
FLASH: Fast Model Adaptation in
ML-Centric Cloud Platforms

MLSys 2024

Haoran Qiu1, Weichao Mao1, Archit Patke1, Shengkun Cui1, Chen Wang2

Hubertus Franke2, Zbigniew Kalbarczyk1, Tamer Basar1, Ravishankar Iyer1

1UIUC 2IBM Research

How do we make ML for systems useful?

General recipe:

• 1 Agent

• 1 Task

• 1 Environment

• 1 Policy/Model

Data center management
• Power management
• Job scheduling

Cluster orchestration
• Container placement
• Capacity scaling

Resource management
• Resource configuration
• Autoscaling
• Load balancing

Networking tasks
• Congestion control
• Adaptive video

streaming
Lack of Generalizability: Great for research and local setup; not for actually usable, deployable models!

2
“Pretrained Models”

FinetuningPretraining

How does the rest of the world build usable, deployable models?

Exacerbated Challenges in ML-Centric Cloud Platforms

3

EnvironmentApplication
Systems

Tasks

Running on

Learning-based
System Agent

Manages

Collecting training datasets
& model training/validation

Four major components in ML for Systems:

• Tasks: e.g., resource management, load balancing, etc.

• Environments: Infra/platform (e.g., a 5-node Kubernetes cluster)

• Applications: Workloads (e.g., Kubernetes Deployment)

• Agents: e.g., reinforcement learning (RL) agent

Managed System

Adaptation to diverse, novel applications and environments require significant data collection and retraining

Base Learner

FLASH: Fast Model Adaptation in ML for Systems

4

• Goal: To achieve fast ML-for-Systems model adaption to new, evolving cloud applications
and/or infrastructures within each task
• Focus on supervised learning and reinforcement learning (RL)

• Extends a unified API for ML/RL agent developers to automatically integrate their
developed agents without any changes
• Key enabler: A pretrain-finetune paradigm with meta-learning for fast model adaptation

across applications and environments

EnvironmentApplication
Systems

Tasks

Running on

Learning-based
System Agent

Manages

Data & Training

Meta Learner

5

Example Use Cases That FLASH Supports

Resource Config Search:
• E.g., Ernest (NSDI16), PARIS (SoCC17),

Selecta (ATC18), Sinan (ASPLOS21)
Power Capping:
• E.g., NeurIPS23
Capacity Planning:
• E.g., IEEE CLOUD16, IEEE ICPADS17
… …

Workload Autoscaling / Resource Management:
• E.g., MIRAS (ICDCS19), FIRM (OSDI20), ADRL (TPDS21), SIMPPO

(SoCC22), DeepScaling (SoCC22)
Job/Data Scheduling / Placement:
• E.g., ICLR18, SIGCOMM19, NeurIPS19, ICML20, ISCA22, MLSys23

Congestion Control:
• E.g., ICML19, SIGCOMM22, AAAI22

Power Management:
• E.g., SOL (ASPLOS22), IEEE SJ17, DATE15

… …

Supervised Learning

Metrics
used as

supervised
learning
features

Features (𝑋
)

Prediction (𝑌
)

Reinforcement Learning

Metrics from
environment
used as RL

states

States (𝑆!) A
ct

io
n

(𝐴
!)

Q(
𝑆 !
,𝐴

!)

Actor Net

Critic Net

Background: Cloud Workload Autoscaling with RL

• RL agent interacts with an environment, step by step taking observations (𝑠!), making actions (𝑎!),
receiving rewards (𝑟!)

• Reward functions (i.e., agent performance) are directly aligned with objectives: Meeting SLOs &
High resource utilizations

• Specialize for specific workloads (e.g., periodicity or high scaling factor) by reward maximization

6

Vertical Scaling

Horizontal Scaling
Application-dependent

RL-based Multidimensional Autoscaling
(Modeled as a Markov Decision Process)

Goal: Maximize the expected cumulative reward
 𝔼 ∑!"#$ 𝛾! / 𝑟! (in any T-step trajectory)
--> Resource util (%), SLO attainment

State 𝑆! , Rewards 𝑅!

