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Abstract
Serverless Function-as-a-Service (FaaS) offers improved pro-
grammability for customers, yet it is not server-“less” and
comes at the cost of more complex infrastructure manage-
ment (e.g., resource provisioning and scheduling) for cloud
providers. To maintain service-level objectives (SLOs) and
improve resource utilization efficiency, recent research has
been focused on applying online learning algorithms such as
reinforcement learning (RL) to manage resources. Compared
to rule-based solutions with heuristics, RL-based approaches
eliminate humans in the loop and avoid the painstaking gen-
eration of heuristics.

Despite the initial success of applying RL, we first show in
this paper that the state-of-the-art single-agent RL algorithm
(S-RL) suffers up to 4.8× higher p99 function latency degra-
dation on multi-tenant serverless FaaS platforms compared
to isolated environments and is unable to converge during
training. We then design and implement a scalable and incre-
mental multi-agent RL framework based on Proximal Policy
Optimization (SIMPPO). Our experiments on widely used
serverless benchmarks demonstrate that in multi-tenant en-
vironments, SIMPPO enables each RL agent to efficiently
converge during training and provides online function la-
tency performance comparable to that of S-RL trained in
isolation (which we refer to as the baseline for assessing RL
performance) with minor degradation (<9.2%). In addition,
SIMPPO reduces the p99 function latency by 4.5× compared
to S-RL in multi-tenant cases.
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1 Introduction
In serverless Function-as-a-Service (FaaS) [5, 56, 70], cloud
providers handle resource management for each function
(e.g., scaling the number of function containers or their re-
source limits, and scheduling containers to servers) but ex-
isting commercial cloud providers provide no performance
guarantees such as service-level objectives (SLOs) [45]. Pro-
viding performance SLOs has been studied in various aspects
and is critical to run latency-critical services on serverless
platforms [26, 45, 58, 60, 72, 76]. The problem of managing re-
sources to achieve performance SLOswhile maintaining high
resource utilization is at its core an intractable NP-hard prob-
lem [6, 38]. While the majority of the associated problems
are approached using meticulously designed heuristics with
extensive application- and system-specific domain-expert-
driven tuning, a substantial line of work has recently been
focused on learning-based approaches such as reinforcement
learning (RL) [6, 22, 30, 36, 37, 42, 44, 48, 52, 68, 71, 77, 78,
80, 82].

As a viable alternative to human-generated heuristics, RL
enables an artificial agent to learn the optimal policy directly
from interaction with the environment by observing its state
and selecting an action from the policy. As a result, the envi-
ronment transitions to the next state, and the agent receives
feedback in the form of rewards. The goal is to take a sequence
of actions that maximizes the expected cumulative rewards

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Single-agent RL solutions (each agent inde-
pendently trained and unaware of each other) in single-
or multi-tenant serverless environments. SIMPPO is a
multi-agent framework managing all RL agents.

in the future. As learning continues, the agent can optimize
for a specific workload and adapt to varying conditions (i.e.,
the policy-training stage). After convergence, the learned
policy will continue being used by the agent to interact with
the environment (i.e., the policy-serving stage) [41].
Motivation. Despite recent successes, existing RL-based
solutions are all single-agent RL (S-RL) in which one agent
manages one or more applications or functions1 (as shown in
Fig. 1), paying no attention to any other agents. The standard
assumption for an S-RL algorithm is environment stationar-
ity [43, 61, 74], which means that the environment is affected
only by the agent interacting with it. Therefore, existing S-RL
solutions assume that the agent is in an isolated single-tenant
environment that contains only the application that the agent
manages. In contrast, a serverless FaaS platform in any cloud
data center is multi-tenant, and functions from all customers
compete for shared resources in a cluster. Multi-tenancy
makes the environment non-stationary from each agent’s
own perspective when all agents are jointly being trained.
At the training stage, since the state transitions and rewards
each agent gets depend on the joint actions of all agents
whose policies keep changing in the learning process, each
agent enters an endless cycle of adapting to other agents. At
the policy-serving stage, an actionmight be suboptimal when
applied, because the underlying environment is no longer
the same as the one previously perceived for generating the
action. Two examples in §2.4 demonstrate such undesirable
behaviors caused by environment non-stationarity.
Challenges. We propose a multi-agent RL (MARL) solu-
tion that allows multiple agents to coexist in a shared envi-
ronment. However, solving the training non-convergence
problem and achieving policy-serving performance compa-
rable to the performance obtained in single-tenant scenarios
further present two main challenges.
a) Scalability: The solution should scale to the large number

of functions in a multi-tenant serverless platform. Exist-
ing MARL approaches, such as centralized MARL [10, 11]
or decentralized MARL with networked agents [83, 84],
all suffer scalability issues as the computation complexity

1S-RL-based approaches are application-specific or function-specific.

of searching in the joint state-action space grows expo-
nentially with the number of agents.

b) Adaptive and incremental training: The proposed solution
should adapt to dynamic changes in the environment due
to function churns (i.e., add, remove, or update functions)
or variations in the number of agents [9, 85]. Existing
MARL approaches model agents jointly by optimizing
over the Cartesian product of all the agents’ action spaces.
Consequently, they are computationally inefficient (with
exponential complexity), and the whole MARL algorithm
must be repeatedly retrained when the number of agents
in the environment changes.

Our Work.We design and implement SIMPPO, a Scalable
and Incremental Multi-agent RL framework based on an
RL algorithm, Proximal Policy Optimization (PPO) [53]. As
illustrated in Fig. 1, each agent in SIMPPO still has its own
policy trained using PPO andmanages an individual function.
We use PPO because it provides more stable policy learning,
shorter training times, and higher rewards after convergence
compared to other RL algorithms (e.g., DDPG [34], DQN [66]).
SIMPPOmanages all agents to dynamically and continuously
maintain the SLO of each function while keeping high uti-
lization efficiency. Each SLO is associated with a function
instance specifying a latency threshold for users sending re-
quests to the function instance. In contrast to S-RL, in which
each agent is unaware of the other agents and trained in
isolation, all agents in SIMPPO are jointly trained to reach
convergence. Each agent is allowed to peek into the behavior
of the other agents, and changes in other agents’ behavior
(policy) are handled during training.

To address the incremental training challenge, we de-
signed the MARL model and the neural network architecture
of each agent such that all other agents are treated as part
of the environment; thus, the model is agnostic to agent se-
quence order or the number of agents. From each agent’s
perspective, we created a virtual agent that consists of the
environment and all the other agents. The many-agent prob-
lem is converted to a two-agent problem, so there is no need
to reconstruct the neural network, whose structure remains
unchanged. In contrast, retraining from scratch for each
agent would have been prohibitively costly in both time
and resources. Finally, to further shorten the incremental
training time, we leveraged neural network parameter shar-
ing [62, 86] between new agents and existing agents that
manage the same type of functions.
To address the scalability challenge, we modeled and ap-

proximated the collective behavior of the other agents (i.e.,
the virtual agent) via an auxiliary global state distribution.We
constructed auxiliary global states by selecting each agent’s
relevant state and action variables based on domain knowl-
edge and feature engineering to help learn an accurate esti-
mation of the virtual agent. We took the aggregated actions
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and resource limits from all the other agents to represent
the collective resource allocation since we viewed them as
part of the environment. We also took the average function
performance and resource utilization to indicate how the
virtual agent behaves, as the goal is to achieve function SLO
performance while maintaining high resource utilization.
We removed redundant features that negatively affected RL
training because it is hard for the neural network to learn
from its unnecessarily large set of inputs. Auxiliary global
states are provided to each agent to help it adapt to vary-
ing agents in the environment by learning the collective
and average behavior of the virtual agent instead of all the
other individual agents. Reducing the interaction between
one agent and all others to the interaction between one agent
and the virtual agent greatly alleviates the scalability issue.
We design SIMPPO as a general framework to support a

variety of RL agents that employ online learning algorithms.
Although we use serverless resource management as an ex-
ample for demonstration, SIMPPO can be potentially applied
in other RL for systems areas [37] such as load balancing and
congestion control. Our approach for using virtual agents
draws inspiration from the mean-field theory, which has
been successful in economics and physics [2, 75]. Existing
theory [4, 49, 50] shows that approximating the collective
behavior of all the agents using a single population distribu-
tion term such as the average does not lose much optimality
in finite multi-agent scenarios, and the approximation error
decreases when the number of agents increases.
Contributions. In summary, our main contributions are:
a) Single-agent RL formulation and design using the state-

of-the-art RL algorithm PPO for serverless resource man-
agement (§3).

b) The first quantitative characterization study, to the best
of our knowledge, demonstrating that single-agent RL is
unable to converge and the policy-serving performance
is severely degraded in multi-tenant serverless environ-
ments (§5.2).

c) The design of a scalable and incremental MARL frame-
work named SIMPPO that (i) enables multiple RL agents
to be trained jointly to convergence and coexist in a multi-
tenant serverless environment, and (ii) allows the agents
to adapt to dynamic changes in the system, e.g., adding
or updating of functions (§7).

d) The implementation and comprehensive evaluation of
SIMPPOwith real-world workloads that demonstrate scal-
able and incremental policy training and substantial policy-
serving improvements relative to single-agent RL solu-
tions (§8).

