
Is Function-as-a-Service a Good Fit for
Latency-Critical Services?

Haoran Qiu
University of Illinois, Urbana-Champaign

Urbana, Illinois, USA
haoranq4@illinois.edu

Saurabh Jha
University of Illinois, Urbana-Champaign

Urbana, Illinois, USA
sjha8@illinois.edu

Subho S. Banerjee
University of Illinois, Urbana-Champaign

Urbana, Illinois, USA
ssbaner2@illinois.edu

Archit Patke
University of Illinois, Urbana-Champaign

Urbana, Illinois, USA
apatke@illinois.edu

Chen Wang
IBM Research

Yorktown Heights, New York, USA
chen.wang1@ibm.com

Hubertus Franke
IBM Research

Yorktown Heights, New York, USA
frankeh@us.ibm.com

Zbigniew T. Kalbarczyk
University of Illinois, Urbana-Champaign

Urbana, Illinois, USA
kalbarcz@illinois.edu

Ravishankar K. Iyer
University of Illinois, Urbana-Champaign

Urbana, Illinois, USA
rkiyer@illinois.edu

Abstract
Function-as-a-Service (FaaS) is becoming an increasingly
popular cloud-deployment paradigm for serverless comput-
ing that frees application developers from managing the
infrastructure. At the same time, it allows cloud providers
to assert control in workload consolidation, i.e., co-locating
multiple containers on the same server, thereby achieving
higher server utilization, often at the cost of higher end-to-
end function request latency. Interestingly, a key aspect of
serverless latency management has not been well studied:
the trade-off between application developers’ latency goals
and the FaaS providers’ utilization goals.

This paper presents a multi-faceted, measurement-driven
study of latency variation in serverless platforms that eluci-
dates this trade-off space. We obtained production measure-
ments by executing FaaS benchmarks on IBM Cloud and a
private cloud to study the impact of workload consolidation,
queuing delay, and cold starts on the end-to-end function
request latency. We draw several conclusions from the char-
acterization results. For example, increasing a container’s
allocated memory limit from 128 MB to 256 MB reduces the
tail latency by 2× but has 1.75× higher power consumption
and 59% lower CPU utilization.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
WoSC ’21, December 6, 2021, Virtual Event, Canada
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9172-6/21/12. . . $15.00
https://doi.org/10.1145/3493651.3493666

CCS Concepts
• Software and its engineering → Cloud computing;
Scheduling; • General and reference →Measurement.

Keywords
Serverless Computing, Function-as-a-Service, Resource Man-
agement, Performance Modeling, Multi-tenancy
ACM Reference Format:
Haoran Qiu, Saurabh Jha, Subho S. Banerjee, Archit Patke, Chen
Wang, Franke Hubertus, Zbigniew T. Kalbarczyk, and Ravishankar
K. Iyer. 2021. Is Function-as-a-Service a Good Fit for Latency-
Critical Services? . In Seventh International Workshop on Server-
less Computing (WoSC7) 2021 (WoSC ’21), December 6, 2021, Vir-
tual Event, Canada. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3493651.3493666

1 Introduction
Serverless Function-as-a-Service (FaaS) is an emerging cloud
computing paradigm that frees customers (i.e., application
developers) from infrastructure management tasks such as
resource provisioning and scaling. Customers are charged
only based on function execution time, hence it is becoming
a popular cloud computing paradigm for the deployment
of bursty services (e.g., social media [6] and machine learn-
ing model serving [11]) as cloud functions [3, 6]. However,
FaaS suffers from high variability in end-to-end latency (i.e.,
function request completion time) [20]. Such variation hin-
ders the adoption of FaaS for latency-critical, user-facing
cloud services with strict performance-based service-level
objectives (SLOs) [3, 8, 12, 20]. In traditional cloud comput-
ing paradigms, customers could configure cloud resources
(e.g., number of cores and memory limits) to overprovision
to meet their end-to-end SLOs. However, in FaaS platforms,
cloud providers completely manage resource provisioning

https://doi.org/10.1145/3493651.3493666
https://doi.org/10.1145/3493651.3493666
https://doi.org/10.1145/3493651.3493666

WoSC ’21, December 6, 2021, Virtual Event, Canada H. Qiu, S. Jha, S. Banerjee, A. Patke, et al.

Container Provisioning and Initialization Queueing

Request
Received

Init Time

/init /run END
Request
Received

Invoker
Found

Wait Time Exec Time

/run END

Cold-startWarm-start

Image/
Code Pull

Figure 1: Breakdown of end-to-end latency for cold
starts and warm starts in OpenWhisk [2] (defined in
Section 2).

Invoker

Docker

C1 C2 C3

Client Request
Generator

API
Gateway Controller

Data Store …

Master Node Worker Node

Ci Function Container

Figure 2: Distributed OpenWhisk [2] architecture.

to achieve workload consolidation, i.e., co-locating multiple
containers on the same server. Such consolidation achieves
higher server utilization, often at the cost of higher end-to-
end latency [14, 16].

