
Oq Number of output tokens for a request q
Θ Token generation throughput
ε Inefficiency factor due to continuous batching
d Decode time per output token

As shown in Equation 1, the total completion time equals
the sum of the waiting time (Wq), prefill time (P), and total
decode time across all the output tokens (Dq) for a request q.

Cq =Wq +P+Dq (1)

Estimating Prefill Time. The prefill time P is typically con-
stant per model type as it is a highly parallel GPU-accelerated
operation whose time increases minimally as the number of
input tokens increases. Experiments show that the latency
increase from additional input tokens is 100× less compared
to the latency increase from each additional output token [2].
Therefore, the major distribution terms that still remain to be
estimated are the waiting time (Wq) and decode time (Dq).
Estimating Waiting Time. As token generation throughput
has a low variance due to continuous batching (characterized
in Insight #1 Section 2.4), we consider the token generation
throughput (Θ) to be constant throughout the token generation
process. Therefore, the total waiting time for a single request
can be represented by Equation 2 by dividing the number of
tokens ahead (∑q−1

i=1 Oi) in the queue by the token generation
throughput (Θ) where i denotes each of the q−1 requests in
the queue ahead of the request we model.

Wq =
q−1

∑
i=1

Oi

Θ
(2)

Note that we do not know the number of output tokens ahead
of time (that requires the knowledge of the output sequence
for all requests in the waiting queue), so we model them as a
normal distribution (as shown in Equation 3) with the mean
µo and standard deviation σo fitted from the offline dataset of
the request input-output history for the request group that the
request q belongs to.

Oq ∼ N(µo,σo) (3)

Estimating Decode Time. We compute the total decode time
using Equation 4.

Dq = Oq× ε×d (4)

If GPU memory was not a constraint, the decode steps would
not be interrupted, and the total decode time would simply be
the product of the number of output tokens (Oq) and decode
time per output token (d). However, LLM serving systems

Table 2: Glossary of symbols used in the stochastic program-
ming solver.

Symbol Description

g ∈G The g-th virtual queue (VQ) in all virtual queues G
i ∈ I The i-th request group (RG) in all request groups I

j Virtual queue position in [0,L−1] with queue length L
xg,i, j Binary decision variable for assignment of RG i to VQ g
ctg, j Request group completion time
mg, j The model assignment on the j-th position of VQ g
tg, j Binary variable for switching the model to serve on VQ g
S Swap time associated with loading a new model into GPU memory

slog, j SLO preservation rate serving the j-th model on VQ g
pg, j Penalty for SLO violation serving the j-th model on VQ g

cannot ensure this ideal behavior due to continuous batching.
As requests are added continuously (due to iteration-level
scheduling) to the GPU’s running batch, some requests in-
evitably exceed the total GPU memory capacity limit and have
to be temporarily preempted. This leads to inefficiency in the
generation process that we capture with the inefficiency fac-
tor ε, i.e., a constant multiplied by the decode time per token
that captures the inefficiency associated with the generation
process.

Finally, to estimate the completion time of the entire re-
quest group (Equation 5), we need to take the max of all the
completion times of individual requests.

C = max
q

Cq (5)

Offline Profiling. There are two independent profiling steps
required for the RCT estimator: (a) Workload Profiling: sam-
ples multiple requests from the workload to generate a distri-
bution for input and output tokens, and (b) Hardware Profiling:
requires running the model with a single batch of requests on
the specific GPU. Fixed variables associated with the model,
such as the prefill time (P), decode time per iteration (d), and
inefficiency factor (ε), are obtained during hardware profiling
by logging metrics from the LLM serving instance.

7 Plan Generator

The plan generator is invoked by the RCT estimator when an
SLO violation is likely to occur. Upon invocation, the plan
generator runs a stochastic programming model to reorder the
virtual queues that decide underlying LSO actions to max-
imize SLO attainment. Details on how the queue ordering
leads to the selection and actuation of LSO actions in each
LLM serving instance are defined in Section 5. The plan gen-
erator uses a stochastic program solver because it: (a) allows
handling non-determinism by representing request group com-
pletion times as distributions, and (b) offers a systematic way
to model various constraints associated with SLOs, model
swapping times, and hardware heterogeneity. In this section,
we present the stochastic programming model with its defined
variables listed in Table 2.
Overall Modeling Approach. The goal of the stochastic pro-
gramming solver is to find an assignment of request groups

8

to the virtual queues so that all SLOs are met. To model SLO
attainment, we define a penalty term for each request group,
which is the difference between completion time and SLO
value. If SLOs are met, all penalty terms would be smaller
than 0. Given the SLOs as the inputs to the stochastic pro-
gramming model, we obtain the request group completion
time estimation from the RCT estimator (see Section 6) to
estimate the defined penalty terms. The completion time for
a request group is the sum of the waiting time for request
groups ahead in the virtual queue (from Equation 2), the com-
pletion time for the request group (from Equation 5), and
swap times associated with transferring model weights into
GPU memory. 2 Note that effects associated with hardware
and model heterogeneity (such as token throughput and evic-
tion vs. swap) that impact request group completion time are
captured by the RCT estimator profiling.
Mathematical Definitions of Constraints. Now, we describe
each of the constraints mathematically in further detail. We as-
sume that each virtual queue can have a maximum length, and
every request group is assigned to one of the positions in the
virtual queue. Equation 6 models request group assignment
to a position in the virtual queue.

∑
g

∑
j

xg,i, j = 1∀i ∑
i

xg,i, j = 1∀g, j (6)

Each request group has a one-to-one mapping with a position
in a virtual queue. If there are empty positions, we assign
them “empty” request groups to match request groups and
virtual queue capacity.