Results.We conducted experiments in which we deployed
an open-source serverless FaaS platform, OpenWhisk [20],
on our dedicated local cluster and a larger cluster on IBM
Cloud. We ran widely used serverless benchmarks [13, 55,
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Figure 2: Resource management in OpenWhisk [20]
with reinforcement learning (RL). At each step, the
RL agent perceives system and application conditions
from the environment. The measurements are then
translated to state and reward signals that are mapped
by the agent to an action.

81] driven by arrival rate patterns sampled from both syn-
thetic datasets and public production traces fromAzure Func-
tions [56]. We show in our characterization study (§5) that
S-RL trained in isolation (which we use as the baseline to
assess MARL solutions) (i) improves p99 function latency
by at least 1.6× without over-provisioning over a heuristics-
based solution in single-tenant cases, and (ii) suffers from
2.2–4.8× higher p99 function latency degradation in multi-
tenant cases. An evaluation of SIMPPO shows that it enables
all agents’ policies to converge when they are jointly trained
and that it supports incremental training (§8.1). The online
policy-serving performance of SIMPPO (in terms of p99 func-
tion latency) in multi-tenant cases is comparable to the base-
line, with <9.2% degradation (§8.2); SIMPPO achieves 4.5×
improvement compared to S-RL in multi-tenant cases with
reasonable resource overhead (§8.3). SIMPPO is also scalable
to larger numbers of functions and cluster size (§8.4).

2 Background and Motivation

2.1 Serverless Function-as-a-Service

Serverless FaaS is a cloud programming model and archi-
tecture wherein customers execute function code snippets
without any control over the resources on which the code
runs [5]. A serverless FaaS platform runs functions in re-
sponse to invocations (i.e., requests) from end-users or clients.
It consists of a central controller and a group of invokers. In
our study, we chose OpenWhisk [20], a production-grade
open-source serverless platform based on Docker containers.
Fig. 2 shows the architecture of a distributed OpenWhisk
platform. The controller (i.e., 5 ) creates function containers,
allocates CPU (cpu.shares is used in OpenWhisk [60, 64])
and RAM for each function container, and assigns the con-
tainers to invokers (i.e., 6 ). When requests arrive via the
API gateway, the controller distributes the requests to in-
vokers. An invoker executes the function after it receives a
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request, and the execution results are written to a data store
(i.e., 2 ), which completes an activation.

Serverless FaaS workloads, like most cloud data-center
services, have service-level objectives (SLOs) defined by
each tenant that codify the expected performance [8, 14,
19, 21, 24, 29, 44, 78]. The most common type is a latency
SLO, which specifies the acceptable latencies for function
requests in the serverless computing context. For example,
a latency SLO might specify that 99% of requests have la-
tencies smaller than 100 ms. If a service fails to meet its
SLOs, the service provider may risk severe penalties or fi-
nancial loss. We focus on resource management to meet
per-function SLOs while keeping resource utilization at a
high level, since low utilization efficiency is undesirable for
the cloud provider [7, 18, 19, 25, 35]. The mechanism to con-
vey SLO preferences is also necessary and Henge [28] allows
SLOs to be specified by incorporating latency or throughput
goals and workload priorities into a user-specifiable utility
function.

2.2 RL Primer
An RL agent solves a sequential decision-making problem
(modeled as a Markov decision process or MDP) by interact-
ing with an unknown environment. At each discrete time
step 𝑡 , the agent observes the current state of the environ-
ment 𝑠𝑡 ∈ 𝑆 , and performs an action 𝑎𝑡 ∈ 𝐴 based on its policy
𝜋𝜃 (𝑠) (parameterized by 𝜃 ), which maps the state space 𝑆 to
the action space 𝐴. The agent then observes an immediate
reward 𝑟𝑡 ∈ R given by a reward function 𝑟 (𝑠𝑡 , 𝑎𝑡 ); the imme-
diate reward represents the loss/gain in transitioning from 𝑠𝑡
to 𝑠𝑡+1 because of action 𝑎𝑡 (via step() function [41]). The
whole sequence of transitions {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)}𝑡≥0 is called an
episode (or iteration). During policy training, the agent’s goal
is to optimize its policy 𝜋𝜃 so as to maximize the expected
cumulative discounted reward E[∑𝑇

𝑡=0 𝛾
𝑡𝑟𝑡 ] (i.e., the value

function) during one episode, starting from a certain initial
state 𝑠0, where the expectation is taken over the randomness
of state transitions and the agent’s policy. The discount fac-
tor 𝛾 ∈ (0, 1) penalizes the rewards far in the future. After
convergence, the learned policy will continue to be used (but
not updated) by the agent to interact with the environment
during the policy serving stage.
Two main categories of approaches have been proposed

for RL training: value-based methods and policy-based meth-
ods [3]. In value-based methods, the agent first learns an
estimate of the optimal value function and then approaches
the optimal policy by maximizing the estimated value func-
tion. In policy-based methods, the agent tries to directly
approximate the optimal policy. Both the policy and the
value function in RL algorithms are usually implemented
using neural networks. We refer readers to [3, 61, 83, 84] for

detailed surveys and rigorous derivations of value-based and
policy-based RL algorithms.

2.3 Related Work
Heuristics-based Resource Management. Various ap-
proaches have recently been proposed to address some of the
existing challenges in serverless platforms, such as function
request scheduling and resource allocation, using carefully
designed heuristics [27, 39, 58, 60, 63, 72, 76]. Sequoia [63]
is a drop-in front-end for serverless platforms that allows
policies to dictate how or where functions should be pri-
oritized, scheduled, and queued. The ideal performance for
a specific workload is achieved by carefully designing and
evaluating several scheduling algorithms, such as resource-
aware scheduling and explicit priority-based scheduling.
Atoll [58] is a delay-sensitive serverless framework that ex-
ploits a shortest-remaining-slack-first algorithm for sched-
uling serverless functions. Atoll uses a threshold-based re-
source scalingmethod based on queuing delays. ENSURE [60]
is another rule-based function resource manager. It allocates
𝑅 + 𝑐

√
𝑅 containers to a function with load 𝑅, scales the

resources within an invoker based on a latency degrada-
tion threshold, and scales the number of invokers based on
a memory capacity threshold, tuned per function and per
workload.

However, these approaches require recurring human ef-
forts to tune the parameters or choose the appropriate thresh-
olds for each function to achieve optimal performance. For ex-
ample, threshold-based autoscaling that relies onCPU/memory
utilization or latency degradation would be simplistic and
inefficient. The parameters need to be reconstructed, tuned,
and tested for varying application workloads and infrastruc-
tures. Therefore, we focus on RL-based solutions to automat-
ically learn the optimal resource management policies and
adapt to frequent changes in serverless function workloads
and dynamic cloud environments.

RL-based Resource Management. Lately, RL-based ap-
proaches have gained significant momentum toward achiev-
ing application SLOs [6, 22, 30, 36, 37, 42, 44, 48, 52, 68, 77,
80, 82]. RL is well-suited for learning resource management
policies, as it provides a tight feedback loop for exploring
the action space and generating optimal policies without
relying on inaccurate assumptions (i.e., heuristics or rules).
Since resource management decisions made for each func-
tion are highly repetitive, an abundance of data is generated
for training such RL algorithms. RL allows direct learning
from actual workload and operating conditions to under-
stand how allocation of resources affects application perfor-
mance. It has been shown that RL with neural networks can
express complex system-application environment dynam-
ics and decision-making policies. For instance, FIRM [44] is
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an RL-based resource management framework for microser-
vices, designed to tackle the under-utilization issue and SLO
violations. FIRM uses a two-tier RL model to first identify
the microservices that cause SLO violations and then miti-
gate those violations via dynamic resource reprovisioning.
Schuler et al. [52] propose a Q-Learning-based autoscaler
that decides on the horizontal concurrency for a serverless
function, with the only objective being to minimize the func-
tion latency. Zafeiropoulos et al. [82] also apply Q-Learning
to threshold-based autoscaling to determine the CPU and
memory usage threshold. Both SLO violation and resource
utilization are considered in the reward function of each RL
agent for a function. FaaSRank [80] is an RL-based serverless
function request scheduler that uses PPO to minimize func-
tion completion time. However, these works are all S-RL and
fail to address non-stationarity in multi-tenant environments
(as shown in §5.2).

Multi-armed bandits such as CloudBandits [32], as a vari-
ant of RL (i.e., one-state RL), do not apply in sequential
decision problems with state transitions because they re-
quire static context with a single decision and reward. Multi-
objective Bayesian optimization (BO) [33], on the other hand,
is hard to scale to large state space (the known dimension-
explosion problem). BO also has higher latency to find opti-
mal solutions in the search space compared to RL inference.

2.4 Motivating Examples
We draw two examples (as shown in Fig. 3) from RL episodes
in our experiments where environment non-stationarity
causes suboptimal agent behaviors. In both examples, each
agent controls the resource management for a serverless
function and is independently trained to convergence. In the
first example, suppose that agent-1 makes the decision to
scale up cpu.shares in the single-tenant case (upper left).
When both agent-1 and agent-2 are present (upper right),
the action from agent-2 (i.e., scaling up cpu.shares by 512)
affects the final CPU share ratio for both agents. Our evalua-
tion shows that the suboptimal policy results in up to 14×
performance degradation compared to the single-tenant case

in terms of the end-to-end p99 latency. In the second exam-
ple, agent-1 wants to scale out by adding a 256-MB container,
but it ends by placing the container on a new server, since
the available memory capacity is only 128 MB (bottom left).
Consequently, function performance will be significantly af-
fected by the launch of a new VM and cold starts [70]. When
both agents are present (bottom right), the scale-in action
from agent-2 avoids involving another server. Since agents
are not aware of each other, the optimal solution is missed,
leading to SLO violations and inefficient utilization of re-
sources. We further show our quantitative characterization
results in §5.

