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How do we make ML for systems useful?
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Exacerbated Challenges in ML-Centric Cloud Platforms

Four major components in ML for Systems:

* Tasks: e.g., resource management, load balancing, etc.
Environments: Infra/platform (e.g., a 5-node Kubernetes cluster)

* Applications: Workloads (e.g., Kubernetes Deployment)

 Agents: e.g., reinforcement learning (RL) agent
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Exploring the opportunities to use ML,
the possible designs, and our experience
with Microsoft Azure.
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Adaptation to diverse, novel applications and environments require significant data collection and retraining




FLASH: Fast Model Adaptation in ML for Systems

* Goal: To achieve fast ML-for-Systems model adaption to new, evolving cloud applications

and/or infrastructures within each task

* Focus on supervised learning and reinforcement learning (RL)

* Extends a unified APl for ML/RL agent developers to automatically integrate their

developed agents without any changes

* Key enabler: A pretrain-finetune paradigm with meta-learning for fast model adaptation

across applications and environments
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Example Use Cases That FLASH Supports

Supervised Learning
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Resource Config Search:
E.g., Ernest (NSDI16), PARIS (SoCC17),
Selecta (ATC18), Sinan (ASPLOS21)
Power Capping:
E.g., NeurlPS23
Capacity Planning:
E.g., IEEE CLOUD16, IEEE ICPADS17

E.g., ICLR18, SIGCOMM19, NeurlPS19, ICML20, ISCA22, MLSys23
E.g., ICML19, SIGCOMM22, AAAI22

E.g., SOL (ASPLOS22), IEEE SJ17, DATE15



Background: Cloud Workload Autoscaling with RL

 RL agent interacts with an environment, step by step taking observations (s;), making actions (a;),

receiving rewards (1)

« Reward functions (i.e., agent performance) are directly aligned with objectives: Meeting SLOs &

High resource utilizations

» Specialize for specific workloads (e.g., periodicity or high scaling factor) by reward maximization
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Reference: FIRM (OSDI20), AWARE (ATC23)

Goal: Maximize the expected cumulative reward
E[XI_oy® - 1] (in any T-step trajectory)
--> Resource util (%), SLO attainment



Challenge of Heterogeneous Cloud Applications

=
o
S

I V7% Reward Drop

e
~3
(@3]

o
DO
ot

Reward Drop Percentage
o o
o ot
(@) (@)

Number of Episodes

Challenge #1

Trained policies are application-specific, costly to adapt
to new applications

* 45.6% reward degradation (~230 eps retraining)

Challenge #2

During policy-serving stage, RL agent performance
degrades when dealing with updated workloads

Workload changes leads to 21.8% reward drops

How to automatically identify these heterogeneous cases and handle them (adaptation) smoothly?



Conceptual Idea of Embedding-based Meta-learning

Goal: To reduce RL model retraining time (cost) and adapt quickly to
new application workloads (unseen during training)

Key Idea: Models the RL agent as a base- Meta-learning - “Learning to learn
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« Combined with RL -> learned policy
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Interpreting Embeddings from Systems Perspective
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Pretraining and Fine-tuning with Meta Learner
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Meta Learner Design and Model Architecture
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Evaluation

* Does FLASH provide fast model adaptation to new workloads?
* What is the value of embedding-based meta-learning?

« Using FIRM [1]’s RL model as the base-learner

* Setup:
* Generated 1000 synthetic applications

* 16 represented production serverless function segments [2] (e.g., CPU-intensive jobs,
image manipulation, text processing, web serving, ML model serving, 1/O services)

* Pretrained the meta-learner on 200 applications and tested on the remaining ones

[1] FIRM: An Intelligent Fine-Grained Resource Management Framework for SLO-Oriented Microservices. Haoran Qiu, Subho
S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, Ravishankar K. lyer. OSDI 2020.

[2] Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger, Johannes Grohmann, Nikolas Herbst, Cristina L.
Abad, and Alexandru losup. Serverless Applications: Why, When, and How? IEEE Software, 38(1):32— 39, 2021.
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Robustness to Application variability

When encountering novel applications, FLASH:

 Reduces the performance (reward) degradation
by 2x

 Adapts 5.5x faster than transfer learning

* TL: Transfer learning with parameter sharing
« TL+: w/ handcrafted application fingerprints

» Reduces CPU and memory utilization deficit by
4.6x% and 6.2x

 Reduces SLO violations by 7.1 x
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Predictability of Adaptation Overhead
Two embeddings: ¢;, e,
Similarity metric: S(e;,e;) = (1—ED(ei,e;)+CS(es,€5))/2
Euclidean Distance = Cosine Similarity

Can be used for predictability of the adaptation cost / performance drop
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Summary: A Foundation Model Recipe in ML for Sys?

Summary

* FLASH: Fast ML model adaptation across and environments
 Resource configuration / Autoscaling / Power management / Congestion control

* Embedding-based meta learning

* Base learner and meta learner abstraction
* Unified API for both supervised learning and reinforcement learning
* Interpretability of the embedding and predictability of adaptation cost

* Source code available: https:/gitlab.engr.illinois.edu/DEPEND/flash

Next?

* Model size and complexity

* Larger models (e.g., transformers) have larger capability + better generalizability

 Higher training / fine-tuning cost and inference overhead -> detrimental for real-time tasks
* Adaptation across tasks?

* E.g., Decision Transformers
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Also Required in Other Tasks

Resource Configuration Search
* Sizeless (Middleware 2021), Supervised Learning

Target config + Features
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(c) An example of estimation error.
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Also Required in Other Tasks

« PCC (NeurlPS 2019), RL — PPO Algorithm

* Requires the agent at the transport layer to adjust the sending rate based on measured network statistics

* SmartOC (ASPLOS 2022), RL — Q-Learning Algorithm

* Requires the agent to balance the workload performance improvements with the extra power cost when increasing the
frequency

Frequency
Scaling

Congestion
Control

Traffic a Network | —>

3 Physical | —
Flow Link |€— Wi Server |€—

State Space (s;) State Space (s;)
Sending/receiving rate, Sending/receiving duration, avg Instructions per second (IPS), CPU usage, Measured core
RTT in a time window, min RTT, RTT inflation, RTT ratio, frequency, SLO Preservation Ratio (Latency, Throughput)
Ack/Sent latency inflation, Loss/Sent ratio Action Space (a;)
Action Space (a;) CPU core frequency (every second)
Sending rate in the current time window Reward Function (7;)
Reward Function (7;) re = a-(IPS;—IPS;_1)/IPS;)Afreq>0+(1—a)-SP;

r; = - Throughput; + B - Latency; + Y- Loss; 2




Also Required in Other Tasks

 Congestion Control
« PCC (NeurlPS 2019), RL — PPO Algorithm

* CPU Frequency Scaling
* SmartOC (ASPLOS 2022), RL — Q-Learning Algorithm
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Avg: 32.8% degradation (p90), 44.2% degradation (new app)

27% degradation (p50) 17.3% degradation (new processor) ?!