Each position in the virtual queue would have a correspond-
ing model and SLO based on Equation 6. This assignment is
captured with Equation 7 and Equation 8.

mg, j = ∑
i

modelsi× xg,i, j∀g, j (7)

slog, j = ∑
i

slosi× xg,i, j∀g, j (8)

The transition between two different models is captured in
Equation 9. While inequalities cannot be directly modeled as
constraints, we apply the standard big-M method to reduce it
further [7].

tg, j = (mg, j−1 ̸= mg, j)∀g, j (9)

The cumulative completion times of all positions in the
virtual queue would be the sum of waiting time, completion
times, and swap times as represented in Equation 10. We
assume a constant conservative estimate of swap time, but
this can be further improved in future work.

ctg, j = ∑
i

j−1

∑
k

Wg,i× xg,i,k +
j−1

∑
k

tg,k×S+∑
i

Cg,i× xg,i, j∀g, j

(10)

2We measure swap times from model load time profiling.

Note that completion times are a stochastic variable as group
completion times Cg,i are represented with a probability dis-
tribution (i.e., C from Equation 5).

The penalty for completion times would simply be the
difference between the completion time and the SLO value,
as shown in Equation 11.

pg, j = ctg, j− slog, j∀g, j (11)

The final constraint is that all penalty values should be less
than 0 (i.e., all SLOs are satisfied) with a high probability.

P(pg, j ≤ 0)> ∆∀g, j (12)

Optimization Goal. The stochastic programming model aims
to minimize the total penalty for SLO violations.

min(∑
g

∑
j

E[pg, j]) (13)

8 Evaluation

Our experiments address the following research questions:
(a) QLM performance with respect to SLO attainment and

request throughput in multi-model serving (Section 8.1)
and single-model serving (Section 8.2),

(b) Contribution of each LSO to QLM performance,
(c) Accuracy of the RCT estimator in request completion

time estimation on production LLM serving traces,
(d) Robustness analysis of QLM to hardware heterogeneity,

token distributions, burstiness, and request group size
regarding LLM-serving performance (Section 8.3), and

(e) Overhead of using QLM with increasing queue sizes.
Experiment Setup. We evaluate QLM on multiple varying-
sized open-source LLMs: Mistral-7B [19], Vicuna-13B [5],
and Llama-70B [50]. Our test cluster consists of 80–100
GPUs of two types: NVIDIA A10 (24 GB memory) and
NVIDIA A100 (80 GB memory). The setup represents both
model and device heterogeneity. To evaluate the benefit of
QLM, we consider the following three baseline mechanisms:
(1) EDF (Earliest Deadline First): Requests are sorted by
their SLO values such that requests with the smallest SLO
values are at the front of the virtual queue, (2) vLLM [21]: Re-
quests use the default first-come-first-serve (FCFS) scheduler
in vLLM, and (3) SHEPHERD [60]: Requests use dynamic
batching and an ILP formulation for ordering and placement.
Note that SHEPHERD cannot be easily extended to work
with continuous batching as the LP formulation assumes fixed
batches with deterministic execution times.
Workloads. We consider the following four workloads that
are derived from the requirements of a production cloud ser-
vice provider: [WA] (Multi-Model) Requests to different
models arrive at the queue, and the number of served mod-
els is larger than the number of corresponding LLM serving
instances. Consequently, more than one model needs to be

9

0.2 0.5 1

Tail Model Arrival Rate
wrt to Prod Requirement (Norm)

1

2

3

4

5

R
eq

u
es

t
T

h
ro

u
g

h
p

u
t

(N
or

m
.)

SHEPHERD
vLLM

EDF
QLM

Figure 8: Multi-model request serving
throughput .

0.05 0.1 0.2 0.8 0.9 1.0

Latency-sensitive Request
Arrival Rate (Norm)

0

25

50

75

100

S
L

O
s

M
et

(%
)

EDF

SHEPHERD

vLLM

QLM

QLM (with Scaling)

Figure 9: Multi-model SLO satisfaction.

Throughput SLO

0

50

100

R
el

at
iv

e
P

er
fo

rm
an

ce

GPU-CPU Swapping
Pulling-Eviction
Load Balancing

Model Warm Start
QLM

Figure 10: Multi-model LSO ablation
study.

multiplexed on the same LLM serving instance. Additionally,
based on our insights from production request patterns, we
assume that > 50% of models are “tail models”, i.e., they are
not used often and only occasionally need to be swapped in
place of the frequently used models. Each request type has var-
ied SLO requirements based on the downstream application
requirements. For example, latency-sensitive services have
a completion time SLO <30s, and batch jobs have SLOs in
the order of several minutes. While our choice of SLO values
is motivated by production requirements, we also provide ro-
bustness analysis for alternative SLO values in Appendix A.1.
[WB] (Single-Model) Requests to a single model arrive at
the request queue, and no model swapping is required. Sim-
ilar to WA, these requests have multiple SLOs dependent on
the underlying application. [WC] (MegaPrompt) The request
workload consists of several “mega prompts” in addition to
the workload from WA. These mega prompts have a large
number of input and output tokens that occupy a large per-
centage of GPU memory and potentially prevent requests in
the waiting queue from executing.