In order to address this end-to-end latency variation prob-
lem, the trade-offs between customers’ latency goals and
cloud providers’ utilization goals must be studied. Under-
standing the trade-off space will allow cloud providers and
customers to more optimally set configuration parameters
to provide end-to-end latency guarantees and other SLOs
(e.g., FaaS availability). This paper presents a multi-faceted,
measurement-driven study of latency variation in server-
less platforms that elucidates the trade-off space and the
conflicting goals between the two parties. We obtained pro-
duction measurements by executing widely used FaaS bench-
marks [18, 23] on an open-source serverless platform, Open-
Whisk [2], running on both a public (IBM Cloud) and our
private cloud. We show an in-depth latency variation analy-
sis done by breaking down the end-to-end latency into three
phases: wait, execution, and initialization times (labeled as
1 , 2 , and 3 , respectively, in Fig. 1).

Results. Our main results are as follows.

(i) Latency-Utilization-Power Trade-off. Increasing resource
granularity (e.g., increasing a container’s allocated mem-
ory limit from 128 MB to 256 MB) reduces the 99th per-
centile (P99) latency by up to 2× (from 3192 ms to 1063 ms)
but consumes up to 1.75×more power (49W higher), while
reducing the average CPU utilization by up to 59% (from
99%). We describe these results further in Section 3.1.

(ii) Latency Variability due to Shared Resource Contention.Com-
pared to isolated runs, P99 latencies increase by up to
32.6×, 28.9×, and 4.4× for CPU, memory, and last-level
cache (LLC) sensitive workloads, respectively, because of

Table 1: Serverless benchmarks adopted from [18, 23].
Benchmark Description

Base64 Encode and decode a string with the Base64 algorithm.
Primes Find the list of prime numbers less than 107.
Markdown2HTML Render a Base64 uploaded text string as HTML.
Sentiment-Analysis Generate a sentiment analysis score for the input text.
Image-Resize Resize the Base64-coded image with new sizes.

shared resource contention. Moreover, state-of-the-art re-
source partitioning or distribution technologies like Linux
CFS cpu.shares and Intel CAT/MBA [10] fail to mitigate
tail latency variations. When using these technologies,
P99 latencies increase (compared to isolated runs) by up
to 8.3×, 21.5×, and 2.3× for CPU, memory, and LLC sen-
sitive workloads, respectively. We discuss these results
further in Section 3.2.

(iii) Breakdown of End-to-end Latency. Increasing the horizon-
tal concurrency (i.e., number of containers) from 2 to 12
on a single server via decreasing resource granularity re-
duces P99 wait time by 49.5× from 1820 ms, increases P99
initialization time by 1.3× from 409 ms, and increases P99
execution time by 15.6× from 484 ms. Wait times dominate
the end-to-end latency at lower concurrencies (2–4) while
execution times dominate at higher concurrencies. We
describe these results further in section 3.3.

2 Experimental Setup
Serverless FaaS Platform. A serverless FaaS platform runs
functions in response to invocations (i.e., requests). It consists
of a central controller and a group of invokers. We chose Open-
Whisk [2], a production-grade serverless platform based on
Docker containers. Fig. 2 shows the architecture of a dis-
tributed OpenWhisk platform. The controller allocates CPU
and RAM for each function container and places the con-
tainer at an invoker. When requests come in via the API
Gateway, the controller distributes the requests to invoker(s).
An invoker executes a function after it gets the request and
the results are written to a Data Store. A container is evicted
after an idle timeout of 10 minutes (default in OpenWhisk).

Serverless Benchmarks. The benchmarks used in this
study (listed in Table 1) are from widely used open-source
FaaS benchmark suites [18, 23]. They include both microben-
chmarks and macrobenchmarks, which have different run-
time behaviors and resource demands (e.g., CPU utilization
and memory bandwidth utilization). The functions are writ-
ten in either Python or Java.

Cluster Setup and Experimental Methodology. We
deployed OpenWhisk [2] on five VMs in IBM Cloud as well
as our private cloud with five physical nodes. Both clusters
have 1 master node and 4 worker nodes (shown in Fig. 2).
Each VM in IBM Cloud has 4 vCPUs and 16 GB memory.
Each node in our private cloud has a dual-socket Intel Xeon
E5-2683 v3 processor with 14 cores per socket and 500 GB

Is Function-as-a-Service a Good Fit for Latency-Critical Services? WoSC ’21, December 6, 2021, Virtual Event, Canada

50%

CP
8

8t
LlL

za
tLo

n

CG1
CG2

)G

2 4 6 8 10 12 14 16
0

500

1000

1500

Av
g

La
tH

nF
y

(P
s)