3 Single-agent RL Formulation
In this section, we present the design for serverless resource
management with RL. We call this approach single-agent
RL or S-RL since each RL agent manages one or more spe-
cific functions and is unaware of other agents in a shared
environment. We first describe the problem formulation as
an RL task (§3.1). We then outline a solution (§3.2) using a
policy-based RL algorithm, Proximal Policy Optimization
(PPO) [53].

3.1 S-RL Problem Formulation
Wemodel the resource management for each serverless func-
tion (by reacting to autoscale after observing a bulk of func-
tion executions) as a sequential decision-making problem
that can be formulated by the RL framework (illustrated
in Fig. 2). Since all serverless FaaS platforms have similar
controller-worker architectures [56, 58] and function request-
serving workflows, for modeling purposes, we chose to use
an open-source serverless platform called OpenWhisk [20].
At each step in the sequence, the RL agent (i.e., 1 ) monitors
system and application conditions from both the OpenWhisk
data store (i.e., 2 ) and the Linux control groups or cgroups
(i.e., 3 ). Measurements include function-level performance
statistics (i.e., tail latencies on execution time, waiting time,
and cold-start time for serving function requests) and system-
level resource utilization statistics (e.g., CPU and memory
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Table 1: State-action space of the RL formulation.
State Space 𝑆𝑡 (for single-agent) 𝐿𝑡 (for multi-agent)

Function SLO Preservation Ratio (𝑆𝑃 (𝑡)), Resource Utilization (𝑅𝑈𝑐𝑝𝑢 (𝑡),
𝑅𝑈𝑚𝑒𝑚 (𝑡)), Function Request Arrival Rate Changes (𝐴𝐶 (𝑡)), Resource
Limits (𝑅𝐿𝑇𝑐𝑝𝑢 (𝑡), 𝑅𝐿𝑇𝑚𝑒𝑚 (𝑡)), Horizontal Concurrency (𝑁𝐶 (𝑡))

Action Space 𝐴𝑡 (for both single- and multi-agent)
Vertical Scaling: Resource Limits (𝑅𝐿𝑇𝑐𝑝𝑢 (𝑡), 𝑅𝐿𝑇𝑚𝑒𝑚 (𝑡)). Horizontal
Scaling: Number of Containers (𝑁𝐶 (𝑡))

Auxiliary Global State Space 𝐺𝑡 (for multi-agent)
Aggregated Resource Limits (𝐴𝑅𝐿𝑇𝑐𝑝𝑢 (𝑡), 𝐴𝑅𝐿𝑇𝑚𝑒𝑚 (𝑡)), Aggregated
Vertical Actions (𝐴𝑉 (𝑡)) and Horizontal Actions (𝐴𝐻 (𝑡)), Average SLO
Preservation Ratio (𝑀𝑆𝑃 (𝑡)), Average Resource Utilization (𝑀𝑅𝑈 (𝑡))

utilization of function containers). These measured teleme-
try data are used to define an RL state, which is then mapped
to a resource management decision by the RL agent.

Action Space. We consider both vertical and horizontal
resource-scaling actions. A vertical-scaling action corresponds
to scaling either up or down the cpu.shares [64] or the
memory limit of a function container, since OpenWhisk’s
default resource model includes cpu.shares and memory
limits; both are configurable parameters in all commercial
serverless platforms. A horizontal-scaling action in Open-
Whisk corresponds to scaling either out or in the function
containers, i.e., changing the number of created containers
for a function (denoted by 𝑁𝐶). The resource limit of each
type for a function is initially over-provisioned and later
managed by the RL agent. The decision made by the RL
agent is then verified and passed by the horizontal and verti-
cal scaler (i.e., 4 ) to the FaaS controller (i.e., 5 ) and finally
changes the resource allocation of the function that the agent
manages, and consequently the function performance. As
a result, each function instance is deployed in a container
with resource limits 𝑅𝐿𝑇𝑐𝑝𝑢 and 𝑅𝐿𝑇𝑚𝑒𝑚 . The initial limit for
each type of resource is over-provisioned before containers
are created for a function, and the limit is later controlled
by the RL agent. Table 1 (the second row) defines the action
space which includes available vertical-scaling actions that
change 𝑅𝐿𝑇𝑐𝑝𝑢 , 𝑅𝐿𝑇𝑚𝑒𝑚 , and horizontal-scaling actions that
change 𝑁𝐶 .

State Space. We define the state space based on the five
features listed in Table 1 (the first row). At each time step
𝑡 , the average resource utilization 𝑅𝑈 (𝑡) of a function for
each type of resource is retrieved from cgroups (i.e., 3 ) as
telemetry data. The current resource allocations 𝑅𝐿𝑇𝑐𝑝𝑢 (𝑡),
𝑅𝐿𝑇𝑚𝑒𝑚 (𝑡), and 𝑁𝐶 (𝑡) are kept as part of the state. In addi-
tion, the data store (i.e., 2 ) also collects function latency
composition and request arrival rate. Based on these mea-
surements, the RL agent calculates the remaining two state
variables as described below:

a) SLO preservation ratio (𝑆𝑃 (𝑡)) is defined as latency_SLO
/ latency_measured if there is an SLO violation. The
ratio is smaller formore critical SLO violations. Otherwise,

Table 2: RL training hyperparameters in PPO [53]
Parameter Value

Learning Rate Actor (3 × 10−4), Critic (3 × 10−4)
Discount Factor (𝛾 ) 0.99
Number of Hidden Layers × Units Actor (2×64), Critic (2×64)
Mini-batch Size 10 (single-agent), 5 (multi-agent)
Number of SGD Epochs 5
Clip Value (𝜖) 0.2
Entropy Coefficient (𝛽) 0.01
Critic Loss Discount (𝛿) 0.05
Number of Time Steps (𝑇 ) 50 (per Episode)
Reward Coefficient (𝛼) 0.3

𝑆𝑃 (𝑡) is set to 1, meaning that there is no SLO violation
or no function request.

b) Arrival rate change (𝐴𝐶 (𝑡)) is defined as (𝐴𝑅(𝑡) −𝐴𝑅(𝑡 −
1)) /𝑚𝑎𝑥{𝐴𝑅(𝑡), 𝐴𝑅(𝑡 − 1)}, where 𝐴𝑅(𝑡) and 𝐴𝑅(𝑡 − 1)
denote the function request arrival rates at the current
and previous time steps, respectively. A positive value
indicates an increasing request arrival rate and vice versa.

All variables in the state vector are of range [−1, 1] except
𝑅𝐿𝑇 (𝑡) and𝑁𝐶 (𝑡). To facilitate RL training and convergence,
we normalized the two variables by setting a predefined
resource upper limit 𝑅𝑖 and a lower limit

ˇ
𝑅𝑖 . For instance,

the cpu.shares for a container cannot be smaller than 128
or larger than 2048, and the number of containers cannot
be smaller than 0 or larger than 1000 (the default maximum
concurrency setting in AWS Lambda [1]). If the amount of
resources to be vertically scaled reaches the total available
amount, then a horizontal-scaling operation is needed.
Reward Function. The goal of the RL agent is, given a time
duration𝑇 , to learn an optimal policy 𝜋𝜃 that results in fewer
SLO violations (i.e., max𝜋𝜃

∑𝑇
𝑡=0 𝑆𝑃 (𝑡)) while keeping the re-

source utilization as high as possible (i.e., max𝜋𝜃
∑𝑇

𝑡=0 𝑅𝑈 (𝑡)).
Based on both objectives, the reward function is then defined
as 𝑟𝑡 = 𝛼 ·𝑆𝑃 (𝑡) + (1−𝛼)/2 · (𝑅𝑈𝑐𝑝𝑢 (𝑡) +𝑅𝑈𝑚𝑒𝑚 (𝑡)) +𝑝𝑒𝑛𝑎𝑙𝑡𝑦,
where 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 is set to -1 in the following cases (and 0 oth-
erwise): (a) Illegal actions such as scaling in/up/down when
the number of function containers is zero or scaling beyond
the resource limits. Since illegal actions are not executable,
an illegal action leads to a self-loop transition from a state to
itself with a negative reward. (b) Undesired actions such as
frequent oscillating decisions (e.g., scale down and up in two
consecutive time steps), which are detected by comparing
the actions of the current and last time step. Compared to
masking the actions, i.e., excluding the undesired actions
from the action space instead of giving negative rewards,
our approach leads to faster convergence and is extensible
(without modifying the action space).