8.1 Multi-Model Evaluation
We run workload WA to evaluate the multi-model LLM serving
performance on A100 GPUs with respect to request through-
put and end-to-end latency SLO satisfaction. Additionally, we
also provide an ablation study to understand the contribution
of each LSO to the overall QLM performance.
Request Throughput and SLO Attainment. Figure 8 shows
the request throughput (i.e., requests served per second) for
WA comparing QLM with the baseline mechanisms for vary-
ing percentage of tail model arrival rates (normalized to peak
tail model demand). QLM provides up to 3–4× higher through-
put due to the following factors: (1) The use of request groups
minimizes repeated swapping required as the model would
only be swapped in once per request group instead of per
individual request, and (2) The plan generator couples ev-
ery tail model with another frequently accessed model to
minimize swaps while maintaining an equal distribution of

queue sizes. The improvement in request throughput directly
maximizes the percentage of SLO satisfied for all requests.
Figure 9 shows the percentage of SLO satisfied for the latency-
sensitive services against the percentage of their occurrence
in the whole serving workload. When these latency-sensitive
services constitute less than 5% of the request queue, QLM
satisfies more than 90% of all SLO values. As the relative
percentage of latency-sensitive service requests increases, no
combination of requests would be able to meet all SLOs, and
the plan generator would fail to return a solution. In such
a scenario, a scale-up action is required to add more GPU
devices. We perform this scale-up action to enable 100% SLO
attainment if the current GPU capacity is insufficient. The
baselines perform worse compared to QLM because none of
them consider the impact of model swapping. Other limita-
tions of the baselines are discussed in Section 8.2.
Contribution of Each LSO. Each of the five LSOs used
by QLM, including request pulling/eviction, GPU-CPU state
swapping, model warm start, and load balancing, contributes
to either the latency and/or the throughput of the serving
system. Figure 10 shows the impact of removing each LSO
on QLM performance for WA. The model warm start LSO
contributes the most to QLM performance for both SLOs and
throughput, as multiple models need to be multiplexed on the
same LLM serving instance. Additionally, the other LSOs
contribute primarily to the latency SLO attainment.

8.2 Single-Model Evaluation
We run workload WB on A100 GPUs to evaluate the single-
model LLM serving performance regarding the request
throughput, SLO attainment, and LSO contribution ablation
study (similar to the multi-model evaluation in Section 8.1).
Request Throughput and SLO Attainment. Figure 12
shows the percentage of SLOs that are satisfied by QLM
and the baseline systems. Similar to the multi-model case,
we find that when the queue primarily consists of latency-
sensitive services, none of the systems can satisfy the SLOs.
This is because the minimum serving time is much longer

10

Llama-70B

Mist
ral-7

B

Vicuna-13B

1

2

R
eq

u
es

t
T

h
ro

u
g

h
p

u
t

(N
or

m
.)

SHEPHERD

vLLM

EDF

QLM

Figure 11: Single model request serving
throughput.

0.05 0.1 0.2 0.8 0.9 1.0

Latency-sensitive Request
Arrival Rate (Norm)

0

25

50

75

100

S
L

O
s

M
et

(%
)

EDF

SHEPHERD

vLLM

QLM

QLM (with Scaling)

Figure 12: Single model SLO satisfac-
tion.

Throughput SLO

0

50

100

R
el

at
iv

e
P

er
fo

rm
an

ce

GPU-CPU Swapping
Pulling-Eviction
Load Balancing

Model Warm Start
QLM

Figure 13: Single model LSO ablation
study.

0 20 50 80 100

A10 GPU (%)

50

100

S
L

O
M

et
(%

)

Round Robin QLM

Figure 14: Impact of hardware hetero-
geneity.

0.5 1.0

Mega Prompt Arrival Rate
wrt to Prod Requirement (Norm)

50

75

100

S
L

O
M

et
(%

)

Round Robin QLM

Figure 15: Impact of mega prompt ar-
rivals.

0 4 8 12

Queue Size (k)

0

25

50

75

100

S
L

O
s

M
et

(%
)

SHEPHERD vLLM EDF QLM

Figure 16: Impact of increasing queue
size on SLO satisfaction.

than the specified SLO. As the number of latency-sensitive
service requests decreases, QLM performs the best in satisfy-
ing the maximum number of SLOs. Specifically, it performs
better than the baseline mechanisms because: (a) Compared
to vLLM, QLM is able to move latency-sensitive service
requests ahead in the queue, (b) Compared to EDF, QLM
enables appropriate selection between GPU-CPU state swap-
ping and request eviction LSOs, and (c) Compared to SHEP-
HERD, QLM uses continuous batching as opposed to static
batch size and models the auto-regressive LLM nature with
the RCT estimator to increase request throughput. We find
that the advantages of QLM with respect to smart selection
among various LSOs, continuous batching, and appropriate
request prioritization help with improving request through-
put. Figure 11 shows the request throughput for QLM and
the individual baseline mechanisms. QLM achieves higher
throughput, i.e., 20% higher compared to vLLM and EDF,
and 50% higher than SHEPHERD.
Contribution of Each LSO. Figure 13 shows the impact of
removing each LSO considered by the backend LLM serving
instance in QLM. Scheduling and request eviction contribute
significantly to latency reduction for latency-sensitive services
and consequently increase the number of SLOs met. GPU-
CPU state swap increases request throughput by swapping the
KV cache into CPU memory. Finally, model swapping has no
impact on this workload as a single model is being served.