Kubernetes
Environment

Policy 𝜋"
Action 𝐴!

Workloads

Controls Training
Policy Update

(e.g., SGD)

Serving
Policy
Eval

Agent

𝜋"

[(𝑠!, 𝑎!, 𝑟!)]

Reference: FIRM (OSDI20), AWARE (ATC23)

Challenge #2

During policy-serving stage, RL agent performance
degrades when dealing with updated workloads

7

Challenge #1
Trained policies are application-specific, costly to adapt
to new applications

• 45.6% reward degradation (~230 eps retraining)

Workload changes leads to 21.8% reward drops

Challenge of Heterogeneous Cloud Applications

How to automatically identify these heterogeneous cases and handle them (adaptation) smoothly?

8

Conceptual Idea of Embedding-based Meta-learning

Key Idea: Models the RL agent as a base-
learner and creates a meta-learner to learn
to generate embeddings* that can precisely

differentiate and represent applications

Goal: To reduce RL model retraining time (cost) and adapt quickly to
new application workloads (unseen during training)

*A fixed-sized low-dimensional vector

Meta-
Learner

Base
Learner

Base
Learner

Base
Learner

…
getEmbedding()?Embedding

Vector Space

embedding

Meta-learning - “Learning to learn”

• Generalize to novel samples

• Fast adaptation based on similarity

• Combined with RL -> learned policy
conditioning on the embeddings

Similarity group

Interpreting Embeddings from Systems Perspective

9

Projected
Vector Space

Performance-Resource
Sensitivity Heatmap

R
N

N
-b

as
ed

 E
m

be
dd

in
g

La
ye

r
(S

en
si

tiv
it

y
C

ha
ra

ct
er

is
ti

cs
)

Projected
Vector Space

Load Arrival Patterns
Time Series (#req/sec)

R
N

N
-b

as
ed

 E
m

be
dd

in
g

La
ye

r
(T

em
po

ra
l C

ha
ra

ct
er

is
ti

cs
)

CPU

M
em

or
y

Embeddings encode both sensitivity + temporal
characteristics of the application workloads.

10

Pretraining and Fine-tuning with Meta Learner

Kubernetes
Environment

RL Trajectory
DB

Trajectories
[(𝑆!, 𝐴!, 𝑅!)]

Training

Metrics Scaling

RL Agent
(Base-Learner)

RL API Gateway

State, Reward Action

Using existing training data!

Base
Learner A

Base
Learner B …

Meta-learner

Embeddings
Trajectories

A BA B

A B

Data Flow Training Process

Pretraining

Mm+2Mm+1

Fine-tuning

Pretrained
Shared Model

Ai Application

Ei Environment

Customized modelMm+i

Em+1Am+1

Em+2Am+2

…

New (A, E)
Pairs

E1A1

E2A2

EmAm

…

Pretraining
Pool

11

… …

Base-Learner
Arrival Rate

Resource
Configs

Resource
Utilizations

Application
Metrics

Embedding

St
at

es
 (𝑆

!)

… …

St
at

es
 (𝑆

!)
A

ct
io

n
(𝐴
!) Q(
𝑆 !
,𝐴

!)

Actor Net Critic Net

Em
be

dd
in

g

𝑇𝑅% = [(𝑠!, 𝑎!, 𝑟!)!∈$]
𝑇𝑅%: RL Trajectories
from environment 𝑖

Meta-Learner

…𝑇𝑅'% 𝑇𝑅(% 𝑇𝑅)% 𝑇𝑅*%

Bi-
GRU

Meta Learner Design and Model Architecture

Scaling
ActionsAs state input -> fingerprinting -> customized

policy to each environment

FIRM RL Agent

Ze
ro

-p
ad

di
ng

Evaluation

• Does FLASH provide fast model adaptation to new workloads?

• What is the value of embedding-based meta-learning?

