# **ILLINOIS** IBM Research



# Power-aware Deep Learning Model Serving with μ-Serve

Haoran Qiu<sup>1</sup>, Weichao Mao<sup>1</sup>, Archit Patke<sup>1</sup>, Shengkun Cui<sup>1</sup>, Saurabh Jha<sup>2</sup> Chen Wang<sup>2</sup>, Hubertus Franke<sup>2</sup>, Zbigniew T. Kalbarczyk<sup>1</sup>, Tamer Basar<sup>1</sup>, Ravishankar K. Iyer<sup>1</sup> <sup>1</sup>UIUC <sup>2</sup>IBM Research

**USENIX ATC 2024** 

#### **Trends in Deep Learning and LLM Era**



Training compute (FLOPs) of milestone Machine Learning systems over time

[1] Compute Trends across Three Eras of Machine Learning. J. Sevilla, L. Heim, et al. <u>https://arxiv.org/abs/2202.05924</u>



[1] Good News About the Carbon Footprint of Machine Learning Training. https://blog.research.google/2022/02/good-news-about-carbon-footprint-of.html [2] Sustainable AI: Environmental Implications, Challenges, and Opportunities. https://arxiv.org/abs/2111.00364 3

# Contribution



*µ-Serve* is the first power-aware deep learning model serving system that achieves **1.2-2.6x power saving** while **preserving SLOs** 

Open-sourced at: <a href="https://gitlab.engr.illinois.edu/DEPEND/power-aware-model-serving">https://gitlab.engr.illinois.edu/DEPEND/power-aware-model-serving</a>



## **Model Serving Systems**



#### **Power Saving Opportunities**

214w -> 120w: **44% reduction** 



#### **Power Saving Opportunities**



# **Challenge #1: Coarse-grained GPU Frequency Tuning**



# **Challenge #2: Non-deterministic LLM Executions**

- Autoregressive nature of LLMs
- Can lead to head-of-line (**HoL**) blocking in FCFS
- Likely SLO violations on job completion times (JCT)

Power saving opportunity limited by non-determinism and HoL problems

Queue Avg JCT:

$$- 8 2 2 (2+(2+2)+(2+2+8)) / 3 = 6$$

40% saving in JCT

Dataset: LMSYS-Chat-1M A Large-Scale Real-World LLM Conversation Dataset



### **Observation #1: Model Partitions Have Diverse Sensitivities**



## **Observation #2: A Small Proxy Model Knows LLMs' Verbosity**



- A small proxy model (e.g., BERT-base/tiny) can predict well
- Intuition: Hints on the output length (number of tokens) of LLM responses
  - "Translate..." -> Response length approximate to the prompt length.
  - "Write an <u>article</u> about..." -> Long response
  - "<u>Summarize</u>..." -> Shorter response than

**Proxy models** can indicate LLM verbosity to avoid HoL and potentially increase power-saving "**opportunities**"

# **Design of** *µ***-Serve: Power-aware DL/LLM Model Serving**





#### How to design and train a **lightweight** predictor that can *understand the behavior* of an LLM and *estimate the output token length* **before** *serving the request* on the LLM?

## Workflow



# **SSJF: Prediction-based Shortest Job First Scheduling**



• SSJF: Using output token length prediction as the exec time estimation

• Exec time = *Const* + *K* \* Output token length

#### Model query overhead:

• E.g., input token processing

#### Prediction overhead:

• Deterministic inference time

*K*: Per-token generation latency (constant for same instance)

- GPT-3.5: 35ms
- GPT-4: 94ms
- Llama-2-7B: 19ms
- Llama-2-70B: 46ms

#### **Proxy-model-based Predictor**



Prove to decide X-class classification? Dependent on proxy model and LLM to serve?

More number of classes leads to **low accuracy** (regression is the hardest) Less number of classes leads to worse scheduling (too **coarse-grained**)



**Evaluation:** Are the predictors **lightweight**? Are the predictors **useful in scheduling**? How much more **power-saving opportunities** does it gain?

#### System and Models Setup

- Platform: AlpaServe and Ray
- VM on IBM Cloud: 16 vCPU 128 GiB RAM with 2x NVIDIA Tesla V100 16 GB
- Open-source LLMs and non-autoregressive models
- Model input from LMSYS-Chat-1M and workload patterns from Azure LLM Traces

| Model                | # of Params  | Size    | Latency | AR? |
|----------------------|--------------|---------|---------|-----|
| ResNet-50            | 25M          | 0.2 GB  | 51 ms   | No  |
| <b>BERT-base</b>     | 110 M        | 0.5 GB  | 123 ms  | No  |
| BERT-large           | 340 M        | 1.4 GB  | 365 ms  | No  |
| <b>RoBERTa-base</b>  | 125 M        | 0.5 GB  | 135 ms  | No  |
| <b>RoBERTa-large</b> | 355 M        | 1.4 GB  | 382 ms  | No  |
| OPT-1.3b             | 1.3 B        | 5.0 GB  | 1243 ms | Yes |
| OPT-2.7b             | 2.7 B        | 10.4 GB | 2351 ms | Yes |
| GPT2-large           | 774 M        | 3.3 GB  | 832 ms  | Yes |
| GPT2-x1              | 1.5 B        | 6.4 GB  | 1602 ms | Yes |
| CodeGen-350m         | 350 M        | 1.3 GB  | 357 ms  | Yes |
| CodeGen-2b           | 2.0 B        | 8.0 GB  | 2507 ms | Yes |
| Bloom-1b1            | 1.1 <b>B</b> | 4.0 GB  | 523 ms  | Yes |
| Bloom-3b             | 3.0 B        | 11.0 GB | 1293 ms | Yes |
| Switch-base-16       | 920 M        | 2.4 GB  | 348 ms  | Yes |
| Switch-base-32       | 1.8 B        | 4.8 GB  | 402 ms  | Yes |