3.2 S-RL Learning Framework
We use a policy-based method, PPO [53], to learn the optimal
resource management policy under the RL problem formula-
tion described above. We use PPO because it provides shorter
training times and higher rewards after convergence in our



SIMPPO: Scalable and Incremental Online Learning for Serverless Resource Management Conference’17, July 2017, Washington, DC, USA

setting, compared to other state-of-the-art RL algorithms
(e.g., DDPG [34], DQN [66]), while being much simpler to
tune. To stabilize the training process, clipping is used to pre-
vent the policy and value functions from changing drastically
between training iterations. It has been hypothesized [16]
that the smooth policy updates (due to clipping) in PPO can
help mitigate the non-stationarity issue in multi-agent RL.
Compared to the vanilla policy gradient [73], PPO guarantees
an improved policy by specialized clipping in the objective
function to prevent the new policy from getting far from
the old policy. We implement both the policy 𝜋𝜃 and value
function 𝑉𝜙 (parameterized by 𝜃 and 𝜙) of PPO using neural
networks. The value function evaluates the expected return
of a given state [53]. The policy network maps the state to
an action and its parameter 𝜃 is updated in the direction
suggested by the value function. The hyperparameters used
in our PPO implementation are listed in Table 2. We set those
hyperparameters based on a grid search for the best results.
We refer readers to [53] for detailed algorithms of PPO and
rigorous derivations and [46] for the pseudo-code. The de-
scribed S-RL solution is used in our characterization study
(§5) and its performance in single-tenant scenarios is used
as the baseline for assessing proposed solutions (as shown
in §6, §7) in multi-tenant scenarios.

4 Experimental Methodology

OpenWhisk Cluster Setup. We deployed OpenWhisk [20]
on five physical nodes in our local cluster, with one mas-
ter node (which runs the FaaS Controller) and four worker
nodes (each of which runs an Invoker), as shown in Fig. 2.
Each node has a dual-socket Intel Xeon E5-2683 v3 proces-
sor with 14 cores per socket and 500 GB memory. All nodes
run Ubuntu 18.04 with Linux kernel version 4.15. We also
deployed a larger OpenWhisk cluster (20 worker nodes) on
IBM Cloud with 22 VMs in us-south-2 to study SIMPPO’s
scalability. Each node has 8 cores and 16–32 GB RAM, run-
ning Ubuntu 20.04. There is no interference from external or
background jobs. Docker containers were created on phys-
ical nodes in the local cluster and VMs in the IBM Cloud
cluster. We disabled memory swapping for the Docker ser-
vice. We ran the workload generator [55] and the RL module
(either single- or multi-agent) from two separate nodes in
the same cluster and used FaaSProfiler [55] to trace requests.

Serverless Benchmarks. We selected benchmarks from
widely used open-source FaaS benchmark suites [13, 55, 81]
(listed in Table 3). These benchmarks include web applica-
tions (HTML-Gen, Uploader), ML-model serving (Sentiment-
Anlys,Image-Inference), multimedia (Image-Resize, Com-
pression), scientific functions (Primes, PageRank, Graph-
BFT, Graph-MST), and utilities (Base64, Markdown2HTML). These
function benchmarks have different runtime behaviors and

Table 3: Serverless benchmarks [13, 55, 81].
Benchmark Description

Base64 Encode and decode a string with the Base64 algorithm.
Primes Find the list of prime numbers less than 107.
Markdown2HTML Render a Base64 uploaded text string as HTML.
Sentiment-Anlys Generate a sentiment analysis score for the input text.
Image-Resize Resize the Base64-coded image with new sizes.
HTML-Gen Generate HTML files from templates.
Uploader Upload a file from a given URL to Cloud storage.
Compression Compress given images and upload to Cloud storage.
Image-Inference Image recognition with a pre-trained ResNet-50 model.
Page-Rank Calculates the Google PageRank for a specified graph.
Graph-BFT Traverse the given graph with breadth-first search.
Graph-MST Generate the minimum spanning tree given a graph.

resource demands in terms of CPU, memory, and I/O utiliza-
tion. For example, Image-Resize and Image-Inference are
compute-intensive functions; Base64 and Markdown2HTML
are memory-intensive functions; Uploader and Compres-
sion are I/O-bound functions; and Page-Rank and Graph-
BFT/MST are data-intensive functions. The functions are writ-
ten in either Python or Java. SLOs were defined on a per-
function basis. In our experiments, we followed the common
practice [8] and used the 99th-percentile latency as the SLO
latency when running in isolation on the serverless plat-
form. We added a 15% relaxation to the SLO latency to allow
fluctuations and measurement errors.
Workloads. In the evaluation, we used both real-world and
synthetic function invocation patterns. For real-world work-
loads, the function invocation patterns are from Azure Func-
tions traces [56] collected over two weeks in 2019. We first
constructed a dataset of invocation rates (i.e., RPS) based on
the per-minute function invocation count in the traces (the
intervals with no invocation will be treated as zero invoca-
tion rate). We then uniformly and randomly sampled the
invocation rate at each RL step from the constructed dataset.
Since our setup of 22 VMs is minimal compared to Azure
Functions production setup and to allow the RL agent to
explore as many invocation patterns as possible, the invoca-
tion pattern of a function in our experiment setup did not
follow through with only one function trace but changed to
multiple function traces during RL training. For synthetic
workloads, we used common patterns [18] indicating flat
and fluctuating loads, with a Poisson inter-arrival pattern
whose parameter ranges from zero to the maximum value
observed in the sampled Azure function traces. The change
of request arrival rates was intended to evaluate whether RL
agents could adapt to such workload changes.

5 Single-agent RL Characterization Study

5.1 S-RL in Single-tenant Cases
We implemented the single-agent RL (S-RL) solution de-
scribed in §3, conducted training convergence analysis, and
evaluated the function performance and resource utilization
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Figure 4: Training curves of the
single-agent RL (for function Primes)
in single- and multi-tenant environ-
ments.
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Figure 5: Single-agent RL 99th-percentile end-to-end function latency in
single- and multi-tenant environments for all function benchmarks in
comparison with the heuristics-based approach ENSURE [60] (in single-
tenant environments).

compared with those of a state-of-the-art heuristics-based
approach, ENSURE [60].
S-RL Policy-training Convergence. To understand the
convergence behavior of the S-RL agent in single-tenant en-
vironments, we used the workload described in §4 to train
an agent for one function, with no other functions running
on the platform. Since RL training proceeds in episodes (iter-
ations), we then analyzed the per-episode reward evolution;
Fig. 4 (the red curve above) shows the results for function
Primes and we found that the agent-training progress is
similar across different function benchmarks. We fixed the
number of time steps per episode to 50 (i.e., 𝑇 in Table 2).
In the initial training stage, the agent policy was unable to
mitigate SLO violations. Hence, we terminated the RL explo-
ration early to reset the agent to the initial state and enter the
next episode. As the training progressed, the agent improved
its resource allocation policy and could mitigate SLO viola-
tions in less time. At that point (after around 70 episodes),
we linearly increased the number of time steps to let the
agent interact with the environment for more time before
terminating the exploration and entering the next iteration.
The agent’s behavior was able to converge after around 300
episodes (ranging from 280 to 350 across all benchmarks).
S-RL Policy-serving Performance. After convergence, we
leveraged the trained agent (by using the saved checkpoints
at the 1000th episode), and compared it with ENSURE [60],
which is a state-of-the-art threshold-based autoscaler imple-
mented on OpenWhisk. We set the parameters and thresh-
olds according to author recommendations [60]. In this com-
parison, each function controlled by an agent is tested inde-
pendently. Fig. 5 shows the online performance comparison.
The S-RL agent is able to keep the CPU utilization at a higher
level (around 24% higher than ENSURE, not shown in the
figure) and achieves similar end-to-end latency. We found
that the reason is that ENSURE over-provisions containers
and resources when workload changes. After increasing the
function latency threshold to a higher value (from 15% to
25%), we observed that the performance of the S-RL agent
improved over that of ENSURE (labeled “ENSURE-Util”) by

at least 1.6× with respect to tail latencies at similar CPU uti-
lizations. However, ENSURE does not require any training.

By interacting with dynamic serverless environments under
diverse loads and resource allocation scenarios, S-RL agents
gradually learn the policy that maximizes the expected re-
wards and hence outperform heuristics-based approaches. We
regard S-RL in single-tenant cases as the baseline for assessing
solutions in multi-tenant cases.