8.3 QLM Robustness Analysis

Hardware Heterogeneity. We run WA on a mix of A10 and
A100 GPUs to evaluate the robustness of QLM performance
in heterogeneous hardware setup. Figure 14 shows request
throughput when the cluster has varying ratios of A10 to
A100 GPUs. The A10 is a lower-end GPU with ∼3× lower
GPU memory and thus is only capable of serving a much
lower request throughput compared to the A100 GPU. QLM
takes into account this difference between request throughput
across GPUs via the RCT estimator with offline profiling, and
the plan generator proportionally assigns a lower number of
requests to the A10 GPU compared to the A100. On the other
hand, if we use a round-robin policy for request assignment to
the LLM serving instances (while using default QLM policy
per instance), the load would be distributed equally, leading
to higher queue drain times for the A10 GPU. Additionally,
we also observe that the benefit of QLM is more compared
to a random policy when the heterogeneity of the cluster is
higher. When the A10 GPUs constitute 20–50% of the cluster
(more heterogeneous), the improvement of QLM over random
policy is 2–5× higher compared to a 100% A10 or 100% A100
composition (more homogeneous).
Mega Prompt Workload. The RCT estimator of QLM takes
into account input and output token distribution when estimat-
ing the request completion time. Consequently, when there

11

0 500

Estim. Completion Time (Norm)

0

500

1000

A
ct

u
al

R
eq

u
es

t
C

o
m

p
le

ti
o

n
T

im
e

(N
or

m
)

A100,13B
4xA100,70B

A100,7B

Figure 17: Accuracy of RCT estimator.

1 2 4 8 16

δ : Request Group Size/Batch Size

1.0

1.5

P
er

fo
rm

an
ce

D
eg

ra
d

at
io

n
(N

or
m

.)

Performance Degradation Overhead

5

10

15

O
ve

rh
ea

d
(N

or
m

.)

Figure 18: Impact of request group size
on QLM performance.

104 106

Queue Size (Requests)

10−2

10−1

100

101

O
ve

rh
ea

d
(s

)

A10,7B

A100,7B

A100,13B

4xA100,70B

Figure 19: QLM Overhead.

are distinct token distributions, such as in workload setup
WC, QLM is able to load balance them intelligently across
LLM serving instances to minimize the queue drain time. For
example, in workload WC, the “mega prompts” use a large
number of tokens, and their KV cache occupies the entire
GPU memory, causing head-of-the-line blocking for the regu-
lar requests in the queue. The optimal policy, as identified by
QLM, in such a scenario would be to allocate all the regular
requests to another LLM serving instance. Note that request
eviction is not an option if all SLOs are tight. Figure 15 shows
the benefit of QLM for workload WC. The relative benefit of
QLM is highest for a few mega prompts because the regular
requests can be moved to another GPU. As the percentage of
mega prompts increases, there is no option but to assign them
to different LLM serving instances, causing inevitable HOL
blocking, and the benefit of QLM reduces. In such a case, we
would need to perform a scale-up action and add more GPU
devices to the cluster to continue maintaining SLOs.

Varying Queue Size and Burstiness. The benefit of QLM is
largely present when the queue size is large, and intelligent
decision-making is required for setting LSO actions. Thus,
to show the benefit of QLM under varying queue sizes, we
vary the arrival rates of requests in WB to create a large queue
and compare it against the baseline systems as shown in Fig-
ure 16. When the queue size is 0, QLM offers no benefit in
maintaining SLOs as compared to the baseline approaches
because the system is underutilized and does not require any
smart decision-making. However, as the queue size increases,
the percentage of SLOs met by the baseline systems keeps
dropping due to reasons described in Section 8.2, while QLM
is able to maintain a high SLO satisfaction percentage.

RCT Estimator Accuracy. The RCT estimator calculates
the request completion time based on initial profiling of the
model and hardware setup. This initial profiling time is neg-
ligible as only a single batch of requests need to be run on
the GPU. As described in Section 6, QLM does not assume
that the exact output tokens are known ahead of time, but
instead uses the workload output token distribution. Figure 17

shows the estimated request completion time vs. the actual
request completion time for the RCT estimator across differ-
ent models and hardware configurations. Overall, we find that
the RCT estimator has a high accuracy in estimating request
completion times with an R2 (coefficient of determination)
value of 0.99 (out of 1.0). While the RCT estimator is highly
accurate in estimating request completion time, it is not per-
fect. There could be requests with an outlier number of output
tokens, leading to underestimation and potential SLO viola-
tions. However, current LLM serving systems typically have a
hard limit on the maximum number of output tokens [21, 36],
which eliminates the presence of these outliers.

Impact of Request Group Size. QLM sets the request group
size as a multiple (δ) of the average batch size. The exact δ

value depends on the acceptable trade-off between the over-
head of running the plan generator and the granularity of
decision-making. As δ becomes smaller, QLM achieves a
finer granularity of decision-making, leading to improved per-
formance. However, the overhead leads to delayed decision-
making. Figure 18 demonstrates this tradeoff between perfor-
mance degradation (caused by changing granularity in deci-
sion making) and overhead of the plan generator when varying
δ. At δ = 16, the overhead is smallest, but decision-making
granularity is coarse, leading to sub-optimal decisions (such
as imbalance between virtual queue sizes of LLM serving
instances). In contrast, at δ = 1, the performance degradation
is minimal, but overhead is much higher. We choose δ = 4, as
it results in nearly zero performance degradation, compared
to δ = 1, while maintaining a low overhead.

Scalability and Overhead. The overhead of QLM largely
depends on the time required to solve the stochastic pro-
gramming formulation required by the plan generation. In
Figure 19, we show the time required to solve for the plan
generator with varying queue sizes in terms of the number
of requests. As the basic unit of the solver is a single request
group, the model and GPU configurations with a larger re-
quest group size would be able to handle a much larger queue
size for the same overhead. Consequently, configurations with

12

a large request group size, such as an A100 with a 7B model,
can handle a maximum queue size of 400K requests at a 5s
overhead per request group (i.e., 5 ms per request).

