
Power-aware Deep Learning Model Serving
with μ-Serve

USENIX ATC 2024

Haoran Qiu1, Weichao Mao1, Archit Patke1, Shengkun Cui1, Saurabh Jha2

Chen Wang2, Hubertus Franke2, Zbigniew T. Kalbarczyk1, Tamer Basar1, Ravishankar K. Iyer1

1UIUC 2IBM Research

Trends in Deep Learning and LLM Era

[1] Compute Trends across Three Eras of Machine Learning. J. Sevilla, L. Heim, et al. https://arxiv.org/abs/2202.05924

Moore’s Law (2x every 18 months)

CPU

GPUDL Demand (10x every 18 months)

TPU

Efficiency is the key to further unlock scaling!

Performance efficiency

Utilization efficiency

Power efficiency?

2

https://arxiv.org/abs/2202.05924

Deep Learning / LLM Model Lifecycle

3

Model Serving

Fine-tuning
Domain-specific
Dataset

…
Fine-tuned LLMs

Chatbots,
Coding assistants,
Recommenders,
Marketing,
Search, …

Google estimate that, in 2020-22, 40% of carbon footprint
goes to model training while 60% goes to model serving. [1]

[1] Good News About the Carbon Footprint of Machine Learning Training. https://blog.research.google/2022/02/good-news-about-carbon-footprint-of.html
[2] Sustainable AI: Environmental Implications, Challenges, and Opportunities. https://arxiv.org/abs/2111.00364

At Meta, power capacity breakdown is 10:20:70 for AI infrastructures
used for Experimentation, Training, and Inference. [2]

https://blog.research.google/2022/02/good-news-about-carbon-footprint-of.html
https://arxiv.org/abs/2111.00364

Contribution

4

𝝁-Serve is the first power-aware deep learning model serving system that
achieves 1.2-2.6x power saving while preserving SLOs
• Open-sourced at: https://gitlab.engr.illinois.edu/DEPEND/power-aware-model-serving

Power
Consumption

Performance
SLOs

https://gitlab.engr.illinois.edu/DEPEND/power-aware-model-serving

Model Serving Systems

Model Multiplexing

Request Scheduling

Model Serving System

M1 M3
M4

M1 M3M2

M4

…

M1 M3 …

UsersApplications

Requests

M2
M5

Model Registry
(ready-to-serve models)

Deploy

Worker 1

Exec Runtime

Worker 2

GPU Cluster

…

Worker N
…

5

Power Saving Opportunities
214w -> 120w: 44% reduction

SLO

800 MHz
1.3 GHz

6

Power Saving Opportunities
214w -> 120w: 44% reduction

SLO

800 MHz
1.3 GHz

7

Similarly observed in production
POLCA (Microsoft, ASPLOS24)

Challenge #1: Coarse-grained GPU Frequency Tuning

What frequency to run?

M1 M3M2

M4

…

M1 M3 …

Worker 1

Exec Runtime

Worker 2

GPU Cluster

…

Worker N
…

GPU1 Model A B C …

GPU2 Model B D E …

GPUN Model C A D …

…

Hard to figure out the optimal frequency

A model or a
model partition

Power saving opportunity limited by the
most sensitive partition since each device

only supports coarse-grained tuning.

8

Challenge #2: Non-deterministic LLM Executions

• Autoregressive nature of LLMs

• Can lead to head-of-line (HoL)
blocking in FCFS

• Likely SLO violations on job
completion times (JCT)

2 2 8

8 2 2

Queue

(8+(8+2)+(8+2+2)) / 3 = 10

(2+(2+2)+(2+2+8)) / 3 = 6

Head-of-line blocking

Avg JCT:

Dataset: LMSYS-Chat-1M
A Large-Scale Real-World LLM Conversation Dataset

Power saving opportunity limited by
non-determinism and HoL problems

40% saving in JCT
9

Observation #1: Model Partitions Have Diverse Sensitivities

GPU1 A B C

GPU2 D

D

A B E

GPU1 A B C

GPU2 D

D

A B E

A B C D Less sensitive to
frequency reduction

DA B E More sensitive to
frequency reduction

😃

🙁

🙁

🙁 A model or a
model partitionA

Power-aware partitioning and
placement based on sensitivities
can potentially increase power-

saving “opportunities”

𝒔𝒐𝒇𝒕𝒎𝒂𝒙
𝑸𝑲𝑻

𝒅
𝑽

Sensitivity to Frequency Reduction
10

• A small proxy model (e.g., BERT-base/tiny) can predict well

• Intuition: Hints on the output length (number of tokens) of LLM responses
• “Translate…” -> Response length approximate to the prompt length
• “Write an article about…” -> Long response
• “Summarize…” -> Shorter response than the input query

How can identity
protection services help

protect me against
identity theft?

