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How do we make ML for systems useful?

General recipe:

• 1 Agent

• 1 Task

• 1 Environment

• 1 Policy/Model

Data center management
• Power management
• Job scheduling

Cluster orchestration
• Container placement
• Capacity scaling

Resource management
• Resource configuration
• Autoscaling
• Load balancing

Networking tasks
• Congestion control
• Adaptive video 

streaming
Lack of Generalizability: Great for research and local setup; not for actually usable, deployable models! 
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“Pretrained Models”

FinetuningPretraining

How does the rest of the world build usable, deployable models?



Exacerbated Challenges in ML-Centric Cloud Platforms
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EnvironmentApplication
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Tasks

Running on

Learning-based
System Agent

Manages

Collecting training datasets
& model training/validation

Four major components in ML for Systems:

• Tasks: e.g., resource management, load balancing, etc.

• Environments: Infra/platform (e.g., a 5-node Kubernetes cluster)

• Applications: Workloads (e.g., Kubernetes Deployment)

• Agents: e.g., reinforcement learning (RL) agent

Managed System

Adaptation to diverse, novel applications and environments require significant data collection and retraining



Base Learner

FLASH: Fast Model Adaptation in ML for Systems
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• Goal: To achieve fast ML-for-Systems model adaption to new, evolving cloud applications 
and/or infrastructures within each task
• Focus on supervised learning and reinforcement learning (RL)

• Extends a unified API for ML/RL agent developers to automatically integrate their 
developed agents without any changes
• Key enabler: A pretrain-finetune paradigm with meta-learning for fast model adaptation 

across applications and environments

EnvironmentApplication
Systems 

Tasks

Running on

Learning-based
System Agent

Manages

Data & Training

Meta Learner
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Example Use Cases That FLASH Supports

Resource Config Search:
• E.g., Ernest (NSDI16), PARIS (SoCC17), 

Selecta (ATC18), Sinan (ASPLOS21)
Power Capping:
• E.g., NeurIPS23
Capacity Planning:
• E.g., IEEE CLOUD16, IEEE ICPADS17
… …

Workload Autoscaling / Resource Management:
• E.g., MIRAS (ICDCS19), FIRM (OSDI20), ADRL (TPDS21), SIMPPO 

(SoCC22), DeepScaling (SoCC22)
Job/Data Scheduling / Placement:
• E.g., ICLR18, SIGCOMM19, NeurIPS19, ICML20, ISCA22, MLSys23

Congestion Control:
• E.g., ICML19, SIGCOMM22, AAAI22

Power Management:
• E.g., SOL (ASPLOS22), IEEE SJ17, DATE15

… …

Supervised Learning
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Background: Cloud Workload Autoscaling with RL

• RL agent interacts with an environment, step by step taking observations (𝑠!), making actions (𝑎!), 
receiving rewards (𝑟!)

• Reward functions (i.e., agent performance) are directly aligned with objectives: Meeting SLOs & 
High resource utilizations

• Specialize for specific workloads (e.g., periodicity or high scaling factor) by reward maximization
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Vertical Scaling

Horizontal Scaling
Application-dependent

RL-based Multidimensional Autoscaling
(Modeled as a Markov Decision Process)

Goal: Maximize the expected cumulative reward
 𝔼 ∑!"#$ 𝛾! / 𝑟!  (in any T-step trajectory)
--> Resource util (%), SLO attainment

State 𝑆! , Rewards 𝑅!

Kubernetes
Environment

Policy 𝜋"
Action 𝐴!

Workloads

Controls Training
Policy Update

(e.g., SGD)

Serving
Policy
Eval

Agent

𝜋"

[(𝑠!, 𝑎!, 𝑟!)]

Reference: FIRM (OSDI20), AWARE (ATC23)



Challenge #2

During policy-serving stage, RL agent performance 
degrades when dealing with updated workloads
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Challenge #1
Trained policies are application-specific, costly to adapt 
to new applications

• 45.6% reward degradation (~230 eps retraining)

Workload changes leads to 21.8% reward drops  

Challenge of Heterogeneous Cloud Applications

How to automatically identify these heterogeneous cases and handle them (adaptation) smoothly?
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Conceptual Idea of Embedding-based Meta-learning

Key Idea: Models the RL agent as a base-
learner and creates a meta-learner to learn 
to generate embeddings* that can precisely 

differentiate and represent applications

Goal: To reduce RL model retraining time (cost) and adapt quickly to 
new application workloads (unseen during training)

*A fixed-sized low-dimensional vector

Meta-
Learner

Base 
Learner

Base 
Learner

Base 
Learner

…
getEmbedding( )?Embedding

Vector Space

embedding

Meta-learning - “Learning to learn”

• Generalize to novel samples

• Fast adaptation based on similarity

• Combined with RL -> learned policy 
conditioning on the embeddings

Similarity group



Interpreting Embeddings from Systems Perspective
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Embeddings encode both sensitivity + temporal 
characteristics of the application workloads.
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Pretraining and Fine-tuning with Meta Learner

Kubernetes
Environment

RL Trajectory 
DB

Trajectories
[(𝑆!, 𝐴!, 𝑅!)]