)G CG

2 4 6 8 10 12 14 16
HoULzontal ConFuUUHnFy

0

2000

Ta
Ll

La
tH

nF
y

(P
s)

)G CG

37% 42%

41% 48%

44% 67%

7.9%

12.5%

(a) End-to-end latency and CPU utilization

0

500

1000

1500

Av
g

La
te

nc
y

(m
s) FG (wait) FG (exec)

2 4 6 8 10 12 14 16
Horizontal Concurrency

0

1000

2000

3000

Ta
il

La
te

nc
y

(m
s) CG (wait) CG (exec)

(b) Wait time and execution time

Figure 3: Performance and CPU utilization comparison between FG and CG workload consolidation policies.

memory. We used the private cloud to conduct experiments
for which we need privileged access to the machines, e.g., for
power measurement and cache partitioning. All nodes run
Ubuntu 18.04.3 LTS with Linux kernel version 4.15. Memory
swapping is disabled for the Docker service. We ran the
workload generator [18] from a separate node in the same
cluster with Poisson-distributed inter-arrival of requests and
used FaaSProfiler [18] to trace requests to measure the end-
to-end latency. Recall that Fig. 1 shows the breakdown of
end-to-end latency for serving a request in cold/warm starts:
Definition 1.Wait time is the time spent waiting in Open-
Whisk before running (queueing time for warm starts).
Definition 2. Init time is the time spent initializing the func-
tion container (e.g., language runtime) in cold starts.
Definition 3. Exec time is the time spent by each function
container in executing the request.

3 Measurements
To address the end-to-end latency variation problem in server-
less platforms for serving latency-critical workloads, we per-
formed ameasurement-driven study on the breakdown of the
end-to-end latency, as well as the trade-offs among latency,
CPU utilization, and power consumption. In particular, we
are interested in the resource granularity configuration in a
workload consolidation policy. In our experiments, we tune
the memory limits for each function container. We do this be-
cause CPU and other resources are allocated proportionally
to memory limits in serverless platforms. Resource granular-
ities are discrete points in a spectrum where a fine-grained
(FG) workload consolidation policy allocates a smaller mem-
ory limit for containers while a coarse-grained (CG) policy
allocates a larger limit. A CG policy is used in traditional
Platform-as-a-Service (PaaS) or Infrastructure-as-a-Service
(IaaS) paradigms where customers pay for the uptime of the
allocated resources. In this study, we consider the memory

limits above 256 MB as coarse-grained because PaaS plat-
forms [15] like Heroku, Google Compute Engine, and AWS
ECS/EKS allow a minimum memory capacity of 512 MB and
the smallest step size is 250 MB. We consider the limits below
256 MB as fine-grained since the smallest configurable limit
is 128 MB in OpenWhisk [2].
To help understand what role a workload consolidation

policy plays in the end-to-end latency variation problem, our
experiments focused on the following questions:
Question 1.What is the trade-off among power consump-
tion, CPU utilization, and end-to-end latency in the decision-
making of cloud providers for choosing a workload consoli-
dation policy? (Section 3.1)
Question 2. How is the performance variation affected by
fine-grained workload consolidation? (Section 3.2)
Question 3. How do different workload consolidation poli-
cies affect the breakdown percentages of different phases in
the end-to-end latency? (Section 3.3)

3.1 Latency-Utilization-Power Trade-off
Resource overcommitment achieves cost efficiency by allocat-
ing an amount of virtualized CPUs or memory that exceeds
the amount of available physical resources. Combined with
multi-tenancy, overcommitment allows serverless platforms
to multiplex limited resources across thousands of functions
and reduce the total number of servers in use [1, 21]. Over-
commitment is possible because of the use of FG workload
consolidation policies and the bursty, high-idleness nature
of FaaS workloads [3, 6, 19]. We show that the resource gran-
ularity in the CG and FG policies leads to trade-offs among
function end-to-end latency, resource utilization, and cluster
operation costs (measured in power consumption).

3.1.1 Latency Variation

In this study, each invoker was allocated 4 cores and 2 GB
memory for hosting function containers. We have chosen to

WoSC ’21, December 6, 2021, Virtual Event, Canada H. Qiu, S. Jha, S. Banerjee, A. Patke, et al.

use Base64 to demonstrate the comparison of FG and CG poli-
cies; we observed similar results for the other benchmarks.
We set the container memory size to 128 MB and 256 MB for
the FG and CG policies, respectively. With a fixed request
arrival rate of 4 RPS (50% of the max load that sustains SLO,
given the high idleness [19]), we increased the horizontal
concurrency (the number of containers) from 2 to 16 (the
maximum concurrency is limited by cluster capacity).

