N ILLINOIS IBMResearch &

FLASH: Fast Model Adaptation in
ML-Centric Cloud Platforms

Haoran Qiu'!, Weichao Mao!, Archit Patke!, Shengkun Cui!, Chen Wang?
Hubertus Franke?, Zbigniew Kalbarczyk!, Tamer Basar!, Ravishankar lyer!
TUIUC 2IBM Research

MLSys 2024

How do we make ML for systems useful?

Data center mal

* Power manj

K * Job schedul

azon

Il webservices

AAzur

Goog

Cluster orchest

+ Container |

Load

Resource managef

e Resource con
* Autoscaling

e Load balancir

> [Pretraining] =

“Pretrained Models”

General recipe:

* 1 Agent

* 1 Task

* 1 Environment

* 1 Policy/Model

Networking tasks

+ Congestion control
« Adaptive video

5 > [Finetuning]

Exacerbated Challenges in ML-Centric Cloud Platforms

Four major components in ML for Systems:

* Tasks: e.g., resource management, load balancing, etc.
Environments: Infra/platform (e.g., a 5-node Kubernetes cluster)

* Applications: Workloads (e.g., Kubernetes Deployment)

 Agents: e.g., reinforcement learning (RL) agent

Managed System

Application

o RN N N F R R N B N N N N N _§_ N N § B R _N_N_ N § § J}

DOI:10.1145/3364684

Exploring the opportunities to use ML,
the possible designs, and our experience
with Microsoft Azure.

BY RICARDO BIANCHINI, MARCUS FONTOURA, ELI CORTEZ,
ANAND BONDE, ALEXANDRE MUZI0, ANA-MARIA CONSTANTIN,
THOMAS MOSCIBRODA, GABRIEL MAGALHAES,

GIRISH BABLANI, AND MARK RUSSINOVICH

Toward
ML-Centric

Cloud
Platforms

urce management using super:
techniques, su

e 3
yML ofte np referable
t tr ditional non-ML te hn que
Public cloud proy v1d
to explore ML-based re
ment in production."v“ For ex: e,
Google uses neural networks to op-
timize fan speeds and other energy
knobs. In academia, researchers have
proposed using collaborative filtering—

for ML-bas dman g ement.

Despite th e prior efforts and op-
portunities, it is currently unclear
how be: tt 1ntgrt e ML into cloud
resource management. In fact, prior
approaches differ in mulnpl e dimen-
sions. For exampl some ca
the ML technique pro d es insi; ght /
pd:tlns butthwkl drm
frastructure; in others. it produces ac-

Running on

—>

Environm

I

[Collecting training datasets

Systems
Tasks

Manages

Learning-based

& model training/validation

System Agent

Adaptation to diverse, novel applications and environments require significant data collection and retraining

FLASH: Fast Model Adaptation in ML for Systems

* Goal: To achieve fast ML-for-Systems model adaption to new, evolving cloud applications

and/or infrastructures within each task

* Focus on supervised learning and reinforcement learning (RL)

* Extends a unified APl for ML/RL agent developers to automatically integrate their

developed agents without any changes

* Key enabler: A pretrain-finetune paradigm with meta-learning for fast model adaptation

across applications and environments

Systems
Tasks

Manages

Meta Learner

Learning-based
System Agent

Base Learner

Example Use Cases That FLASH Supports

Supervised Learning

4 Metrics N my (:SU
used as QO Q.
iced 5| S Q
supervise > 3 =

o wn
learning < >
features — =
_ J —

Actor Net
Metrics from 50 <
environment J =
used as RL 2
@)
% states Y, <

Resource Config Search:
E.g., Ernest (NSDI16), PARIS (SoCC17),
Selecta (ATC18), Sinan (ASPLOS21)
Power Capping:
E.g., NeurlPS23
Capacity Planning:
E.g., IEEE CLOUD16, IEEE ICPADS17