9 Related Work

General ML Model-Serving Systems. Traditional model-
serving systems provide functionalities such as schedul-
ing, placement, batching, and autoscaling. Clipper [9],
TensorFlow-Serving [35], MArk [59], InferLine [8], Shep-
herd [60], and Clockwork [16] are some earlier work on serv-
ing traditional ML models like ResNet that are relatively
small. INFaaS [41] and Cocktail [17] propose a model-less
serving framework to automate the model selection and au-
toscaling to meet SLOs. However, they fail to consider the au-
toregressive property of LLMs. On the other hand, advanced
autoscaling techniques are complementary to QLM.
LLM Scheduling Optimization. Existing state-of-the-art
LLM serving systems [21,49,51,57] adopts continuous batch-
ing and a first-come-first-serve (FCFS) scheduling policy
that suffers from head-of-line (HOL) blocking, which we ad-
dress in QLM. FastServe [55] proposes preemptive schedul-
ing with a Multi-Level Feedback Queue. Andes [27] defines
Quality-of-Experience (QoE) for LLM serving as token de-
livery speed, and proposes a preemptive scheduler that maxi-
mizes QoE. QLM is the first queue management framework
that optimizes end-to-end latency SLO attainment while im-
proving LLM-serving throughput and device utilization by
systematically orchestrating backend LSOs.
LLM Serving Backend Optimization. Various LLM serv-
ing backend optimization techniques have been proposed
to improve token generation throughput and memory cost
while adapting to fine-tuning paradigms such StreamingLLM,
Speculative Decoding, ChunkedAttention, FlashAttention and
more [1, 11, 13, 23, 26, 28, 29, 33, 36, 44, 45, 61, 63, 64]. These
backend LLM-serving optimizations are complementary to
QLM as the LLM serving instance (see Def. 2.3), and their
impact on token generation throughput can be captured with
profiling for the RCT Estimator (see Section 6).

10 Conclusion

We presented QLM, a novel queue management framework
that orchestrates backend LSOs for SLO-oriented LLM serv-
ing. Evaluation using real-world LLM serving datasets on
heterogeneous model types and GPU devices demonstrate
that QLM improves end-to-end latency SLO attainment by
40–90% while improving serving throughput and device uti-
lization by 20-400%. We further discuss extensions to QLM
in Appendix A.3.

References

[1] Reyna Abhyankar, Zijian He, Vikranth Srivatsa, Hao
Zhang, and Yiying Zhang. APIServe: Efficient API
support for large-language model inferencing. arXiv
preprint arXiv:2402.01869, 2024.

[2] Reproducible performance metrics for llm infer-
ence. https://www.anyscale.com/blog/reproducible-
performance-metrics-for-llm-inference. Accessed:
2024/04/10.

[3] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S Bern-
stein, Jeannette Bohg, Antoine Bosselut, Emma Brun-
skill, et al. On the opportunities and risks of foundation
models. arXiv preprint arXiv:2108.07258, 2021.

[4] Shuang Chen, Christina Delimitrou, and José F Martínez.
Parties: QoS-aware resource partitioning for multiple
interactive services. In Proceedings of the 24th Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS
2019), pages 107–120, 2019.

[5] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Sto-
ica, and Eric P. Xing. Vicuna: An open-source chatbot
impressing GPT-4 with 90% ChatGPT quality, March
2023.

[6] Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse
Park, Youngjin Kwon, and Jaehyuk Huh. Serving hetero-
geneous machine learning models on multi-GPU servers
with spatio-temporal sharing. In 2022 USENIX Annual
Technical Conference (USENIX ATC 2022), pages 199–
216, 2022.

[7] Marco Cococcioni and Lorenzo Fiaschi. The big-m
method with the numerical infinite m. Optimization
Letters, 15(7):2455–2468, 2021.

[8] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey
Zumar, Ion Stoica, Joseph Gonzalez, and Alexey Tu-
manov. InferLine: Latency-aware provisioning and scal-
ing for prediction serving pipelines. In Proceedings of
the 11th ACM Symposium on Cloud Computing, page
477–491, New York, NY, USA, 2020. Association for
Computing Machinery.

[9] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J
Franklin, Joseph E Gonzalez, and Ion Stoica. Clipper:
A low-latency online prediction serving system. In Pro-
ceedings of the 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 2017), pages
613–627, 2017.

13

https://www.anyscale.com/blog/reproducible-performance-metrics-for-llm-inference
https://www.anyscale.com/blog/reproducible-performance-metrics-for-llm-inference

[10] LLM inference performance engineering: Best prac-
tices. https://www.databricks.com/blog/llm-inference-
performance-engineering-best-practices. Accessed:
2024/04/10.

[11] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou.
TurboTransformers: An efficient GPU serving system
for transformer models. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP 2021), pages 389–402,
2021.

[12] Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian
Brabete, Dmitrii Ustiugov, Yuvraj Patel, and Luo Mai.
ServerlessLLM: Locality-enhanced serverless inference
for large language models, 2024.

[13] Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Ji-
awei Han, and Jianfeng Gao. Model tells you what
to discard: Adaptive kv cache compression for LLMs,
2024.

[14] Ulrich Gnewuch, Stefan Morana, Marc TP Adam, and
Alexander Maedche. Opposing effects of response time
in human–chatbot interaction: the moderating role of
prior experience. Business & Information Systems Engi-
neering, 64(6):773–791, 2022.

[15] Tyler Griggs, Xiaoxuan Liu, Jiaxiang Yu, Doyoung
Kim, Wei-Lin Chiang, Alvin Cheung, and Ion Stoica.
Mȩlange: Cost efficient large language model serv-
ing by exploiting GPU heterogeneity. arXiv preprint
arXiv:2404.14527, 2024.

[16] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,
Antoine Kaufmann, Ymir Vigfusson, and Jonathan
Mace. Serving DNNs like clockwork: Performance
predictability from the bottom up. In Proceedings of
the 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 2020), pages 443–462,
2020.