Training

Metrics Scaling

RL Agent
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RL API Gateway

State, Reward Action

Using existing training data!

Base 
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Evaluation

• Does FLASH provide fast model adaptation to new workloads?

• What is the value of embedding-based meta-learning?

• Using FIRM [1]’s RL model as the base-learner
• Setup:

• Generated 1000 synthetic applications

• 16 represented production serverless function segments [2] (e.g., CPU-intensive jobs, 
image manipulation, text processing, web serving, ML model serving, I/O services)

• Pretrained the meta-learner on 200 applications and tested on the remaining ones
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----

[1] FIRM: An Intelligent Fine-Grained Resource Management Framework for SLO-Oriented Microservices. Haoran Qiu, Subho 
S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, Ravishankar K. Iyer. OSDI 2020.

[2] Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger, Johannes Grohmann, Nikolas Herbst, Cristina L. 
Abad, and Alexandru Iosup. Serverless Applications: Why, When, and How? IEEE Software, 38(1):32– 39, 2021.



Robustness to Application variability
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When encountering novel applications, FLASH:

• Reduces the performance (reward) degradation 
by 2x

• Adapts 5.5× faster than transfer learning
• TL: Transfer learning with parameter sharing
• TL+: w/ handcrafted application fingerprints

• Reduces CPU and memory utilization deficit by 
4.6× and 6.2×

• Reduces SLO violations by 7.1×



● Similarity metric:

● Can be used for predictability of the adaptation cost / performance drop
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Euclidean Distance Cosine Similarity

Two embeddings: 𝑒%, 𝑒+

Predictability of Adaptation Overhead



Summary: A Foundation Model Recipe in ML for Sys?
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Summary

• FLASH: Fast ML model adaptation across applications and environments
• Resource configuration / Autoscaling / Power management / Congestion control

• Embedding-based meta learning
• Base learner and meta learner abstraction
• Unified API for both supervised learning and reinforcement learning
• Interpretability of the embedding and predictability of adaptation cost

• Source code available: https://gitlab.engr.illinois.edu/DEPEND/flash 

Next?

• Model size and complexity
• Larger models (e.g., transformers) have larger capability + better generalizability
• Higher training / fine-tuning cost and inference overhead -> detrimental for real-time tasks

• Adaptation across tasks?
• E.g., Decision Transformers

https://gitlab.engr.illinois.edu/DEPEND/flash


Thank you!

Haoran Qiu1, Weichao Mao1, Archit Patke1, Shengkun Cui1, Saurabh Jha2

Chen Wang2, Hubertus Franke2, Zbigniew T. Kalbarczyk1, Tamer Basar1, Ravishankar K. Iyer1



Backup Slides
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Also Required in Other Tasks 
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• Resource Configuration Search
• Sizeless (Middleware 2021), Supervised Learning

Serverless 
Platform

Serverless 
Function

Resource 
Config Search

ML Agent

Target config + Features

Function completion time

9.9× and 16x increase in median 
APE for new app / env

2.3× and 2.1x increase in 
median APE for new env



Also Required in Other Tasks
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• Congestion Control
• PCC (NeurIPS 2019), RL – PPO Algorithm

• Requires the agent at the transport layer to adjust the sending rate based on measured network statistics

• CPU Frequency Scaling
• SmartOC (ASPLOS 2022), RL – Q-Learning Algorithm

• Requires the agent to balance the workload performance improvements with the extra power cost when increasing the 
frequency

Network 
Link

Traffic 
Flow

Congestion 
Control

Physical 
Server

VM
Frequency 

Scaling



Also Required in Other Tasks
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• Congestion Control
• PCC (NeurIPS 2019), RL – PPO Algorithm

• CPU Frequency Scaling
• SmartOC (ASPLOS 2022), RL – Q-Learning Algorithm

Network 
Link

Traffic 
Flow

Congestion 
Control

Physical 
Server

VM
Frequency 

Scaling

Avg: 32.8% degradation (p90), 
27% degradation (p50)

40.2%

12.5%

44.2% degradation (new app)
17.3% degradation (new processor)