E.g., ICLR18, SIGCOMM19, NeurlPS19, ICML20, ISCA22, MLSys23
E.g., ICML19, SIGCOMM22, AAAI22

E.g., SOL (ASPLOS22), IEEE SJ17, DATE15

Background: Cloud Workload Autoscaling with RL

 RL agent interacts with an environment, step by step taking observations (s;), making actions (a;),

receiving rewards (1)

« Reward functions (i.e., agent performance) are directly aligned with objectives: Meeting SLOs &

High resource utilizations

» Specialize for specific workloads (e.g., periodicity or high scaling factor) by reward maximization

- [T
Vertical Scaling

I

Horizontal Scaling

o
]
O Mﬂ‘!‘ﬂfl‘\;p)
s
0
Time

RL-based Multidimensional Autoscaling
(Modeled as a Markov Decision Process)

Agent State S; , Rewards R;
() Fm—m————— 1 r=—====n1
ﬁﬁ Controls |1 Training 1 | Serving {f &~ Kubernetes
_ «—— | Policy Update 1 7T95| Policy ! Envi t
Workloads , (e.g.,SGD) E ' Eval ~ nvironmen
""" £ llsp ar))]| Action 4;
/ Policy mg

[Application-dependent]

Reference: FIRM (OSDI20), AWARE (ATC23)

Goal: Maximize the expected cumulative reward
E[XI_oy® - 1] (in any T-step trajectory)
--> Resource util (%), SLO attainment

Challenge of Heterogeneous Cloud Applications

=
o
S

I V7% Reward Drop

e
~3
(@3]

o
DO
ot

Reward Drop Percentage
o o
o ot
(@) (@)

Number of Episodes

Challenge #1

Trained policies are application-specific, costly to adapt
to new applications

* 45.6% reward degradation (~230 eps retraining)

Challenge #2

During policy-serving stage, RL agent performance
degrades when dealing with updated workloads

Workload changes leads to 21.8% reward drops

How to automatically identify these heterogeneous cases and handle them (adaptation) smoothly?

Conceptual Idea of Embedding-based Meta-learning

Goal: To reduce RL model retraining time (cost) and adapt quickly to
new application workloads (unseen during training)

Key Idea: Models the RL agent as a base- Meta-learning - “Learning to learn

I

I . .
. learner and creates a meta-learner to learn Generalize to novel samples
I to generate embeddings* that can precisely

|

|

differentiate and represent applications

» Fast adaptation based on similarity

« Combined with RL -> learned policy

*A fixed-sized low-dimensional vector Conditionmg on the embeddings

\ ﬁkﬁ Base
Embedding Learner getEmbedding(e)
Vector Space ¢ “Q Base | Meta-
;Y Learner | . Learner
L) embedding
C Base

Learner
Similarity grour{\ 5

Interpreting Embeddings from Systems Perspective

Memory

Performance-Resource
Sensitivity Heatmap

Sensitivity Characteristics

/

\

\

|

\l<A)
| \) /,

N -

\

\

Projected

Vector Space

i Embeddings encode both sensitivity +
: characterlstlcs of the applmatlon WO

(

RNN-based Embedding l_c

Load Arrival Patterns
Time Series (#reqg/sec)

7 N
)
Projected

Vector Space

Pretraining and Fine-tuning with Meta Learner

[Data Flow] [Training Process] Ai |Application

Kubernetes

Environment Ei | Environment

|

|

|

|

|

|

|

|

- H 1 ! f @
’/[(’S |)]\ I\/\etrlcsiScalmg ! Mmi .&?)] Customized model
)) : -
o Ao X RL APl Gateway SR Sebelndnlelalale ~ Pretraining
« Trajectories / Lo |
S e N = Lo A E1 |!Pool
J = — =" State, Reward|Action Lo | St
[1 1 KF° 2
Lol A E> | Pretrained
o Traect Training Base Base o 2 > — Pretraining <hared ModelJ
rajectory Learner A || Learner B L !
DB . 1| Am | Em || R laintaiaaiats N,
. . Embeddlngs: e “ " Amet | Eman | ! |
Trajectories > Meta-learner i New (A, E) i i—» Fine-tuning
B | Pairs | Am+2 | Em+2 i
__________________ : ! | ./