5.2 S-RL in Multi-tenant Cases
Serverless FaaS platforms are, in essence, multi-tenant, run-
ning different functions with various function characteristics,
SLOs, and workload patterns from multiple customers [5,
23, 45, 70]. Each function managed by an RL agent com-
petes with other functions on the same platform for lim-
ited resources. Function container co-location for higher
utilization has made resource contention worse on a cloud
serverless platform [45, 55, 70]. The transition from single-
tenant to multi-tenant settings introduces new challenges
that require a fundamentally different RL algorithm design.
Before presenting our multi-agent solution, we first explore
the environment non-stationarity issue, and conduct train-
ing convergence analysis and policy-serving performance
assessment of S-RL agents in multi-tenant environments.
Environment Non-stationarity. The shared environment
in amany-agent setting is affected by the actions of all agents;
thus, from a single agent’s perspective, the environment be-
comes non-stationary, which breaks the critical stationarity
assumption [43, 61, 74] made by S-RL algorithms. In policy
training or serving, S-RL requires that the isolated environ-
ment is affected only by the agent interacting with it. Under
non-stationarity, an agent needs to explore the unknown
environment efficiently while keeping in mind that the infor-
mation it gathers now will soon become outdated, because
the other agents are also updating their policies. From a
system’s perspective, the RL step() function (i.e., take an
action and receive the next state and reward) can be viewed
as a “transaction.” An agent interacts with the environment
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at each time step and commits a transaction that may con-
flict with other transactions from different agents because of
request-response function dependencies or shared-resource
contention. The stationarity assumption means that an agent
needs to obtain the “lock” to avoid race conditions where
the environment (“critical section”) is updated by two or
more transactions. S-RL fails to provide any synchronization
mechanism to address non-stationarity issues.
S-RL Policy-serving Performance Degradation.We as-
sessed the policy-serving performance of the S-RL agent in
multi-tenant cases in which each function is in control of
an independent S-RL agent trained in isolation (oblivious of
the other agents). Fig. 5 shows the performance degradation
after multiple functions are introduced on the same platform
(green bars compared to red bars). In this experiment, we
created one function for each benchmark from Table 3 and
trained one S-RL agent for each function in isolation until
convergence. Then, we ran all 12 functions concurrently
on OpenWhisk, with each function being managed by its
trained S-RL agent. The evaluation results show that the
degradation is up to 4.8× (for Graph-BFS) and as low as 2.2×
(for Compression). The reason is that when the agent makes
a decision, it is based on the states measured at the current
time step; but at the same time, all other agents are also mak-
ing their resource allocation decisions, which could affect the
shared environment. Therefore, the state could have been
changed and the estimated value function for an action by
the S-RL model is no longer accurate.
S-RLPolicy-trainingConvergence Failure.Multi-tenancy
not only affects the online performance during policy serving
for S-RL agents trained in isolation, but also leads to prob-
lems during training. We trained 12 S-RL agents together;
each of them managed one function from the benchmarks
listed in Table 3. Each S-RL agent was trained independently
and did not consider the other agents in the same environ-
ment. Everything else was kept the same as before, with
the S-RL agent trained in isolation. Fig. 4 (the green curve
below) shows the per-episode reward evolution for the agent
managing function Primes. Compared to the training curve
of the S-RL agent trained in isolation (in red), the S-RL agent
trained in a multi-tenant environment achieved a lower per-
formance (a 55.9% drop in terms of per-episode reward) with
higher variance and did not converge in a stable manner
within the same training budget. We observed that other
function benchmarks also failed to converge within the same
training budget (not shown due to page limit).

While S-RL converges in isolated environments and provides
a sufficient baseline compared with heuristics, system support
for many-agent RL-based resource management that provides
both training convergence and comparable policy-serving per-
formance is needed to deal with environment non-stationarity.
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Figure 6: RL pipelines for the independent-learning-
based approach (a) and priority-queue-based approach
(b).

6 Attempts to Deal with Non-stationarity
To deal with non-stationarity in multi-tenant environments,
we first designed and implemented two multi-agent RL solu-
tionswherein all agents are jointly trained using independent
learning (§6.1) and a global priority queue (§6.2). The insights
drawn from both solutions lead to our final solution SIMPPO
as presented in §7.

6.1 Independent Learning
Our first attempt to deal with non-stationarity is to apply the
idea of independent learning [16] to S-RL. In independent
learning, each agent learns independently and, by consid-
ering only the rewards from all the other agents, perceives
the other agents as part of the environment. Despite the loss
of theoretical support, independent learners are occasion-
ally shown to achieve desirable results [16]. Therefore we
replace the reward function of each RL agent in S-RL with
𝑟𝑡 =

∑𝑁
𝑖=1 𝑟

𝑖
𝑡/𝑁 , where 𝑟 𝑖𝑡 is defined in §3. We call this the

independent learning-based MARL solution IL-RL.
Fig. 6(a) shows the RL pipeline for the IL-RL training and

policy serving. Just as in the S-RL approach, each agent re-
ceives the states and rewards from the environment at each
step. However, each agent uses the average reward to update
its policy network.
IL-RL Policy-training Convergence. To study the train-
ing convergence, we created 12 functions (one from each
benchmark in Table 3), each of which is managed by an IL-RL
agent. Fig. 7 shows the training curve in this multi-tenant
environment. Since all IL-RL agents use the team reward
that is the average reward across all agents, Fig. 7 (the curve
below) shows the evolution of the total reward per episode.
Compared to the training curve of S-RL in single-tenant en-
vironments (i.e., the baseline, the red curve in Fig. 4), the
highest reward gained by IL-RL is 38.2% lower than the con-
verged reward achieved in S-RL. However, IL-RL varies less
and achieves 1.4× higher reward compared to S-RL trained
in multi-tenant environments (the green curve in Fig. 4). We
conclude that IL-RL fails to provide a convergence guarantee
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Figure 7: Training curve of the IL-
RL and CPQ-RL agents (for func-
tion Primes) in multi-tenant environ-
ments.
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Figure 8: The 99th-percentile end-to-end latency comparison for all func-
tion benchmarks managed by IL-RL and CPQ-RL agents in multi-tenant
environments. The comparison baseline is single-agent RL (S-RL) in single-
tenant environments.

within the same training budget for RL agents inmulti-tenant
environments.

Insight #1: Simply considering each agent’s local observation
could work in cases where no extensive coordination with other
agents is necessary [16]. However, whenever more complicated
coordination is required, such as simultaneously scaling one
function out and another function in (as shown in Fig. 3), it be-
comes difficult to explore and learn those joint actions. Without
synchronizing the RL state transitions of all agents, one cannot
solve the environment non-stationarity issue by considering
only the performance of all the other agents.

6.2 Heuristics-based Priority Queue
Since it is hard for agents to independently reason about one
another to act intelligently, our second attempt is to use a
central coordinator that synchronizes the RL step() func-
tions of all agents during both training and policy serving.
Fig. 6(b) shows an overview of the framework. The coordina-
tor uses a heuristics-based priority queue to determine the
execution order of each agent’s step() function using SLO
preservation ratios. Functions with lower ratios (i.e., higher
chances of having SLO violations) are served first. We call
this central priority queue-based MARL approach CPQ-RL.
During CPQ-RL training, the policy executions of the

agents are performed one at a time. At the time an RL step()
function is being executed, no other agent is making any
movement. This workflow allows each agent to incremen-
tally improve its policy over time. Intuitively, CPQ-RL pro-
vides a training framework wherein each agent gets an iso-
lated sub-environment tomake state transitions in the shared
multi-tenant environment. The local policy updates of the
agents are still distributed and independent from each other.
CPQ-RL Policy-training Convergence.We used the same
environment setup described in §6.1 to train a set of 12 CPQ-
RL agents. Fig. 7 (the curve above) shows the training curve
of the agent that managed function Primes. We observed
that the training curves of all 12 agents were able to converge.
In addition, the total reward per episode of CPQ-RL agents

was comparable to the converged values of S-RL agents in
single-tenant cases (with <3% difference).

CPQ-RL Policy-serving Performance.We then evaluated
the online performance during policy serving by taking the
checkpoints of the CPQ-RL agents after the convergence (i.e.,
at the 1000th episode). Fig. 8 shows the end-to-end latency
comparison between the baseline (i.e., S-RL in single-tenant
environments) and CPQ-RL in multi-tenant environments.
Although CPQ-RL provides a training framework that allows
each RL agent to learn an optimal policy in an articulated “iso-
lated” environment, there is still 21.8% (Sentiment-Anlys)
to 67.7% (Image-Inference) performance degradation. We
found that it wasmostly due to the synchronization overhead,
since all agents need to communicate with the central coor-
dinator to take the state measurements and make decisions
in a sequential manner according to priority. By increasing
the priority (setting a tighter SLO), we found that the degra-
dation dropped to less than 35%. Each RL step() function
(i.e., policy execution) takes around one second. When the
number of agents is large (i.e., more than 10), agents with
lower priority may suffer from long waiting times (i.e., star-
vation), which can be unacceptable and lead to cascading
SLO violations [21]. Fig. 8 also includes the online perfor-
mance of IL-RL agents, although they fail to converge during
policy training. We found that CPQ-RL achieves up to 67.1%
performance improvement over IL-RL in terms of p99 func-
tion latency, while IL-RL agents perform no better than S-RL
agents in multi-tenant environments (which has been shown
in Fig. 5) with <5% performance difference.

Insight #2: RL agents with lower priorities suffer from star-
vation problems in CPQ-RL. A scalable solution relies on si-
multaneous action generation instead of sequential generation.
Centralized MARL (such as JAL [11]) could be a potential so-
lution, but it is not scalable and fails to support incremental
training (as we describe in §7.1).
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7 SIMPPO Design and Implementation
We describe the design and implementation of SIMPPO in
this section, which includes a remodeled resource manage-
ment problem formulation (in §7.1) as a multi-agent exten-
sion of the Markov decision process (MDP), and a MARL
learning framework based on PPO (in §7.2) under the prob-
lem formulation. All agents are jointly trained in SIMPPO
by allowing each agent to peek into the behavior of the
other agents, which potentially violates the end-to-end ar-
guments [51]. However, the violation is necessary for per-
formance gain [40] as we show in §5, 6 that obeying the
end-to-end arguments by handling non-stationarity at each
agent’s end sacrifices policy-serving performance. Our de-
sign choices for the multi-agent model were made to fa-
vor scalability and adaptability to agent churn caused by
added/removed functions. SIMPPO enables the convergence
behavior of all agents during training and provides online
policy-serving performance comparable to that of the base-
line, i.e., S-RL in single-tenant cases (as shown in §8).