LLM
(Model to Serve)

Output Length
Predictor

Many identity protection
services monitor your credit
reports , public records, and

other sources for…

~200 tokens

Input Query

Output

Proxy models can indicate LLM
verbosity to avoid HoL and potentially
increase power-saving “opportunities”

11

Observation #2: A Small Proxy Model Knows LLMs’ Verbosity

Design of 𝝁-Serve: Power-aware DL/LLM Model Serving

Monitoring
Datastore

Dynamic GPU
Frequency Scaler

[Online Phase]

Model
Specifications

GPU Cluster
Specifications

[Offline Phase]

Power-aware
Model Partitioning

with Parallelism

Extending AlpaServe
(OSDI 2023)

Power-aware
Model Placement

Model Partition
Placement Plan

Primitive
Operators [1]

Sensitivity
Score Database

Profiling

Runtime Request
SchedulerProxy Model

Exec time
prediction

[1] XLA’s HLO Representation, https://github.com/openxla/stablehlo/blob/main/docs/spec.md#ops

Proxy Model Runtime Request
Scheduler

12

https://github.com/openxla/stablehlo/blob/main/docs/spec.md

How to design and train a lightweight predictor that can
understand the behavior of an LLM and estimate the output token
length before serving the request on the LLM?

13

Workflow

GPU Cluster

Gateway Model Library
Requests

Virtualization

LLM Instance

End User

2 28

How can identity
protection services

help protect me
against identity theft?

Oracle

Output Token Length

Many identity
protection services
monitor your credit

reports…

Model Outputs

Input

Input Input

Output

Request Scheduler2 8
🤯😀

14

SSJF: Prediction-based Shortest Job First Scheduling

Job
Pool

J1

J2

J3

…

Speculative
Shortest-Job-First
(SSJF) Scheduler

…

M
odels Output Token

Length PredictorPredicted
Length

<Model,
Input> Check if

Prediction
Cached

GPU
Cluster

• SSJF: Using output token length prediction as the exec time estimation
• Exec time = Const + K * Output token length

Model query overhead:
• E.g., input token processing

Prediction overhead:
• Deterministic inference time

Output

Update
Cache

Semantic
Cache

<input, length>

K: Per-token generation latency (constant for same instance)
• GPT-3.5: 35ms
• GPT-4: 94ms
• Llama-2-7B: 19ms
• Llama-2-70B: 46ms

Requests
(Input Query)

15

Users

Applications

Proxy-model-based Predictor

[CLS]

Tok 1

Tok 2
…

Tok N

… …

CLS

T1

T2

TN

BERTInput

…

[0, p25)

[p25, p50)

[p50, p75)

[p75, p99)

[p99, +)

Output Token
Length %ile

So
ft

m
ax

Pr
ed

ic
tio

n
Cl

as
se

s

Multi-class Classifier

… …

More number of classes leads to low
accuracy (regression is the hardest)

Less number of classes leads to worse
scheduling (too coarse-grained)

How to decide X-class classification? Dependent on proxy model and LLM to serve

16

Offline Dataset on
Model History Output

Evaluation:
Are the predictors lightweight?
Are the predictors useful in scheduling?
How much more power-saving opportunities does it gain?

17

System and Models Setup

• Platform: AlpaServe and Ray

• VM on IBM Cloud: 16 vCPU 128 GiB RAM
with 2x NVIDIA Tesla V100 16 GB

• Open-source LLMs and non-autoregressive
models

• Model input from LMSYS-Chat-1M and
workload patterns from Azure LLM Traces

18

Results (1): Scheduling Performance - JCT

At varying rates

At varying variations

Reduce JCT by 34.5% / 39.6% / 33.2%
 Oracle by 43.7% / 58.2% / 43.0%

Reduce JCT by 30.5% / 39.0% / 35.0%
 Oracle by 37.6% / 52.9% / 41.5%

19

Results (2): Scheduling Performance - Throughput

At varying rates

At varying variations

↑ Throughput by 3.6x / 3.0x / 2.8x
 Oracle by 4.7x / 4.1x / 3.2x

↑ Throughput by 2.6x / 2.6x / 2.2x
 Oracle by 3.4x / 3.8x / 2.7x

20

Results (3): Scheduling Performance – Proxy Model Overhead

BERT-base Prediction Overhead
Avg Inference Latency = 7.6ms
• Median = 7.6ms
• P99 = 8.0ms
• Max = 20.2ms

Model-serving Duration
• P5 = 360ms
• P1 = 140ms
• P0.1 = 140ms
• Min = 120ms

𝝁-Serve improves JCT by 30-40%
and throughput by 2.2-3.6x with

negligible runtime overhead.

21

Results (4): Power Saving

Compared to AlpaServe, 𝝁-Serve achieves 1.2–2.6x higher power saving by
dynamic frequency scaling without SLO attainment violations.

22

Summary
𝝁-Serve is the first power-aware deep learning model serving system that achieves
1.2-2.6x power saving while preserving request-serving SLOs
• Sensitivity-score based model multiplexing and placement

• Proxy-model based model serving request scheduling

• Dynamic GPU frequency scaling to exploit power-saving opportunities

23

Thank you!