[17] Jashwant Raj Gunasekaran, Cyan Subhra Mishra,
Prashanth Thinakaran, Bikash Sharma, Mahmut Taylan
Kandemir, and Chita R Das. Cocktail: A multidimen-
sional optimization for model serving in cloud. In Pro-
ceedings of the 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 2022), pages
1041–1057, 2022.

[18] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. LoRA: Low-rank adaptation of large language
models. arXiv preprint arXiv:2106.09685, 2021.

[19] Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego

de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. Mistral 7B. arXiv
preprint arXiv:2310.06825, 2023.

[20] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,
Shravan Matthur Narayanamurthy, Alexey Tumanov,
Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru
Krishnan, Janardhan Kulkarni, et al. Morpheus: Towards
automated SLO for enterprise clusters. In Proceedings
of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2016), pages 117–
134, 2016.

[21] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez,
Hao Zhang, and Ion Stoica. Efficient memory man-
agement for large language model serving with Page-
dAttention. In Proceedings of the 29th Symposium on
Operating Systems Principles (SOSP 2023), pages 611–
626, 2023.

[22] Matthew LeMay, Shijian Li, and Tian Guo. Perseus:
Characterizing performance and cost of multi-tenant
serving for CNN models. In 2020 IEEE International
Conference on Cloud Engineering (IC2E 2020), pages
66–72. IEEE, 2020.

[23] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast
inference from transformers via speculative decoding.
In Proceedings of the 40th International Conference on
Machine Learning (ICML 2023), pages 19274–19286.
PMLR, 2023.

[24] Suyi Li, Hanfeng Lu, Tianyuan Wu, Minchen Yu,
Qizhen Weng, Xusheng Chen, Yizhou Shan, Binhang
Yuan, and Wei Wang. CaraServe: CPU-assisted and
rank-aware LoRA serving for generative LLM infer-
ence. arXiv preprint arXiv:2401.11240, 2024.

[25] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent
Liu, Ying Sheng, Xin Jin, Yanping Huang, Zhifeng Chen,
Hao Zhang, Joseph E Gonzalez, et al. AlpaServe: Sta-
tistical multiplexing with model parallelism for deep
learning serving. In Proceedings of the 17th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 2023), pages 663–679, 2023.

[26] Pierre Lienhart. LLM inference series: 4. KV caching, a
deeper look. https://medium.com/@plienhar/llm-
inference-series-4-kv-caching-a-deeper-look-
4ba9a77746c8 (Accessed on 04/10/2024).

[27] Jiachen Liu, Zhiyu Wu, Jae-Won Chung, Fan Lai,
Myungjin Lee, and Mosharaf Chowdhury. An-
des: Defining and enhancing quality-of-experience in
LLM-based text streaming services. arXiv preprint
arXiv:2404.16283, 2024.

14

https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices
https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices
https://medium.com/@plienhar/llm-inference-series-4-kv-caching-a-deeper-look-4ba9a77746c8
https://medium.com/@plienhar/llm-inference-series-4-kv-caching-a-deeper-look-4ba9a77746c8
https://medium.com/@plienhar/llm-inference-series-4-kv-caching-a-deeper-look-4ba9a77746c8

[28] Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyrillidis,
and Anshumali Shrivastava. Scissorhands: Exploiting
the persistence of importance hypothesis for LLM KV
cache compression at test time, 2023.

[29] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. DejaVu: Contex-
tual sparsity for efficient LLMs at inference time. In
Proceedings of the 40th International Conference on
Machine Learning (ICML 2023), pages 22137–22176.
PMLR, 2023.

[30] Azure LLM inference services. https://learn.
microsoft.com/en-us/azure/machine-learning/concept-
endpoints?view=azureml-api-2. Accessed: 2024/04/10.

[31] Google LLM inference services. https://cloud.google.
com/dialogflow/pricing#dialogflow-pricing. Accessed:
2024/04/10.

[32] Nick McKeown, Martin Izzard, Adisak Mekkittikul,
William Ellersick, and Mark Horowitz. Tiny Tera: a
packet switch core. IEEE Micro, 17(1):26–33, 1997.

[33] Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi,
Dahua Lin, Bin Cui, and Zhihao Jia. SpotServe: Serv-
ing generative large language models on preemptible
instances. arXiv preprint arXiv:2311.15566, 2023.

[34] Nvidia multi-instance GPU. https://www.nvidia.com/
en-us/technologies/multi-instance-gpu/. Accessed:
2024/04/10.

[35] Christopher Olston, Fangwei Li, Jeremiah Harmsen, Jor-
dan Soyke, Kiril Gorovoy, Li Lao, Noah Fiedel, Sukriti
Ramesh, and Vinu Rajashekhar. TensorFlow-Serving:
Flexible, high-performance ML serving. In Workshop
on ML Systems at NIPS 2017, 2017.

[36] Pratyush Patel, Esha Choukse, Chaojie Zhang, Íñigo
Goiri, Aashaka Shah, Saeed Maleki, and Ricardo Bian-
chini. Splitwise: Efficient generative LLM inference
using phase splitting, 2023.

[37] Haoran Qiu, Subho S Banerjee, Saurabh Jha, Zbigniew T
Kalbarczyk, and Ravishankar K Iyer. FIRM: An intelli-
gent fine-grained resource management framework for
SLO-oriented microservices. In Proceedings of The
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2020), 2020.

[38] Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui,
Saurabh Jha, Chen Wang, Hubertus Franke, Zbigniew T.
Kalbarczyk, Tamer Başar, and Ravishankar K. Iyer. Ef-
ficient interactive LLM serving with proxy model-based
sequence length prediction. In The 5th International

Workshop on Cloud Intelligence / AIOps at ASPLOS
2024, volume 5, pages 1–7, San Diego, CA, USA, 2024.
Association for Computing Machinery.