Fig. 3(a) shows the end-to-end latency and CPU utilization
comparison of the FG and CG policies when the concurrency
varies from 2 to 16. Note that the CG policy scales out to
two nodes (denoted as CG1 and CG2 in Fig. 3(a)) when the
concurrency is greater than 8. For all concurrency values
between 2 and 8, the difference of average and tail latencies
between the two policies is smaller than 7.9% and 12.5%,
respectively.When the concurrency is between 10 and 16, the
FG policy has a 41–48% higher average latency and a 44–67%
higher tail latency. The reason is that when the concurrency
level is high, the execution time increases because of resource
contention under the FG policy, although the wait time is
decreased because of increased concurrency (see Fig. 3(b)).
However, the CG policy has 37–42% less per-node average
CPU utilization as it scales out to two nodes.
With the same experiment setup, to show the perfor-

mance difference between the two policies, we also searched
through a larger search space of granularities between the
FG (128 to 192 MB) and CG (256 to 1024 MB) policies based
on the configurations of OpenWhisk and existing PaaS plat-
forms. Fig. 4 shows the difference between the tail latencies
of the two policies; positive values indicate performance
degradation, and negative values indicate performance gain
of the FG policy compared to the CG policy. The first row
of Fig. 4 is the latency difference between the two policies
shown in Fig. 3(a). In the cases where the FG policy consol-
idated function containers using fewer nodes than the CG
policy did, the performance degradation caused by the FG
policy ranged from 29% to 89%. The larger the granularity
gap, the larger the tail latency degradation, i.e., higher value
in Fig. 4. However, when the CG policy reached the limit of
4 invoker nodes in the cluster, the performance difference
started to reduce (e.g., for CG, a drop from 69.4% to 50.9%
at 768 MB and a drop from 79.5% to 51.3% at 1024 MB with
concurrency equal to 16) because of resource contention.
Implication. Compared to FG policies, a CG policy scales out
containers on more number of servers, resulting in less resource
contention and thus up to 67% lower end-to-end latency.

3.1.2 Trade-off Assessment
In cloud-managed service hosting, cloud providers value
lower operation costs and better resource utilization effi-
ciency [14]. Customers with latency-critical FaaS services
prefer lower costs and lower end-to-end latency (i.e., fewer

Fig. 3(a)

Figure 4: FG andCGpolicy configuration space search.

SLO violations) [6, 8]. As a result, the two conflicting goals
raise an economic quandary and questions about the exist-
ing FaaS pricing models. Fig. 5 illustrates a performance and
cost comparison between the two policies under different
workload scenarios (for which we varied the arrival rate and
concurrency). For each scenario, we measured the average
total power consumption of all nodes (used to estimate oper-
ation costs), the 99th-percentile end-to-end latency, and the
average CPU utilization across all invoker nodes. From the
cloud provider’s point of view, the FG policy helps keep the
power consumption at a lower level when the concurrency
is high (see Fig. 5(a)), and helps keep the server utilization
at a higher level (see Fig. 5(b)). Therefore, cloud providers
prefer to stay on the right side in Fig. 5(b), with low opera-
tion costs and high revenue. The CG policy consumes much
more power because of the scaling-out actions at high con-
currency levels, but it leads to less resource contention and
lower tail latency. Therefore, customers would prefer a CG
policy (typically in PaaS and IaaS where they can easily have
control of the resources that they pay for) to achieve low
end-to-end latencies (the bottom side in Fig. 5(b)).

However, the CG policy has up to 1.75× higher power con-
sumption (when the arrival rate = 2/s and concurrency = 16)
and up to 59% less average CPU utilization (when arrival rate
= 4 and concurrency = 16). The FG policy, on the other hand,
leads to data points at the right and top corner in Fig. 5(b),
where latency-critical services suffer severe performance
degradation but cloud providers achieve high server utiliza-
tion efficiency. Current FaaS pricing models [8, 9] (with no
function performance indicators) incentivize providers to go
over server capacity by selling more function invocations per
unit time, while also increasing the execution time, which
conflicts with the customers’ latency objectives. An inter-
face between the two parties to allow customers to negotiate
function performance SLOs and resource demands is missing.
Inclusion of performance SLOs helps resolve the dilemma

Is Function-as-a-Service a Good Fit for Latency-Critical Services? WoSC ’21, December 6, 2021, Virtual Event, Canada

2 4 6 8 10 12 14 16
Horizontal Concurrency

60

80

100

120

140

Po
we

r C
on

su
m

pt
io

n
(W

)

Rate = 2
Rate = 3
Rate = 4
Rate = 5
Rate = 6
Fine-grained
Coarse-grained

(a) Power consumption vs. concurrency

0.0 0.2 0.4 0.6 0.8 1.0
CPU Utilization

0

5000

10000

15000

20000

25000

30000

35000

99
%

 E
nd

-to
-e

nd
 L

at
en

cy
 (m

s)

Provider Prefers

Rate = 2
Rate = 3
Rate = 4
Rate = 5
Rate = 6
Fine-grained

0.2 0.4 0.6 0.8 1.0
CPU Utilization

Customer with LC
Services Prefers

Rate = 2
Rate = 3
Rate = 4
Rate = 5
Rate = 6
Coarse-grained

(b) Utilization vs. latency

Figure 5: Comparison of FG and CG policies in terms of power consumption, CPU utilization, and the 99th per-
centile tail latency of function invocations. The blue dotted line is the function SLO latency set based on the “knee”
of the tail-latency-to-throughput curve [4] and the red dotted line is the cluster CPU utilization goal [14].

but SLO negotiation could be challenging due to various
sources of SLO violations [16].