## **Results (1): Scheduling Performance - JCT**



19

# **Results (2): Scheduling Performance - Throughput**

At varying rates

↑ Throughput by 3.6x / 3.0x / 2.8x Oracle by 4.7x / 4.1x / 3.2x



## **Results (3): Scheduling Performance – Proxy Model Overhead**



#### **Results (4): Power Saving**



#### Summary

*µ-Serve* is the first power-aware deep learning model serving system that achieves
 1.2-2.6x power saving while preserving request-serving SLOs

- Sensitivity-score based model multiplexing and placement
- Proxy-model based model serving request scheduling
- Dynamic GPU frequency scaling to exploit power-saving opportunities





Haoran Qiu<sup>1</sup>, Weichao Mao<sup>1</sup>, Archit Patke<sup>1</sup>, Shengkun Cui<sup>1</sup>, Saurabh Jha<sup>2</sup> Chen Wang<sup>2</sup>, Hubertus Franke<sup>2</sup>, Zbigniew T. Kalbarczyk<sup>1</sup>, Tamer Basar<sup>1</sup>, Ravishankar K. Iyer<sup>1</sup> ILLINOIS IBM Research

# **Backup Slides**

#### **Results (5): At Varying Batch Sizes**

**µ-Serve** continues to provide **improvement in JCT and throughput** under **various batch sizes** with a diminishing return.



**Continuous (iterative) batching > dynamic batching** (same observation as in Orca, OSDI 22)

### **Results (6): Integration with vLLM**

• Model: facebook/opt-350m, max memory usage: 23.6 GB, 75-85% SM utilization



# **Supporting Multi-round Conversations**

- Interactions with LLMs usually take multiple rounds:
  - Follow up questions in the same context
  - Previously: Output token prediction only for the first round
- Simple strategy: Concatenation + truncation
  - Concatenate all history user prompts and LLM responses





• Head (128) + tail (382) [Sun et al., 2019]:



#### **Results(7): Evaluation across conversation rounds**



SSJF performance is consistent across rounds in interactive, multi-round conversation settings.

#### (Alternative) **Pairwise** Prediction: Which input leads to longer output?

- Can we have a pairwise predictor?
  - Give input query A, B, it can predict which one leads to a longer output
  - Rationale: We don't need the exact prediction for every single query, but only want to know the ranking between every pair of queries in the queue



#### (Alternative) **Pairwise** Prediction: Which input leads to longer output?

- We slightly change the model architecture here to support two input queries as input, using the [SEP] token in between to separate the two.
- Binary output: 1 representing Q1's output > Q2' and 0 otherwise



<u>Pairwise</u> predictor **does not help with scheduling** (because pairwise prediction is neither commutative nor transitive) and thus we do not proceed with this design choice.

#### **Pairwise Prediction Accuracy**

- Prediction performance:
  - Accuracy: 0.69
  - Precision: 0.69
  - Recall: 0.71
  - F1: 0.69
- Compared to Binary Classification (single-query prediction)
  - Accuracy: 0.72
  - Precision: 0.74
  - Recall: 0.69
  - F1: 0.71

The accuracy of the <u>pairwise</u> predictor **does not improve (slightly worse)** compared to <u>single-query predictor with binary classification (</u>0.69 < 0.72)

#### **Does Pairwise Prediction Help with Scheduling?**

- FCFS: Avg JCT: 185.16 Avg Throughput: 0.1
- SJF (Oracle): Avg JCT: 92.45 Avg Throughput: 0.31
- SJFP: Avg JCT: 179.2 Avg Throughput: 0.1 (using pairwise predictions to insert)
  - Only 3.2% Improvement on top of FCFS
- SJFP: Avg JCT: 179.9 Avg Throughput: 0.11 (using *ranks* within the wait queue)
- SJFP: Avg JCT: 183.42 Avg Throughput: 0.1 (using *ranks* globally in a batch)
- The pairwise comparison is not commutative and not transitive



Comparing **every 2 queries** and give binary output Insertion: O(N) or O(logN)

<u>Pairwise</u> predictor **does not help with scheduling** and thus we do not proceed with this design choice. Rank = 4

Rank = 3

Rank = 2

Rank = 0

0

1

0

0

0

0

0 0 1 1

1 1

0 0

0

0

#### **Data Cleaning**

• A considerable number of samples (~4%) have "empty" responses

```
{'content': 'tienes algún enlace con un tutorial de como analizar documentos?', 'role': 'user'}
{'content': '', 'role': 'assistant'}
{'content': 'estás ahí?', 'role': 'user'}
{'content': '', 'role': 'assistant'}]
```

[{'content': "You are the text completion model and you must complete the assistant answer below, only s end the completion based on the system instructions.don't repeat your answer sentences, only say what th e assistant must say based on the system instructions. repeating same thing in same answer not allowed.\ nuser: Who are you?\nassistant: ", 'role': 'user'} {'content': 'I', 'role': 'assistant'}]

• Predictor accuracy significantly improves after removing all such samples

#### **Data Cleaning**

• Further observation: Some sample responses were **truncated** to 512 tokens in Imsyschat-1*M*, while others were not, even for the same LLM model



ism.\n\nAnother security concern with IEEE 802.11 WLANs is the vulnerability of the access points themse lves. Because APs are connected to wired networks, they can be used as a point of entry for attackers to gain access to the wired network. To address this issue, IEEE 802.11 includes security measures such as the 80', 'role': 'assistant'}]

• Data cleaning: Remove all samples whose response length is <= 1 or >=512

#### **Power Saving Evaluation (w/o SSJF Scheduler)**