7.1 SIMPPO’s MARL Formulation
We extend the MDP formulation for single-agent RL (de-
scribed in §3) to a Markov game (also known as a stochastic
game [57]) for 𝑁 agents, each of which controls the resource
management for one particular function on the serverless
platform. In our formulated Markov game, the state space
is defined as the Cartesian product of the state spaces of
all S-RL agents (as defined in §3). After observing the envi-
ronment state 𝑠𝑡 at time 𝑡 , each agent 𝑖 takes an action 𝑎𝑖𝑡
based on its policy 𝜋𝜃𝑖 (parameterized by 𝜃 𝑖 ) and receives a
reward 𝑟 𝑖𝑡 . The action and reward of each agent are the same
as defined in S-RL. The environment state then transitions to
a new state that depends on the joint action of all the agents.
A Naive Approach. One can overcome the non-stationarity
issue introduced by other agents in the shared environment
by using centralized learning (e.g., joint action learners or
JAL [11]). In such a centralized approach, the agents are
jointly modeled, and a centralized policy for all the agents
is trained. The input to this algorithm is the concatenation
of the observations of all the agents, and the output is the
actions specified to the agents. This approach entirely elim-
inates the problem of non-stationarity; however, it is com-
putationally inefficient (with exponential complexity). The
centralized learner needs to search in the joint action space
of the size

∏𝑁
𝑖=1 |𝐴𝑖 | in order to enumerate all possible action

combinations, where 𝑁 is the number of agents and 𝐴𝑖 is
the individual action space of agent 𝑖 for 1 ≤ 𝑖 ≤ 𝑁 . The
exponential dependence on 𝑁 makes the centralized learn-
ing approach difficult to scale up beyond a few agents [11].
Therefore, given that there could be tens or even hundreds
of function instances on a server [65], we do not proceed
further with this centralized approach.

Multi-tenant Environment
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SIMPPO Coordinator
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Figure 9: Overview of the multi-agent RL model
SIMPPO.

Virtual Agent. The non-stationarity problem leads to sig-
nificant scalability challenges, since each agent must reason
about every other agent’s internal state of information. In
addition, existing MARL approaches explicitly model each
function or agent (e.g., the JAL [11]) and thus the whole
MARL algorithm needs to be retrained when there is any
changes to the agent group, because the input to the algo-
rithm has been changed. In the typical case where the policy
or value functions are parameterized by neural networks, the
network structure would also need to be reconstructed. In
SIMPPO, from the point of view of an agent 𝑖 , the main idea
is to treat all the other agents as part of the environment by
creating a “virtual” agent that represents the environment
and all the other agents. Introducing the virtual agent allows
SIMPPO to be agnostic to the number of agents and the order
of the agent sequence, which enables incremental training.
We created auxiliary global states (which we will discuss in
the next paragraph) by learning the collective and average
behavior of the virtual agent instead of each of the other in-
dividual agents. Auxiliary global states are provided to each
agent to help it adapt to varying agents in the environment.
Reducing the interaction between an agent and the others
to the interaction between the agent and the virtual agent
greatly simplifies the scalability issue.

Value Function Inputs. In SIMPPO’s MARL formulation,
we resort to using the average to represent the behavior of
the other agents (i.e., the virtual agent), and to providing
each agent with an auxiliary global state in addition to its
individual state. Each agent extracts its local state 𝑙𝑖𝑡 and
auxiliary global state 𝑔𝑖𝑡 from the environment state 𝑠𝑡 . The
local state 𝑙𝑖𝑡 of agent 𝑖 is from the same state space as in S-RL
(Table 1 the first row). Both local and auxiliary global states
are used as the inputs to the value function, and we find that
omitting any local state can be highly detrimental to learning
of an optimal resource management policy. In addition, we
select a subset of five state-action variables from all variables
that can be used to represent the auxiliary global state 𝑔𝑖𝑡
based on domain knowledge. First, aggregated actions and
resource limits from all the other agents represent the collec-
tive action, since we view them as part of the environment.
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Second, as the goal is to achieve function SLO performance
while maintaining high resource utilization, we select the
mean SLO preservation ratio and resource utilization to rep-
resent how the other agents behave. Third, we observe that
reducing the dimensionality of the value function inputs by
removing redundant or repeated features further improves
the RL agent performance and reduces training time. For ex-
ample, a higher arrival rate or a lower horizontal concurrency
could have been manifested by a lower SLO preservation
ratio. Since each agent only cares about and optimizes its
policy based on the reward function, redundant features can
negatively affect RL training and make it hard for the neural
network to learn to extract the real, useful features. Specifi-
cally, 𝑔𝑖𝑡 consists of the following (as listed in the third row
in Table 1):
a) Aggregated resource limits: 𝐴𝑅𝐿𝑇 𝑖

𝑐𝑝𝑢 (𝑡) =
∑𝑁

𝑗≠𝑖 𝑅𝐿𝑇
𝑗
𝑐𝑝𝑢 (𝑡),

and 𝐴𝑅𝐿𝑇 𝑖
𝑚𝑒𝑚 (𝑡) = ∑𝑁

𝑗≠𝑖 𝑅𝐿𝑇
𝑗
𝑚𝑒𝑚 (𝑡)

b) Aggregated vertical actions: 𝐴𝑉 𝑖 (𝑡) = ∑𝑁
𝑗≠𝑖 Δ𝑅𝐿𝑇 (𝑡)

c) Aggregated horizontal actions: 𝐴𝐻 𝑖 (𝑡) = ∑𝑁
𝑗≠𝑖 Δ𝑁𝐶

𝑗 (𝑡)
d) Mean SLO preservation:𝑀𝑆𝑃𝑖 (𝑡) = ∑𝑁

𝑗≠𝑖 𝑆𝑃
𝑗 (𝑡)/(𝑁 − 1)

e) Mean resource utilization:𝑀𝑅𝑈 𝑖 (𝑡) = ∑𝑁
𝑗≠𝑖 𝑅𝑈

𝑗 (𝑡)/(𝑁 −
1)

In addition, to measure the volatility of agent performance
and behavior, we also include the standard deviation of the
selected variables across all the other agents.
Our design draws inspiration from the mean-field the-

ory [49, 50], which has proved to be successful in fields like
economics [2] and physics [75]. The underlying principle
is to approximate the finite-agent system by summarizing
the collective behavior of all agents as a population distribu-
tion, which is usually specified as the empirical distribution
of the agents’ states. Existing theory [49, 50] and our own
work [4] (under review) show that the approximation error
goes down as the number of agents increases because there
is less influence from each agent on the overall system.
Rewards. The goal in the MARL setting is (see [83, 84]),
given a time duration𝑇 , to determine an optimal collection of
policies 𝜋 = {𝜋𝜃 1 , 𝜋𝜃 2 , ..., 𝜋𝜃𝑁 } that result in fewer SLO viola-
tions across all functions (i.e.,max𝜃 1,𝜃 2,...,𝜃𝑁

∑𝑁
𝑖=1

∑𝑇
𝑡=0 𝑆𝑃

𝑖 (𝑡))
while keeping the average resource utilization of each type
as high as possible (i.e., max𝜃 1,𝜃 2,...,𝜃𝑁

∑𝑁
𝑖=1

∑𝑇
𝑡=0 𝑅𝑈

𝑖 (𝑡)). The
team-averaged reward function for the MARL setting is
then defined as 𝑟𝑡 =

∑𝑁
𝑖=1 𝑟

𝑖
𝑡/𝑁 , where 𝑟 𝑖𝑡 is the reward

for agent 𝑖 as defined in §3. Our objective is to maximize
the expected cumulative discounted reward E[∑𝑇

𝑡=0 𝛾
𝑡𝑟𝑡 ] =

E[∑𝑇
𝑡=0 𝛾

𝑡 ·∑𝑁
𝑖=1 𝑟

𝑖
𝑡/𝑁 ].

7.2 SIMPPO’s Learning Framework
Based on SIMPPO’s scalable and incremental MARL formula-
tion in §7.1, we introduce the learning framework of SIMPPO
based on the PPO algorithm that we designed for S-RL (in

§3.2). SIMPPO follows the same algorithmic structure of the
PPO algorithm by learning a policy 𝜋𝜃𝑖 and a value network
𝑉𝜙𝑖 (parameterized by 𝜙𝑖 ) for each agent 𝑖 . Fig. 9 shows an
overview of the SIMPPO algorithm. We concatenate the aux-
iliary global state𝑔𝑖 (described in §7.1) with each agent’s local
state 𝑙𝑖 and feed them as the inputs to the value network𝑉𝜙𝑖 .
The auxiliary global state 𝑔𝑖 is collected and calculated by
the SIMPPO coordinator and sent to each SIMPPO agent. For
example in Fig. 9, 𝐺1 is sent to Agent 1. The policy network
𝜋𝜃𝑖 is the same as the policy network in S-RL, which maps
the states to an action from the same action space. The other
extension from S-RL is that the reward for each agent at
time 𝑡 is changed to the average reward across all agents:
𝑟𝑡 =

∑𝑁
𝑖=1 𝑟

𝑖
𝑡/𝑁 . The RL policy update step of each SIMPPO

agent is done in parallel.

Training Data Reuse. PPO uses mini-batch gradient de-
scent to perform several epochs of updates on a batch of
training data. We find that the agent achieves the optimal
performance when the mini-batch size is set to 10 in the
single-agent setting. However, in the multi-agent setting, we
find that a smaller mini-batch size (i.e., 5) results in a better
performance. We attribute this to the negative effect that
high data reuse brings in multi-agent settings [79]. The num-
ber of epochs implicitly determines the non-stationarity in
MARL, as more training epochs will cause larger changes to
the agents’ policies, which exacerbates the non-stationarity
issue. The other hyperparameters are kept the same as in
Table 2 which are used by the S-RL agents.