[39] Haoran Qiu, Weichao Mao, Archit Patke, Shengkun
Cui, Saurabh Jha, Chen Wang, Hubertus Franke, Zbig-
niew T Kalbarczyk, Tamer Başar, and Ravishankar K
Iyer. Power-aware deep learning model serving with
µ-serve. In Proceedings of the 2024 USENIX Annual
Technical Conference (USENIX ATC 2024), 2024.

[40] RabbitMQ. https://www.rabbitmq.com/.

[41] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and
Christos Kozyrakis. INFaaS: Automated model-less
inference serving. In Proceedings of 2021 USENIX
Annual Technical Conference (ATC 2021), pages 397–
411, 2021.

[42] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu
Liu, Tal Remez, Jérémy Rapin, et al. Code llama:
Open foundation models for code. arXiv preprint
arXiv:2308.12950, 2023.

[43] ShareGPT dataset. https://huggingface.co/datasets/
anon8231489123/ShareGPT_Vicuna_unfiltered.

[44] Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper,
Nicholas Lee, Shuo Yang, Christopher Chou, Banghua
Zhu, Lianmin Zheng, Kurt Keutzer, Joseph E. Gonzalez,
and Ion Stoica. S-LoRA: Serving thousands of concur-
rent LoRA adapters, 2023.

[45] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo-
pher Ré, Ion Stoica, and Ce Zhang. FlexGen: High-
throughput generative inference of large language mod-
els with a single GPU. In Proceedings of the 40th In-
ternational Conference on Machine Learning (ICML
2023), pages 31094–31116. PMLR, 2023.

[46] Foteini Strati, Sara Mcallister, Amar Phanishayee, Jakub
Tarnawski, and Ana Klimovic. DéjàVu: KV-cache
streaming for fast, fault-tolerant generative LLM serv-
ing, 2024.

[47] Yuval Tamir and Gregory L Frazier. High-
performance multi-queue buffers for VLSI communica-
tions switches. ACM SIGARCH Computer Architecture
News, 16(2):343–354, 1988.

[48] TensorRT-LLM. https://github.com/NVIDIA/TensorRT-
LLM. Accessed: 2024-04-10.

[49] Text Generation Inference. https://github.com/
huggingface/text-generation-inference. Accessed: 2024-
04-10.

15

https://learn.microsoft.com/en-us/azure/machine-learning/concept-endpoints?view=azureml-api-2
https://learn.microsoft.com/en-us/azure/machine-learning/concept-endpoints?view=azureml-api-2
https://learn.microsoft.com/en-us/azure/machine-learning/concept-endpoints?view=azureml-api-2
https://cloud.google.com/dialogflow/pricing#dialogflow-pricing
https://cloud.google.com/dialogflow/pricing#dialogflow-pricing
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.rabbitmq.com/
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference

[50] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
et al. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

[51] Nvidia Triton Inference Server. https://developer.nvidia.
com/triton-inference-server. Accessed: 2024-04-10.

[52] Tobias Viernickel, Alexander Froemmgen, Amr Rizk,
Boris Koldehofe, and Ralf Steinmetz. Multipath QUIC:
A deployable multipath transport protocol. In 2018
IEEE International Conference on Communications
(ICC 2018), pages 1–7. IEEE, 2018.

[53] Yuxin Wang, Yuhan Chen, Zeyu Li, Zhenheng Tang,
Rui Guo, Xin Wang, Qiang Wang, Amelie Chi Zhou,
and Xiaowen Chu. Towards efficient and reliable LLM
serving: A real-world workload study, 2024.

[54] Bingyang Wu, Shengyu Liu, Yinmin Zhong, Peng Sun,
Xuanzhe Liu, and Xin Jin. LoongServe: Efficiently
serving long-context large language models with elastic
sequence parallelism. arXiv preprint arXiv:2404.09526,
2024.

[55] Bingyang Wu, Yinmin Zhong, Zili Zhang, Gang Huang,
Xuanzhe Liu, and Xin Jin. Fast distributed inference
serving for large language models. arXiv preprint
arXiv:2305.05920, 2023.

[56] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang, Xi-
aoyun Zhang, and Chi Wang. AutoGen: Enabling
next-gen LLM applications via multi-agent conversation
framework. arXiv preprint arXiv:2308.08155, 2023.

[57] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. Orca: A distributed
serving system for Transformer-based generative mod-
els. In Proceedings of the 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
2022), pages 521–538, 2022.

[58] Matei Zaharia, Omar Khattab, Lingjiao Chen,
Jared Quincy Davis, Heather Miller, Chris
Potts, James Zou, Michael Carbin, Jonathan
Frankle, Naveen Rao, and Ali Ghodsi. The
shift from models to compound AI systems.
https://bair.berkeley.edu/blog/2024/02/18/compound-
ai-systems/, 2024.

[59] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng
Yan. MArk: Exploiting cloud services for cost-effective,
SLO-aware machine learning inference serving. In Pro-
ceedings of 2019 USENIX Annual Technical Conference
(ATC 2019), pages 1049–1062, 2019.

[60] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and
Ion Stoica. Shepherd: Serving DNNs in the wild. In Pro-
ceedings of the 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 2023), pages
787–808, 2023.

[61] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong
Tian, Christopher Ré, Clark Barrett, Zhangyang Wang,
and Beidi Chen. H2O: Heavy-hitter oracle for efficient
generative inference of large language models, 2023.