:

|

|

|

|

Meta Learner Design and Model Architecture

TR;: RL Trajectories
[TRi = 6w ag, rt)tET]] fro;n envich)nmenti FIRM RL Agent

----------- T ey v

! : Base-Learner |

. | A - 11" | Arrival Rate \ | \ |

: ; i : —~ —~ |

| TR1) [TRZ) [TR3) - TRzlvzi l: [Resource | %) \v %) N\ /‘ I

b e l— = :I __Configs J\ B, N\ gl "‘ :

B [“/ E \ ““ """\\ 5 | ~ |1

| Q Q Q Q I : Resource n \\\,:/7 \\)x n \\Wlf < 1

RU I, | Utilizations | M» al | 1

> > — - - I I f :OED 1”‘\\\ /-4: I/»N\\\ c\,)_/ I

L C — M : 1 | Application =l /,‘,'L"}‘{IW’ N E N o :

S | T L Metrics | /] a Q}"&w/ g I

» YAk OO 5 |

6 6 é)« é« 11 | Embedding N |

AN J Actor Net Critic Net :
_________________ |

- - = '1\ ““““““““ Scaling =~~~ =~=~
As state input -> fingerprinting -> customized Actions
policy to each environment

11

Evaluation

* Does FLASH provide fast model adaptation to new workloads?
* What is the value of embedding-based meta-learning?

« Using FIRM [1]’s RL model as the base-learner

* Setup:
* Generated 1000 synthetic applications

* 16 represented production serverless function segments [2] (e.g., CPU-intensive jobs,
image manipulation, text processing, web serving, ML model serving, 1/O services)

* Pretrained the meta-learner on 200 applications and tested on the remaining ones

[1] FIRM: An Intelligent Fine-Grained Resource Management Framework for SLO-Oriented Microservices. Haoran Qiu, Subho
S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, Ravishankar K. lyer. OSDI 2020.

[2] Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger, Johannes Grohmann, Nikolas Herbst, Cristina L.
Abad, and Alexandru losup. Serverless Applications: Why, When, and How? IEEE Software, 38(1):32— 39, 2021.

12

Robustness to Application variability

When encountering novel applications, FLASH:

 Reduces the performance (reward) degradation
by 2x

 Adapts 5.5x faster than transfer learning

* TL: Transfer learning with parameter sharing
« TL+: w/ handcrafted application fingerprints

» Reduces CPU and memory utilization deficit by
4.6x% and 6.2x

 Reduces SLO violations by 7.1 x

1.00
0.75 FIRM
E FLASH
@) 0.507 —o— Converged
0.25 1
0.00 r l l l
0 50 100 150 200
Reward
1.5
a8 TL — TL+ X FLASH
0
S 1.0 E
o
2
-
T
o 0.5 -
m E%_E_E
0.0 -

s
Ret

: i \e
aining VT TPy O cpV

peficit

Merm

Qefic;glations

vl ory Ut ey

13

Predictability of Adaptation Overhead
Two embeddings: ¢;, e,
Similarity metric: S(e;,e;) = (1—ED(ei,e;)+CS(es,€5))/2
Euclidean Distance = Cosine Similarity

Can be used for predictability of the adaptation cost / performance drop

Avg TL retraining cost ® Reward Drop

R e Sttt d Diep- ||
o o = Y Retraining Cost 80 ¢
2 60 - ‘. o ® 60 S
.
-r% 40 1 Y¢X: ﬂ'f wéﬁ ® 40 i
5 W %o S x
x 20 1 PYYL oy YYY—*_Y L 20

0 0

0.0 0.2 0.4 0.6 0.8 1.0

Embedding Similarity

Summary: A Foundation Model Recipe in ML for Sys?

Summary

* FLASH: Fast ML model adaptation across and environments
 Resource configuration / Autoscaling / Power management / Congestion control

* Embedding-based meta learning

* Base learner and meta learner abstraction
* Unified API for both supervised learning and reinforcement learning
* Interpretability of the embedding and predictability of adaptation cost

* Source code available: https:/gitlab.engr.illinois.edu/DEPEND/flash

Next?