Adding and Removing Agents. The SIMPPO coordinator
and all SIMPPO agents follow the server-client communica-
tion model, and the coordinator is responsible for adding and
removing an agent upon request (i.e., when registering or
deleting a function). We use a heartbeat-based membership
protocol between the SIMPPO coordinator and all SIMPPO
agents. When a new function is being added to the serverless
platform, a new SIMPPO agent will be initialized to con-
trol the resource management of the function. After a new
SIMPPO agent is added or an existing function is removed,
the auxiliary global state is updated by including or exclud-
ing the individual observations from that agent.

Network Parameter Sharing.We leverage neural network
parameter sharing [62, 86] between SIMPPO agents thatman-
age the same type of functions to shorten the incremental
training time. Based on their sensitivity [17] to the allocation
of each type of resource, we categorize the function bench-
marks into three coarse-grained categories2: CPU-intensive,
memory-intensive, and I/O-intensive. One trained RL model
is used as the base model for each category of functions. The
2We leave fine-grained function classification for better performance to
future work.
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Figure 10: Incremental training of SIMPPO.
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Figure 11: Incremental training (no parameter sharing).

base model is obtained by training the RL agents that man-
age all functions that belong to the corresponding category.
When a new function is added to the serverless platform, we
first categorize the function and initialize the newly created
SIMPPO agent with the network parameters from the base
model of the same category. The base model can be slowly
updated in the background by replacing its network parame-
ters with the existing SIMPPO agents that manage the same
type of functions.

8 Evaluation
We evaluated SIMPPO on OpenWhisk driven by widely used
serverless benchmarks [13, 55, 81] with both synthetic and
real-world workloads from production traces [56], as speci-
fied in §4. Our experiments addressed the following research
questions:
§8.1 Does SIMPPO converge and support incremental train-

ing? What is the value of auxiliary global states?
§8.2 How does SIMPPO perform in multi-tenant environ-

ments compared to single-agent RL in single-tenant en-
vironments?

§8.3 What is the resource overhead of SIMPPO?
§8.4 Is SIMPPO scalable with respect to converged rewards,

online policy-serving performance, and retraining time?

8.1 Incremental Training
During the policy-training stage, we intentionally added
and removed a few agents at random from the environment
to evaluate the adaptability of the SIMPPO model to agent
updates. Fig. 10 shows the training curves of SIMPPO in
multi-tenant environments. To start with, we created 12 func-
tions (one from each benchmark in Table 3); each function
was then managed by an initialized SIMPPO agent. Since
all agents used the team reward (i.e., the average reward
across all agents), Fig. 10 shows the evolution of the average
total reward per episode. All agents were able to reach a
stable converged policy after around 500 episodes (around 2
hours). Then, at episode 800, we updated the multi-tenant en-
vironment by adding five functions (randomly selected from
the benchmarks), each of which was managed by a separate
SIMPPO agent. As shown in the figure, the total reward per
episode dropped by 16.6%; that happened mainly because

the five new SIMPPO agents started to learn the optimal pol-
icy, which initially leads to low reward values. After around
300 more episodes (around 1.2 hours), the learning curve of
the SIMPPO agents was able to converge again. We updated
the environment three more times (with one update after
every 800 episodes) by either adding five (randomly chosen)
new functions or removing five (randomly chosen) exist-
ing functions. We observed a similar reward drop and later
convergence to about the same level after several hundred
training episodes. When we removed five existing functions
from the environment, the reward drop (i.e., 11.3%) was not
as large as in the previous cases. We attribute the smaller
reward drop to the fact that there was no added agent whose
reward could start to become randomly lower than that of
a trained agent. The team reward still dropped because of
the fluctuation of the environment as five functions were
removed.
Ablation Study. To study the benefit of neural network
parameter sharing brought to incremental training, we im-
plemented a variant of SIMPPO without parameter sharing
between any two SIMPPO agents; Fig. 11 shows its training
curves in the same experimental setup used for the vanilla
version of SIMPPO. The benefit of network parameter shar-
ing is manifested in the retraining phase when there is a
significant change to the agent group. Compared to SIMPPO
without network parameter sharing, the vanilla version has a
20–54.8% smaller reward drop each time functions are added
to or removed from the platform. Consequently, the retrain-
ing time is reduced by about half (from around 600 episodes)
using the learned based model of each type of functions.

8.2 Online Policy-serving Performance
We saved the checkpoints at the 3200th episode for all agents
in §8.1 and used those checkpoints to evaluate the online
performance during policy serving for all functions together
on the serverless platform. We observed that the function
performance was similar at different episodes when the
agents’ behavior converged. At the 3200th episode, there
were 27 functions in total (all function benchmarks were
used). Fig. 12 shows a function performance comparison be-
tween SIMPPO in the multi-tenant environment and S-RL
trained in a single-tenant environment, i.e., the baseline.
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We average over all function instances of the same func-
tion benchmark. As shown in the figure, SIMPPO is able
to provide online performance comparable to that of the
baseline, with the performance degradation ranging from
1.8% (for Sentiment-Anlys, 1190.2 ms to 1211.5 ms) to 9.2%
(for Markdown2HTML, 178.8 ms to 196.8 ms). In contrast, the
performance degradation for ENSURE in multi-tenant envi-
ronments ranged from 26.9% to 32.5%, up to 21.4× higher than
for SIMPPO (for Uploader, SIMPPO improves the degrada-
tion from 31.6% to 1.5%). Compared to the single-agent RL
trained in multi-tenant environments (as shown in §5.2 and
Fig. 5), SIMPPO achieved from 2× (for Uploader, 283.4 ms
to 576.3 ms) to 4.5× (for Graph-MST, 651.8 ms to 2902.6 ms)
improvement in terms of the 99th-percentile function la-
tency. In terms of different application categories, we found
that SIMPPO performs better for I/O-intensive (1.5–3.6%),
then CPU-intensive (3.9–4.2%), and memory-intensive (7.9–
9.2%) workloads. We attribute this to better performance
predictability of I/O-intensive functions [45] which are less
sensitive to memory-bandwidth/CPU contention compared
to memory or CPU-intensive workloads.

Ablation Study. To study the importance of feature selec-
tion with domain knowledge when constructing the auxil-
iary global states, we implemented a variant of SIMPPO by
replacing the selected auxiliary global states with the aver-
age of all individual states from each agent, as suggested
in mean-field theory. Fig. 12 (in the yellow bars denoting
SIMPPO-All) shows its online performance in the same ex-
perimental setup used for the vanilla version of SIMPPO.
We found that the performance degradation from the single-
agent RL baseline in single-tenant settings increased by 2.6×
(HTML-Gen) to 9.7× (Graph-MST) compared to the vanilla ver-
sion of SIMPPO. The results indicate that our selection of
auxiliary global states based on domain knowledge avoids
redundant features that increase training time (not shown in
this paper) and negatively affect policy-serving performance
because it is hard for the neural network to learn to extract
the real, useful features.

8.3 Policy Training and Serving Overhead
RLModel Overhead. The actor and critic networks for each
SIMPPO agent consist of 4993 parameters (i.e., 28 KB) that
are mostly from two neural-network layers with 64 hidden
units per layer. Since SIMPPO is implemented in Python
with several machine learning libraries such as PyTorch, the
imported libraries account for about 166 MB of memory
that is shared across all SIMPPO agents. The last part of
memory consumption comes from the intermediate data
(such as RL state-action transitions and reward vectors) used
during training; the size of this memory is proportional to
the number of agents and is about 2 MB per agent on average
(as shown in Fig. 13).
RL Policy-training Overhead. To measure the overhead
of RL training for learning an optimal resource management
policy, we profile SIMPPO’s training process, which proceeds
in iterations. The agents all update their model parameters in
parallel (using the training approach described in §7.2). The
RL step() function takes 240 ± 13 ms, and the actor-critic
network parameter update takes an average of 1.34 ± 0.21 s
(i.e., five SGD epochs). Thus, in total, training from scratch
takes up to around 2 hours, and incremental retraining takes
around 0.2–1.8 hours (on Intel Xeon E5-2683). Retraining
can be performed infrequently depending on environment
stability. We note that since function execution and policy
training are asynchronous, the training cost does not directly
affect the execution time. However, agents during training
are not able to produce optimal decisions although functions
can still execute to completion. Most CPU time is spent on
network parameter updating, and the overall CPU utilization
during training is negligible (i.e., 0.6% per SIMPPO agent, as
shown in Fig. 13), since the parameter update is performed
only once per iteration.
RL Policy-serving Overhead. Mapping of a current state
to derive an action requires about 240 ms on average (the
same as the RL step() function during policy training). As
the function container resource management is on an inde-
pendent control plane and asynchronous with the function
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Table 4: Scalability analysis of SIMPPO in terms of re-
training time in episodes (RT) and reward drop per-
centage (RDP) after a function churn (i.e., addition or
removal of functions).
From FN Churn Add New Functions Remove Functions

+2 FNs +5 FNs + 10 FNs -2 FNs -5 FNs -10 FNs

5 FNs RDP (%)† 17.9% 20.2% 38.6% 9.1% — —
RT (# Eps)‡ 288.5 ± 22 369.9 ± 18 435.6 ± 24 129.6 ± 19 — —

20 FNs RDP (%) 13.3% 16.6% 42.7% 9.3% 10.3% 16.2%
RT (# Eps) 234.4 ± 21 325.6 ± 20 455.1 ± 20 133.4 ± 18 190.5 ± 17 309.1 ± 20