[62] Juntao Zhao, Borui Wan, Yanghua Peng, Haibin Lin,
and Chuan Wu. LLM-PQ: Serving LLM on heteroge-
neous clusters with phase-aware partition and adaptive
quantization. arXiv preprint arXiv:2403.01136, 2024.

[63] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu,
Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang. Dist-
Serve: Disaggregating prefill and decoding for goodput-
optimized large language model serving, 2024.

[64] Lei Zhu, Xinjiang Wang, Wayne Zhang, and Rynson
W. H. Lau. RelayAttention for efficient large language
model serving with long system prompts, 2024.

16

https://developer.nvidia.com/triton-inference-server
https://developer.nvidia.com/triton-inference-server
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

A Appendix

A.1 Sensitivity Analysis on SLO Values
In Section 8, we configure SLO values that are derived from
our production system requirements. To further explore the
choice of SLO value on serving performance, we conduct a
sensitivity study by varying the SLO values and showing the
impact on the performance of QLM and other baselines for
WA. Figure 20 shows the impact of increasing the SLO scale
(i.e., the ratio of SLO value to original SLO requirement) on
SLO satisfaction across requests. As SLOs are relaxed, more
baselines are able to meet all SLOs. For example, Earliest
Deadline First (EDF) and SHPEHERD are the first to be able
to meet all SLOs, when the SLO value is relaxed to 3× and
5× the original SLO value, respectively. This is expected as
both of these mechanisms have an inherent notion of request
ordering based on SLO values. When the SLO value is re-
laxed by 11×, vLLM is also to meet all SLOs. vLLM requires
relatively high SLO relaxation because it adopts a simple
first-come-first-serve (FCFS) scheduling policy without any
notion of SLO-based ordering, which results in much worse
HOL blocking compared to the other approaches.

1 3 5 7 9 11

SLO scale

0

25

50

75

100

S
L

O
s

M
et

(%
)

EDF SHEPHERD vLLM QLM

Figure 20: Impact of varying SLO values on QLM.

A.2 GPU Utilization
QLM achieves higher SLO attainment and equal or higher
throughput compared to other baseline approaches with the
same number of GPU devices. Consequently, the utilization
of these resources is expected to be higher. To demonstrate the
improvement in resource utilization, we measure the average
GPU memory utilization over time. GPU memory utilization
is specifically chosen as LLM serving is primarily a memory-
bound workload. Figure 21 shows the GPU memory utiliza-
tion for WA (multi-model) and WB (single model) workloads.
For WA, we find that GPU utilization is significantly higher
as QLM avoids repeated model swaps that keep the memory
utilization low. For WB, we find that GPU memory utilization
is similar between QLM, EDF, and vLLM as all mechanisms
use continuous batching to improve device memory utiliza-

Multi-Model Single Model

0

25

50

75

100

G
P

U
U

ti
li
za

ti
o

n
(%

)

EDF SHEPHERD vLLM QLM

Figure 21: GPU memory utilization comparison across LLM
serving systems under multi-model and single-model setups.

tion, and no model swapping is needed for the single-model
setup. On the other hand, SHEPHERD uses dynamic batching
and does not saturate GPU memory, leading to lower memory
utilization and throughput.

A.3 Discussion

What happens if QLM is unable to meet SLOs? QLM’s
plan generator may not be able to find an optimal virtual
queue ordering if the request demand is high and the number
of LLM serving instances (i.e., underlying compute resources)
is insufficient. In such cases, we have three choices: (a) scale
up the number of LLM serving instances by adding GPU
devices, as we demonstrate in Figure 9 and Figure 12, (b) fall
back to a heuristic such as Earliest Deadline First (EDF) and
continue serving requests, and (c) performance admission
control or rate limiting by dropping incoming requests to
limit queue size. Option (a) can only be used when there are
available resources, whereas Option (b) and Option (c) would
lead to SLO violations.
Can new LSOs be added to QLM? QLM can be extended to
support other LSOs that depend on the queue size and request
ordering. For example, GPU partitioning techniques (such as
Nvidia MIG [34]) can be added as an LSO with additional
constraints on memory in the stochastic programming solver
described in Section 7. We leave the addition of extra LSOs
to our future work.
How can QLM handle request priorities? QLM can
also be used when strict priorities are assigned to re-
quests instead of SLO values. In the strict priority model,
request1 would execute before request2, if priority(request1)
< priority(request2). With strict priority, the relative order-
ing of requests across priorities is pre-decided, however per-
priority assignment still needs to be optimized to minimize
request completion times. Consequently, the concepts of vir-
tual queues, request groups, and the RCT estimator continue
to remain useful. However, the underlying constraints of the
stochastic programming model in the plan generator would
need to be updated to support constraints unique to priorities.
Can SLOs be defined on just the waiting time? QLM ad-
dresses the problem of optimizing end-to-end latency SLO

17

attainment. However, it can also be made to work with the
modified objective of waiting time SLOs (i.e., excluding the
execution time). In this case, the RCT estimator and plan
generator can be simplified as only the waiting time (Wq)
needs to be considered for each request group. Additionally,
we can substitute the stochastic programming formulation
with a linear programming solver as waiting times are largely
deterministic, as shown in Insight #1 Section 2.4.

18

	Introduction
	Background
	LLM Inference
	LLM Serving Systems
	QLM Definitions
	Motivation and Characterization

	QLM Design Overview
	Lifecycle of a Request in QLM
	QLM Design Principles

	Virtual Queues
	LLM Serving Operations
	Request Completion Time (RCT) Estimator
	Plan Generator
	Evaluation
	Multi-Model Evaluation
	Single-Model Evaluation
	QLM Robustness Analysis

	Related Work
	Conclusion
	Appendix
	Sensitivity Analysis on SLO Values
	GPU Utilization
	Discussion