• Using FIRM [1]’s RL model as the base-learner
• Setup:

• Generated 1000 synthetic applications

• 16 represented production serverless function segments [2] (e.g., CPU-intensive jobs,
image manipulation, text processing, web serving, ML model serving, I/O services)

• Pretrained the meta-learner on 200 applications and tested on the remaining ones

12

[1] FIRM: An Intelligent Fine-Grained Resource Management Framework for SLO-Oriented Microservices. Haoran Qiu, Subho
S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, Ravishankar K. Iyer. OSDI 2020.

[2] Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger, Johannes Grohmann, Nikolas Herbst, Cristina L.
Abad, and Alexandru Iosup. Serverless Applications: Why, When, and How? IEEE Software, 38(1):32– 39, 2021.

Robustness to Application variability

13

0 50 100 150 200

Reward

0.00

0.25

0.50

0.75

1.00

C
D

F

FIRM

FLASH

Converged

FLASH

When encountering novel applications, FLASH:

• Reduces the performance (reward) degradation
by 2x

• Adapts 5.5× faster than transfer learning
• TL: Transfer learning with parameter sharing
• TL+: w/ handcrafted application fingerprints

• Reduces CPU and memory utilization deficit by
4.6× and 6.2×

• Reduces SLO violations by 7.1×

● Similarity metric:

● Can be used for predictability of the adaptation cost / performance drop

14

Euclidean Distance Cosine Similarity

Two embeddings: 𝑒%, 𝑒+

Predictability of Adaptation Overhead

Summary: A Foundation Model Recipe in ML for Sys?

16

Summary

• FLASH: Fast ML model adaptation across applications and environments
• Resource configuration / Autoscaling / Power management / Congestion control

• Embedding-based meta learning
• Base learner and meta learner abstraction
• Unified API for both supervised learning and reinforcement learning
• Interpretability of the embedding and predictability of adaptation cost

• Source code available: https://gitlab.engr.illinois.edu/DEPEND/flash

Next?

• Model size and complexity
• Larger models (e.g., transformers) have larger capability + better generalizability
• Higher training / fine-tuning cost and inference overhead -> detrimental for real-time tasks

• Adaptation across tasks?
• E.g., Decision Transformers

https://gitlab.engr.illinois.edu/DEPEND/flash

Thank you!

Haoran Qiu1, Weichao Mao1, Archit Patke1, Shengkun Cui1, Saurabh Jha2

Chen Wang2, Hubertus Franke2, Zbigniew T. Kalbarczyk1, Tamer Basar1, Ravishankar K. Iyer1

Backup Slides

18

Also Required in Other Tasks

19

• Resource Configuration Search
• Sizeless (Middleware 2021), Supervised Learning

Serverless
Platform

Serverless
Function

Resource
Config Search

ML Agent

Target config + Features

Function completion time

9.9× and 16x increase in median
APE for new app / env

2.3× and 2.1x increase in
median APE for new env

Also Required in Other Tasks

20

• Congestion Control
• PCC (NeurIPS 2019), RL – PPO Algorithm

• Requires the agent at the transport layer to adjust the sending rate based on measured network statistics

• CPU Frequency Scaling
• SmartOC (ASPLOS 2022), RL – Q-Learning Algorithm

• Requires the agent to balance the workload performance improvements with the extra power cost when increasing the
frequency

Network
Link

Traffic
Flow

Congestion
Control

Physical
Server

VM
Frequency

Scaling

Also Required in Other Tasks

21

• Congestion Control
• PCC (NeurIPS 2019), RL – PPO Algorithm

• CPU Frequency Scaling
• SmartOC (ASPLOS 2022), RL – Q-Learning Algorithm

Network
Link

Traffic
Flow

Congestion
Control

Physical
Server

VM
Frequency

Scaling

Avg: 32.8% degradation (p90),
27% degradation (p50)

40.2%

12.5%

44.2% degradation (new app)
17.3% degradation (new processor)