Implication. An FG policy leads to lower operation costs (up
to 1.75× less) and better server utilization efficiency (up to 59%
higher), while a CG policy offers the customers lower end-to-
end latency (up to 2× less). The conflicting goals of the two
parties raise questions on the pricing model (how to balance the
needs of both parties?) and on the provider-customer interface
(how should resource and performance needs be conveyed?)
when using FaaS for latency-critical workloads.

3.2 Performance Interference
Resource overcommitment via FG workload consolidation
policies helps cloud providers achieve lower operation costs
and better resource utilization efficiency, which, in turn, re-
sults in a performance penalty to the function end-to-end
latency: (i) Invocations suffer from cold starts when the
containers are paused or evicted to save space (in terms
of memory capacity) for active functions. (ii) Co-located
function containers contend for shared resources such as
CPU, memory bandwidth, last-level cache (LLC), and net-
work bandwidth, leading to interference and performance
unpredictability. Interference is particularly disruptive for
interactive, latency-critical services with strict SLOs. Recent
efforts (e.g., [1, 19]) have addressed the problem of reduc-
ing or avoiding cold-start latency. However, no prior work
has addressed the performance interference problem due to
resource contention in serverless platforms.
We first ran each serverless benchmark alone, without

any background jobs running alongside. We then co-located
each benchmark with contentious microbenchmarks run-
ning on each invoker with the same resource allocation (i.e.,
container size and concurrency). Doing so helped decouple
sensitivity to resource allocation from sensitivity to resource
contention. We studied compute-related resources (i.e., CPU

and LLC) and storage-related resources (i.e., memory). Fig. 6
shows the diverse impacts of resource interference across
the five serverless benchmarks. Typically, an application is
more sensitive to the types of resources whose utilization
tends to saturate. However, latency-critical workloads with
tight SLOs are more sensitive to any resource contention.
Thus, high resource usage does not always correlate with
sensitivity to the same resource interference.

CPU Time. We ran iBench [5], a CPU-intensive bench-
mark, at different cpu.shares ratios with the serverless
workloads (as OpenWhisk distributes CPU time by allocat-
ing CPU shares proportionally to the memory capacity). We
found that all benchmarks are most sensitive to CPU time,
such that the SLOs are violated when CPU time allocation is
insufficient. For example, the tail latency for Image-Resize
increases by 32.6× and 8.3×when the cpu.shares ratio is 1:4
and 1:1, respectively. Compared to the average latencies, tail
latencies suffer more for all cases except for Image-Resize, as
it is also dominated by I/O access and has less CPU demand.

Memory Bandwidth.We used Intel MBA [10] to enforce
memory bandwidth limits at different levels. The results
show that Base64, Markdown2HTML, and Image-Resize are
relatively sensitive to memory bandwidth contention. Both
average and tail latencies of these memory-intensive work-
loads are severely degraded while those of the Primes bench-
mark (which is computation-intensive) are not severely af-
fected. For example, the tail latency of Image-Resize increases
by 21.5× when setting MBA limit to be 20%. However, we ob-
served that the increase of tail latency is even higher (28.9×)
when no MBA partitioning is used (not shown in Fig. 6).

LLC Capacity.We used Intel CAT [10] to isolate the LLC
access at different levels. The results revealed that most
serverless benchmarks are not highly sensitive to LLC allo-
cations, especially at low load. For instance, when the LLC

WoSC ’21, December 6, 2021, Virtual Event, Canada H. Qiu, S. Jha, S. Banerjee, A. Patke, et al.

C1 C2 C3

Base64 (Avg)

Base64 (Tail)

Primes (Avg)

Primes (Tail)

Markdown2HTML (Avg)

Markdown2HTML (Tail)

Sentiment (Avg)

Sentiment (Tail)

Image-Resize (Avg)

Image-Resize (Tail)