35 FNs RDP (%) 13.0% 15.4% 31.4% 7.1% 8.8% 14.4%
RT (# Eps) 216.4 ± 20 284.8 ± 18 315.4 ± 19 120.7 ± 17 167.6 ± 18 268.7 ± 20

50 FNs RDP (%) 9.3% 12.8% 24.2% 5.8% 6.6% 11.0%
RT (# Eps) 145.8 ± 17 243 ± 16 289.7 ± 21 105.1 ± 14 149.3 ± 16 248.5 ± 18

65 FNs RDP (%) 8.7% 10.3% 21.5% 4.9% 5.9% 11.3%
RT (# Eps) 150.2 ± 15 208.6 ± 14 247.2 ± 17 82.6 ± 15 126.5 ± 15 208.3 ± 17

80 FNs RDP (%) 6.9% 9.8% 18.5% 3.8% 5.1% 7.8%
RT (# Eps) 140.0 ± 15 204.4 ± 13 241.8 ± 16 66.4 ± 17 117.5 ± 14 228.6 ± 21

95 FNs RDP (%) 6.0% 8.5% 17.0% 3.2% 4.7% 7.4%
RT (# Eps) 135.8 ± 13 193.0 ± 12 215.3 ± 15 54.0 ± 15 100.6 ± 12 141.3 ± 17

110 FNs RDP (%) 5.9% 7.7% 14.9% 3.0% 4.8% 6.5%
RT (# Eps) 136.1 ± 11 185.8 ± 13 196.2 ± 15 47.2 ± 11 97.9 ± 13 132.0 ± 17

†RDP = (𝑅𝑏𝑒 𝑓 𝑜𝑟𝑒 − 𝑅𝑎𝑓 𝑡𝑒𝑟 )/𝑅𝑏𝑒𝑓 𝑜𝑟𝑒 ‡RT: Num. of RL training episodes for SIMPPO to converge

request scheduling or serving, the RL decision latency does
not directly impose any overhead on function execution.
The CPU utilization during policy serving is negligible (i.e.,
0.3% per SIMPPO agent). With reasonable resource overhead,
SIMPPO still improves utilization efficiency.

8.4 Scalability Analysis
Finally, we deployed an OpenWhisk cluster with SIMPPO
on 22 VMs on IBM Cloud. One VM with 8 cores and 32 GB of
memory hosted containers for the controller and other main
components, including Nginx and Kafka. One VM with 16
cores and 16 GB of memory hosted all RL agents. Each of the
remaining 20 VMs had 8 cores and 16 GB of memory, and
hosted an invoker to run the functions in Docker containers.
We first confirmed that SIMPPO’s training convergence and
online policy-serving performance were unchanged com-
pared to those for the local cluster for settings specified in
§8.1 and §8.2. We then further increased the number of reg-
istered functions from 20 to 130 (with the total available
memory capacity and cores scaled linearly with the number
of functions). We swept over the number of functions to add
or remove functions (i.e., 2, 5, or 10 functions) each time
function churn happened.
Incremental Training.At each function churn, we recorded
the per-episode reward drop from the previously converged
reward to the reward received at the first episode after the
churn. To evaluate the effect of agent group size on SIMPPO’s
incremental training, we also recorded the retraining time
required to reach convergence. Table 4 shows the reward
drop percentage and the retraining time (in terms of the
number of training episodes). We observe that as the number
of functions increases from 5 to 110, the reward drop percent-
age first increases and then decreases after the number of
functions is greater than 35. When we added 2 or 5 functions
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at a time, SIMPPO had the highest reward drop (i.e., 17.9%
and 20.2%) if there were 5 existing functions; when we added
10 functions, SIMPPO had the highest drop (i.e., 42.7%) if
starting at 20 functions. Accordingly, the retraining time has
similar trends, as retraining is done until the per-episode re-
ward converges to a stable value (not changing by more than
2%). The most expensive training cost ranged from 196.2 to
455.1 training episodes, on average, for each starting number
of functions (about 0.8 to 1.8 hours). Removal of functions
results in less reward drop and thus less retraining time for
each setup, the same as what we describe in §8.1. As the num-
ber of functions increases to 110, the reward drop percentage
and the retraining cost decrease to as little as 3.0% and 47.2
training episodes. We attribute this to the formulation of aux-
iliary global states for each agent that is used to model and
approximate the collective behavior of all the other agents.
As the number of agents in the system increases, the distur-
bance introduced at each function churn gets smaller and
the approximation error goes down [4, 49, 50].

Policy-serving Performance.We evaluated the online per-
formance of the learned SIMPPO model when the number
of agents was 20 and 110 by taking the model checkpoints
after convergence. Fig. 14 shows that the distributions of
both function end-to-end latency and CPU utilization for
the model-serving benchmark Sentiment-Anlys are almost
the same whether the number of agents is 20 or 110. (Sim-
ilar trends were observed for other function benchmarks
but are not shown in the figure.) The percentage difference
of the p99 latency for each function between the 20- and
110-agent settings is smaller than 1.9%. More rigorously, we
ran statistical testing to determine whether the two empiri-
cal data distributions are the same (i.e., the null hypothesis).
The results show that the two-sided p-values for function
latency and CPU utilization are 0.56 and 0.67 (> 0.05) so we
cannot reject the null hypothesis. Therefore, we conclude
that SIMPPO’s online policy-serving performance is scalable
in the number of agents.
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Throughput. As the number of SIMPPO agents increases,
the generated resource-scaling actions per time step grows
almost linearly (as shown in Fig. 15), with the overhead
mainly coming from the calculation of the auxiliary global
states. Compared to the throughput that the OpenWhisk
controller is able to handle, SIMPPO’s throughput demand
becomes smaller, but the difference shrinks as the number
of invokers increases. In §9, we discuss a potential solution
for scaling beyond the controller’s limit.

9 Discussion
Performance SLOs. No commercial cloud provider offers
SLOs on performance (only availability), which hinders the
adoption of latency-critical services on serverless platforms.
Thoughwe infer SLOs by profiling applications, amechanism
to convey any SLO preference is needed. We also assume
that all user requests sent to the same function correspond
to the same SLO. However, the RL policy may not converge
when an unachievable SLO is specified. SLO-aware serverless
resource management could potentially (a) enable the server-
less provider to offer SLO guarantees and change pricing
models to be SLO-aware; (b) enable the adoption of laten-
cy-sensitive applications from traditional cloud computing
to serverless computing.

Scalability Bottleneck. To scale scheduling and resource
management, the most widely used approach [15, 54, 58, 67,
69] is to partition the cluster into several system pools and
have one controller per system pool. This ensures that a
controller does not become a scalability bottleneck. In that
scenario, SIMPPO can be applied to make optimal decisions
within each system pool.
CompatibilitywithNon-RL-basedApproaches. SIMPPO
can be applied to non-RL-based approaches by replacing
RL’s policy network with their static resource management
policy. For example, the most common scaling approach in
Kubernetes [12] is threshold-based scaling [31]. For a de-
ployment with a target CPU utilization of 50%, if five pods
are currently running and the mean CPU utilization is 75%
(i.e., state), the controller will add 3 replicas (i.e., action)
to move the pod average closer to the target. High-stakes
applications or those with high function churn rates could
use non-RL-based approaches and train the RL model in an
offline manner [34, 66].
Function Churn Rate. High function update frequency
could lead to repeated retraining of the RL model whenever
there is a significant change to the environment, although
the retraining is less necessary for larger agent group sizes
(as shown in §8.4). The retraining overhead could outweigh
the benefits of the learning-based approaches if the churn
rate is too high. SIMPPO leverages network parameter shar-
ing to facilitate fast incremental training. In addition, the
retraining problem could be alleviated in a private cloud or

dedicated clusters for enterprise customers, since the appli-
cations evolve more slowly than individual customers [59].
Function Payloads. SIMPPO assumes that the payloads
to a function are fixed or result in deterministic execution
times (e.g., ML model serving). However, as the payload size
increases, execution time might increase, and the function
SLO should be redefined.
Function Chains. SIMPPO does not explicitly consider
function dependencies. Since our approach is reactive (auto-
scaling based on observation), dependencies are indirectly
addressed through performance or utilization measurements.
To explicitly model dependencies, critical service localization
in FIRM [44] could be potentially applied.
Extensibility. SIMPPO could be potentially applied to generic
multi-dimensional autoscaling or resourcemanagement prob-
lems but not in the IaaS domain because each tenant manages
resources, andmaintains performance-SLOs, but cannot peek
into others. To allow more than one objective among a wide
range of users, a function with different objectives needs
to be turned into different instances each of which is then
managed by an agent. The RL reward function also needs to
be updated if the objective is not about latency.
Multi-type Virtual Agents. Agents managing functions
that have different behaviors (e.g., compute- or memory-
intensive) can be represented using separate virtual agents.
In addition, different percentile statistics, such as median
or p99, can be used to help estimate the collective behavior
more accurately. We leave the exploration of multi-type fine-
grained virtual agents to future work.

10 Conclusion
This paper presents the issues involved in infusing multiple
learning-based resource management agents in multi-tenant
serverless platforms through a quantitative characterization
study. We then propose SIMPPO, a scalable and incremental
MARL framework that (a) resolves the many-agent training
non-convergence problem while providing online policy-
serving performance comparable to that of the baseline (i.e.,
S-RL in isolation), and (b) is scalable and adaptive to varying
agent groups with reasonable resource overhead.
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