Haoran Qiu1, Weichao Mao1, Archit Patke1, Shengkun Cui1, Saurabh Jha2

Chen Wang2, Hubertus Franke2, Zbigniew T. Kalbarczyk1, Tamer Basar1, Ravishankar K. Iyer1

Backup Slides

24

Results (5): At Varying Batch Sizes

𝝁-Serve continues to provide improvement in JCT and throughput
under various batch sizes with a diminishing return.

Continuous (iterative) batching > dynamic batching
(same observation as in Orca, OSDI 22)

25

Results (6): Integration with vLLM
• Model: facebook/opt-350m, max memory usage: 23.6 GB, 75-85% SM utilization

SJF (oracle) achieves 43% and 6.3x improvement in JCT and throughput than FCFS.

𝝁-Serve (SSJF) achieves 33% and 4.9x improvement in JCT and throughput than FCFS.

26

Supporting Multi-round Conversations
• Interactions with LLMs usually take multiple rounds:

• Follow up questions in the same context

• Previously: Output token prediction only for the first round

• Simple strategy: Concatenation + truncation
• Concatenate all history user prompts and LLM responses

• Truncate context longer than 512 tokens (BERT’s limit)

• Head (128) + tail (382) [Sun et al., 2019]:

P1 length()R1

R1P1 P2 length()R2

R1P1 P2 length()R3R2 P3

27

Results(7): Evaluation across conversation rounds

SSJF performance is consistent across rounds in interactive,
multi-round conversation settings.

28

(Alternative) Pairwise Prediction: Which input leads to longer output?

5 4 3

Queue

1 12 ?

Queue

?

Predicting each query into
one of the 5 classes
Insertion: O(1)

Comparing every 2 queries
and produce a binary output
Insertion: O(N) or O(logN)

• Can we have a pairwise predictor?

• Give input query A, B, it can predict which one leads to a longer output

• Rationale: We don’t need the exact prediction for every single query, but only
want to know the ranking between every pair of queries in the queue

Pairwise prediction-based scheduling

Single-query prediction-based scheduling

31

(Alternative) Pairwise Prediction: Which input leads to longer output?

[CLS]

Tok 1

Tok N
…

Tok 1’

Tok N’
…

[SEP]

… …

C

T1

TN

T[SEP]

T1

TN’

BERTInput

…

So
ft

m
ax

Pr
ed

ic
tio

n
Cl

as
se

s

Multi-class Classifier

1 (Q1 > Q2)

0 (Q1 ≤Q2)

Predicted
Label

…

Q
ue

ry
 #

1
Q

ue
ry

 #
2

• We slightly change the model architecture here to support two input queries as
input, using the [SEP] token in between to separate the two.

• Binary output: 1 representing Q1’s output > Q2’ and 0 otherwise

Pairwise predictor does not help with scheduling (because pairwise prediction is neither
commutative nor transitive) and thus we do not proceed with this design choice.

32

Pairwise Prediction Accuracy

• Prediction performance:
• Accuracy: 0.69
• Precision: 0.69
• Recall: 0.71
• F1: 0.69

• Compared to Binary Classification (single-query prediction)
• Accuracy: 0.72
• Precision: 0.74
• Recall: 0.69
• F1: 0.71

The accuracy of the pairwise predictor does not improve (slightly worse)
compared to single-query predictor with binary classification (0.69 < 0.72)

33

Does Pairwise Prediction Help with Scheduling?
• FCFS: Avg JCT: 185.16 Avg Throughput: 0.1

• SJF (Oracle): Avg JCT: 92.45 Avg Throughput: 0.31

• SJFP: Avg JCT: 179.2 Avg Throughput: 0.1 (using pairwise predictions to insert)
• Only 3.2% Improvement on top of FCFS

• SJFP: Avg JCT: 179.9 Avg Throughput: 0.11 (using ranks within the wait queue)

• SJFP: Avg JCT: 183.42 Avg Throughput: 0.1 (using ranks globally in a batch)

• The pairwise comparison is not commutative and not transitive

Queue

?
Comparing every 2 queries
and give binary output
Insertion: O(N) or O(logN)

0 1 1 1 1 Rank = 4

1 0 0 1 1 Rank = 3

0 0 0 1 1 Rank = 2

0 0 0 0 0 Rank = 0
Pairwise predictor does not help with scheduling

and thus we do not proceed with this design choice.

34

Data Cleaning
• A considerable number of samples (~4%) have “empty” responses

• Predictor accuracy significantly improves after removing all such samples

Data Cleaning
• Further observation: Some sample responses were truncated to 512 tokens in lmsys-

chat-1M, while others were not, even for the same LLM model

• Data cleaning: Remove all samples whose response length is <= 1 or >=512

Power Saving Evaluation (w/o SSJF Scheduler)