166.8% 1497.7% 1712.7%

182.0% 1451.4% 1656.4%

114.9% 184.3% 250.0%

131.8% 272.4% 333.2%

404.5% 1120.0% 1299.8%

410.8% 1174.9% 1383.9%

128.7% 239.0% 349.3%

158.0% 321.7% 427.2%

984.1% 2920.5% 3942.5%

828.2% 2883.3% 3258.5%

CPU Time Contention

1500 3000
Normalized Latency in Percentage

M1 M2 M3 M4 M5

131.3% 175.8% 261.0% 521.3% 663.9%

200.0% 223.8% 262.4% 517.2% 671.7%

105.2% 108.8% 114.1% 126.2% 139.5%

136.6% 148.2% 153.5% 167.0% 177.8%

100.1% 103.7% 492.1% 525.9% 806.7%

121.8% 125.9% 463.8% 549.6% 828.0%

102.9% 115.8% 122.2% 135.7% 164.2%

112.9% 180.4% 183.4% 193.0% 204.6%

133.9% 134.1% 898.6% 1743.7% 2400.6%

125.7% 127.9% 1241.5% 1273.4% 2151.5%

Memory Bandwidth Contention

1000 2000
Normalized Latency in Percentage

L1 L2 L3 L4

101.0% 101.0% 103.2% 106.8%

101.0% 103.0% 104.1% 107.0%

100.7% 101.0% 102.2% 104.5%

100.2% 100.3% 101.4% 105.6%

106.9% 136.6% 175.4% 230.6%

101.3% 126.6% 164.2% 229.8%

100.7% 101.4% 103.7% 123.7%

100.9% 101.5% 101.5% 128.8%

103.1% 106.1% 111.6% 121.8%

103.7% 112.4% 114.3% 125.6%

LLC Contention

120 180
Normalized Latency in Percentage

Figure 6: Performance impact of interference on shared resources including CPU time, memory bandwidth, and
LLC capacity. The value of each cell is the end-to-end latency normalized to the latency with no interference. CPU
contention levels (C1–C3) represent cpu.shares ratios 1:1, 1:2, and 1:4, respectively. Memory contention levels
(M1–M5) represent Intel MBA limits of 80%, 65%, 50%, 35%, and 20%. LLC contention levels (L1–L4) represent Intel
CAT limits of 16, 12, 8, and 4 bits, respectively .

capacity was cut to 50%, the latency increased for all bench-
marks other than Markdown2HTML ranges from 1.5% to
14.3%. However, for Markdown2HTML, the latency increase
due to LLC contention was substantially higher (2.3× for both
tail and average latencies); we attribute this to data reuse
among concurrent requests. Similar to memory bandwidth
contention, we observed that the increase of tail latency is
higher (4.4×) without LLC partitioning (not shown in Fig. 6).
Implication. Performance isolation should be carefully as-
sessed to prevent SLO violations due to resource sharing. How-
ever, when thousands of function containers are consolidated
on a single server [1, 21], state-of-the-art resource partitioning
fails to mitigate the performance interference, still with up to
8.3×, 21.5×, and 2.3× increase in tail latencies for CPU, memory,
and LLC sensitive workloads, respectively.

3.3 Breakdown of End-to-end Latency
To further explore how resource contention affects end-to-
end latencies when overcommitting resources using an FG
workload consolidation policy, we fixed the container mem-
ory limit to be 256 MB and increased the horizontal con-
currency for function Base64 from 2 to 12. Fig. 7 shows the
duration distribution of wait time, initialization time, and
execution time. Same as the experiments in Section 3.1.1
and Section 3.2, we fixed the arrival rate to be 50% of the
max load that sustains SLO. We observed that increasing the
concurrency from 2 to 12 has three impacts: (i) it reduces
the tail wait time by 49.5× from 1820 ms, (ii) it increases tail
initialization time by 1.3× from 409 ms, and (iii) it increases
tail execution time by 15.6× from 484 ms. The decrease in
wait time is due to more concurrent containers and thus less

2.0 4.0 6.0 8.0 10.0 12.0
Horizontal Concurrency

10
1

10
2

10
3

10
4

Ti
m

e
(m

s)

waitTime initTime execTime

Figure 7: Breakdown of cold-start end-to-end latency.

queueing delay. The increase in execution time and initial-
ization time is due to contention caused by running contain-
ers and the concurrent access to the data store for pulling
function code/images, respectively. Wait times dominate the
end-to-end latency when concurrency is between 2 and 4
while execution times are dominant when the concurrency
≥ 6 since the arrival rate is 4/s (as also shown in Fig. 3(b)).
Implication. The three-phase breakdown of end-to-end la-
tency varies with the concurrency-to-arrival-rate ratio.

4 Related Work
Platform-level Studies. There have been end-to-end per-
formance measurement studies on major cloud function
providers and open-source serverless platforms from the
viewpoint of a serverless customer. For instance, Wang et
al. [22] examined several issues related to resource manage-
ment, such as cold-start latencies and function placement
strategies. A characterization study [19] on two-week pro-
duction Azure Functions workloads showed function invo-
cation frequencies, patterns, and resource needs, based on
which customized keep-alive times are used for different

Is Function-as-a-Service a Good Fit for Latency-Critical Services? WoSC ’21, December 6, 2021, Virtual Event, Canada

functions. Figiela et al. [7] reported performance evaluation
results (e.g., computation performance, network throughput,
and instance lifetime) on major cloud function providers by
treating serverless platforms as black-boxes. Lee et al. [13]
evaluated the function throughput scalability for different
types of workloads, and compared serverless computing with
traditional virtual machines to study the cost-effectiveness
for different workloads.