* Model size and complexity

* Larger models (e.g., transformers) have larger capability + better generalizability

 Higher training / fine-tuning cost and inference overhead -> detrimental for real-time tasks
* Adaptation across tasks?

* E.g., Decision Transformers

16

https://gitlab.engr.illinois.edu/DEPEND/flash

Haoran Qlu1 Weichao Mao', Archit Patke!, Shengkun Cui', Saurathha2
Chen Wang?, Hubertus Franke?, Zbigniew T. Kalbarczyk!, Tamer Basar!, Ravishankar K. lyer!

Thank you!

N ILLINOIS IBM Research @r

Backup Slides

Also Required in Other Tasks

Resource Configuration Search
* Sizeless (Middleware 2021), Supervised Learning

Target config + Features

A

ML Agent

O
Performance model

A

Function completion time

B X 128MB v 1536MB

~ 1004 v 256MB 2048MB

£ v ¢ 512MB —}— Measured
= 0 ® 1024MB

< !

P 50_ i; -

E: b ¥ v
g o ¥ T T
L X A X

Serverless a Serverless | —> Resource
Function Platform |€— Config Search
1.00 A 1.00 A
—>— Vendor A
0.75 1 -Better 0.75 —¥— Vendor B
W W —5— Vendor C
0 0.50 1 = = == e O 0501 fem = = =
~ STt T | —>— Sizeless ~ ___
0.25 A —¥— New Env 0.25 1
—6— New App
0.00 1 : :] .] 0.00 A]]
0.0 0.2 0.4 0.6 0.8 0.5 0.6
Absolute Percentage Error Absolute Percentage Error
(a) OpenWhisk dataset. (b) CloudBandit dataset.
9.9x and 16x increase in median 2.3x and 2.1x increase in

APE for new app / env median APE for new env

128 256 512 1024 1536 2048
Memory Config (MB)

(c) An example of estimation error.

19

Also Required in Other Tasks

« PCC (NeurlPS 2019), RL — PPO Algorithm

* Requires the agent at the transport layer to adjust the sending rate based on measured network statistics

* SmartOC (ASPLOS 2022), RL — Q-Learning Algorithm

* Requires the agent to balance the workload performance improvements with the extra power cost when increasing the
frequency

Frequency
Scaling

Congestion
Control

Traffic a Network | —>

3 Physical | —
Flow Link |€— Wi Server |€—

State Space (s;) State Space (s;)
Sending/receiving rate, Sending/receiving duration, avg Instructions per second (IPS), CPU usage, Measured core
RTT in a time window, min RTT, RTT inflation, RTT ratio, frequency, SLO Preservation Ratio (Latency, Throughput)
Ack/Sent latency inflation, Loss/Sent ratio Action Space (a;)
Action Space (a;) CPU core frequency (every second)
Sending rate in the current time window Reward Function (7;)
Reward Function (7;) re = a-(IPS;—IPS;_1)/IPS;)Afreq>0+(1—a)-SP;

r; = - Throughput; + B - Latency; + Y- Loss; 2

Also Required in Other Tasks

 Congestion Control
« PCC (NeurlPS 2019), RL — PPO Algorithm

* CPU Frequency Scaling
* SmartOC (ASPLOS 2022), RL — Q-Learning Algorithm

Traffic a Network | —» /~~ Congestion Physical | —> Frequency
Flow Link |€— VM a Server |€— Scaling

140 - 1.00 -
12.5% —>¢— SmartOverclock //
120 - 0.75+ —¥— New App
40.2% % i —5— New Processor
100 A 0O 0.50
= Better
801 ? % 0.25 -
60 - 0.00 ¥

Reward

Be;se DeIay Slze Loss 60 100 120 140 1
CC Conflguratlon Changes Per Episode Reward
Avg: 32.8% degradation (p90), 44.2% degradation (new app)

27% degradation (p50) 17.3% degradation (new processor) ?!