Server-level Studies. Instead of relying heavily on re-
verse engineering of commercial function services’ behavior,
several recent studies [18, 21, 23] characterize the server-
level insights on serverless platforms. Shahrad et al. [18]
identified several architectural impacts of certain FaaS work-
loads, which include 20× more mispredictions for branch
predictors and 6× higher memory bandwidth. Yu et al. [23]
evaluated key performance metrics, ranging from network
latency and startup latency to execution time, on both com-
mercial and open-source serverless platforms. Ustiugov et
al. [21] studied the cold-start latency and function memory
footprint, and found that the dominant factor is page-fault
and poor locality in disk accesses. Each of the above mea-
surement studies was done on a single node, while this paper
presents results from a multi-node cluster.

5 Discussion
SLOs in Pricing Model. Existing FaaS pricing models [8, 9]
and resource overcommitment via FG workload consolida-
tion are favorable for workloads with loose latency objec-
tives, and the customers can save money on high-idleness
and bursty workloads. However, FaaS providers can shift the
trade-off by charging customers for optional performance
SLOs and using a more CG workload consolidation policy.
The opportunity cost for using a CG policy (as shown in
Section 3.1.2) can thus be offset by the SLO charge paid by
the customer. In addition, when a coarse granularity is fixed,
the containers can be distributed to multiple servers to avoid
high-intensity packing. To maintain high system utilization,
non-latency-critical or batch workloads can be placed to-
gether with latency-critical FaaS workloads. However, SLO
violations can have various causes [16], including bugs in
source code or function input variation, and that calls for
research on the design of an interface for performance SLO
negotiation between providers and customers.

Performance Interference Mitigation. Performance
interference caused by resource sharing poses a significant
challenge in migrating latency-critical workloads onto
serverless platforms. As shown in Section 3.2, existing state-
of-the-art resource allocation and isolation approaches fail
to mitigate the interference in serverless computing. First,
Linux CPU share is insufficient for CPU time distribution.
A system-level enforcement mechanism should be applied
(e.g., hardware thread priority or core affinity assignment)

but prompt updates is needed for utilization efficiency in
case of idle containers. Second, isolation or resource limit
enforcement for other types of resources (e.g., LLC and
memory bandwidth) should also be applied to improve the
performance predictability of serverless functions. Although
Intel CAT and MBA [10] can partition the LLC and memory
bandwidth, the number of supported partitions is limited.
There is a need to support thousands of partitions [1, 21] to
enable fine-grained resource control that can be supported
by this feature and a recent paper [17] has been working
towards a fine-grained and scalable resource isolation
mechanism.

Multi-tenancy in Decision-making. The decision to
create a new container for executing a request (cold start) or
to enqueue a request to an existing queue (warm start) de-
pends onmultiple factors, such as the request arrival patterns
of all co-located functions and the difference between con-
tainer initialization and wait time. As shown in Section 3.3,
the horizontal concurrency and its mismatch with request
arrival rates can affect wait-time behavior [18], initializa-
tion time and execution time. The initialization time for cold
starts should be compared with the wait time for warm starts.
Because of multi-tenancy, it is also needed to know if evict-
ing other containers (in shortage of memory capacity) leads
to frequent cold starts. Therefore, container-scaling conflict
prediction and handling are required to minimize the global
cold-start latencies in a multi-tenant serverless platform.

6 Conclusion and Future Work.
Our measurement study reveals that serverless FaaS is not
yet ready to serve latency-critical workloads with stringent
performance objectives. Our results show that to provide
performance predictability, serverless providers must deal
with the trade-offs in workload consolidation policies, avoid
performance interference, and balance concurrency with
arrival rates in amulti-tenant setting. For future work, we see
the potential for serverless FaaS platforms to cater to latency-
critical services, but there are open research challenges in
areas such as fine-grained resource isolation, an interface for
performance SLO negotiation between the FaaS provider and
the customers, and fairness in multi-tenant decision-making.

Acknowledgment
We thank the anonymous reviewers for their valuable com-
ments that improved the paper. We appreciate J. Applequist
and K. Saboo for their insightful comments on the early
drafts of this manuscript. This work is partially supported
by the National Science Foundation (NSF) under grant No.
CCF 20-29049; by the IBM-ILLINOIS Center for Cognitive
Computing Systems Research (C3SR), a research collabora-
tion that is part of the IBM AI Horizon Network; and by the
IBM-ILLINOIS Discovery Accelerator Institute (IIDAI). Any

WoSC ’21, December 6, 2021, Virtual Event, Canada H. Qiu, S. Jha, S. Banerjee, A. Patke, et al.

opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the NSF or IBM. Saurabh Jha
is supported by a 2020 IBM PhD fellowship.

References

[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight virtualization for serverless applications. In
Proceedings of the 17th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 2020). 419–434.

[2] Apache. 2021. OpenWhisk. https://github.com/apache/openwhisk.
[3] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander

Slominski. 2019. The rise of serverless computing. Commun. ACM 62,
12 (Nov. 2019), 44–54.

[4] Shuang Chen, Christina Delimitrou, and José F. Martínez. 2019. PAR-
TIES: QoS-Aware resource partitioning for multiple interactive ser-
vices. In Proceedings of the 24th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS 2019). 107–120.

[5] Christina Delimitrou and Christos Kozyrakis. 2013. iBench: Quantify-
ing interference for datacenter applications. In Proceedings of the 2013
IEEE International Symposium on Workload Characterization (IISWC
2013). 23–33.

[6] Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger,
Johannes Grohmann, Cristina L. Abad, and Alexandru Iosup. 2021.
Serverless applications: Why, when, and how? IEEE Software 38, 1
(Jan. 2021), 32–39.

[7] Kamil Figiela, Adam Gajek, Adam Zima, Beata Obrok, and Maciej
Malawski. 2018. Performance evaluation of heterogeneous cloud func-
tions. Concurrency and Computation Practice 30 (2018).

[8] Geoffrey C. Fox, Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. 2017. Status of serverless computing and Function-as-
a-Service (FaaS) in industry and research. In Proceedings of the 3rd
International Workshop on Serverless Computing (WoSC 2017).

[9] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-
Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018.
Serverless computing: One step forward, two steps back. arXiv preprint
arXiv:1812.03651 (2018).

[10] Intel. 2021. Intel RDT. https://github.com/intel/intel-cmt-cat.
[11] Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. 2018.

Serving deep learning models in a serverless platform. In Proceedings
of the 2018 IEEE International Conference on Cloud Engineering (IC2E
2018). 257–262.

[12] Joanna Kijak, Piotr Martyna, Maciej Pawlik, Bartosz Balis, and Maciej
Malawski. 2018. Challenges for scheduling scientific workflows on
cloud functions. In Proceedings of the 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD 2018). 460–467.

[13] Hyungro Lee, Kumar Satyam, and Geoffrey Fox. 2018. Evaluation
of Production Serverless Environments. In Proceedings of the 2018
IEEE 11th International Conference on Cloud Computing (CLOUD 2018).
442–450.

[14] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. 2015. Heracles: Improving resource
efficiency at scale. In Proceedings of the 2015 ACM/IEEE 42nd Interna-
tional Symposium on Computer Architecture (ISCA 2015).

[15] PaaS Pricing. 2021. https://aws.amazon.com/fargate/pricing/.
[16] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk,

and Ravishankar K. Iyer. 2020. FIRM: Intelligent fine-grained resource
management for SLO-oriented microservices. In Proceedings of the 14th

USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2020). 805–825.

[17] Haoran Qiu, Yongzhou Chen, Tianyin Xu, Zbigniew T. Kalbarczyk,
and Ravishankar K. Iyer. 2021. SLO beyond the Hardware Isolation
Limits. arXiv:2109.11666 [cs.OS]

[18] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019.
Architectural implications of Function-as-a-Service computing. In Pro-
ceedings of the 52nd International Symposium on Microarchitecture
(MICRO 2019). 1063–1075.

[19] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the wild: Char-
acterizing and optimizing serverless workload at a large cloud provider.
In Proceedings of the 2020 USENIX Annual Technical Conference (ATC
2020). 205–218.

[20] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth
Lanka. 2020. Sequoia: Enabling Quality-of-Service in serverless com-
puting. In Proceedings of the 11th ACM Symposium on Cloud Computing
(SoCC 2020). 311–327.

[21] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion,
and Boris Grot. 2021. Benchmarking, analysis, and optimization of
serverless function snapshots. In Proceedings of the 26th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2021). 559–572.

[22] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking behind the curtains of serverless plat-
forms. In Proceedings of the 2018 USENIX Annual Technical Conference
(ATC 2018). 133–146.

[23] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu,
Pingchao Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing
serverless platforms with ServerlessBench. In Proceedings of the 11th
ACM Symposium on Cloud Computing (SoCC 2020). 30–44.

https://github.com/apache/openwhisk
https://github.com/intel/intel-cmt-cat
https://aws.amazon.com/fargate/pricing/
https://arxiv.org/abs/2109.11666

	Abstract
	1 Introduction
	2 Experimental Setup
	3 Measurements
	3.1 Latency-Utilization-Power Trade-off
	3.2 Performance Interference
	3.3 Breakdown of End-to-end Latency

	4 Related Work
	5 Discussion
	6 Conclusion and Future Work.
	References

