
On the Promise and Challenges of Foundation Models
for Cloud Systems Management

ML for Systems Workshop at NeurIPS 2023

Haoran Qiu1, Weichao Mao1, Chen Wang2, Hubertus Franke2

Zbigniew Kalbarczyk1, Tamer Basar1, Ravishankar Iyer1

1UIUC 2IBM Research

How do we make ML for systems useful?

The recipe:

• 1 Agent

• 1 Task

• 1 Environment
-> Infra + Workload

• 1 Policy/Model

Data center management
• Power management
• Job scheduling

Cluster orchestration
• Container placement
• Capacity scaling

Resource management
• Resource configuration
• Autoscaling
• Load balancing

Networking tasks
• Congestion control
• Adaptive video

streaming

How does the rest of the world build reusable, deployable models?

Great for research and local setup; not great for actually usable, deployable models!

Foundation Model:
A model that someone else might
actually use and deploy“Foundation Models”

Finetuning or
Prompting

What would it take to bring
this recipe to systems?

2

Toward general-purpose ML4Sys models
Important design questions:
• What kind of systems to support?

• Must support many systems
• Must train on many systems

• What kind of data should the model use?
• Existing ML4Sys model training/testing data
• Monitoring data and system logs

• What should the model do?
• Solve a generic enough task (e.g., fundamentally lots of systems tasks are scheduling)
• Delicate trade-off between generality and specialization

• How should the model be used/deployed?
• Zero-shot? Prompted? Few-shot? Fine-tuning? Or all of these?

3

Docker
Swarm

Container Orchestration Systems

Serverless Computing Systems

Stream Processing Systems

…

What do we actually want to learn?

4

What objectives can we use to learn general “common sense” policies from
diverse data sources that apply to many systems management scenarios?

Cloud Systems Management Tasks

?

New Environments
or Applications

New(?) Systems
Management Tasks

…

How does unsupervised learning usually work?

5

BERT: Masked token prediction LLMs: Next token prediction ViT: Masked patch prediction

Training on completion of incompletion data (easily obtained), “Fill in the blanks”

This is great because it does not require strong supervision (e.g., labels or classes)
and therefore can use all available data!

Learning general policies from diverse data

6

?

New Environments
or Applications

New(?) Systems
Management Tasks

…

Current Work: FLASH
• Embedding-based meta-learning
• Adaptation from embedding pairing

Ongoing Work
• Generic pre-training with fill-in

blanks in state-decision trajectories
• Adaptation across tasks

Generalization to entirely new(?) tasks

• Very general objective -> can use any trajectory data

• Captures systems dynamics and “common sense” of what actions
lead to what outcomes 7

What objectives can we use to learn general “common sense” policies from
diverse data sources that apply to many systems management scenarios?

Which bit of data can we “fill in” such that the prediction is not too hard and
can generalize across different tasks, yet forces learning useful stuff?

Next ??? Prediction

State-Decision
Trajectories

Systems Tasks

Scaled-up Model

Given current observations

Predict current decision

Predict next observation

Predict time steps to goal

Adapting to diverse application and environments

8

Environment
Infrastructure

Application
Workload / Flow

Systems
Tasks

Running on

Learning-based System
Management Agent

Manages

Collecting training datasets
& model training/validation

Major components in ML for Sys:

• Tasks: e.g., resource management, load balancing, etc.

• Environments: Infrastructures or platform (e.g., a 5-node Kubernetes cluster)

• Applications: Workloads (e.g., Kubernetes Deployment)

• Agents: e.g., reinforcement learning (RL) agent

Managed System

Adapting to diverse application and environments

9

Supervised Learning Reinforcement Learning

0 20 40 60 80 100

CPU Utilization (%)

0.00

0.25

0.50

0.75

1.00

C
D

F

FIRM

FLASH

0 20 40 60 80 100

SLO Preservation (%)

0.00

0.25

0.50

0.75

1.00

C
D

F

FIRM

FLASH

Robustness to application/environment variability

10

• FLASH adapts 5.5× faster than transfer learning
• TL: Transfer learning with parameter sharing
• TL+: TL + additional application fingerprints

• FLASH saves 68–72% CPU cycles

• FLASH reduces CPU and memory utilization
deficit by 4.6× and 6.2×

• FLASH reduces SLO violations by 7.1×

FLASH

0 50 100 150 200 250 300 350

Retraining Episodes

0.00

0.25

0.50

0.75

1.00

C
D

F

FIRM

FLASH

0 50 100 150 200

Reward

0.00

0.25

0.50

0.75

1.00

C
D

F

FIRM

FLASH

Converged

Summary: A Foundation Model recipe in ML for Sys

11

Summary

• Meta-learning for fast model adaptation across applications and environments

• Missing element prediction in state-decision trajectories for generalization across tasks

Next?

• Model size and complexity
• Larger models have larger capability + better generalizability
• Higher training / fine-tuning cost and inference overhead -> detrimental for real-time tasks

• Trade-offs between generalizability and heterogeneity
• Generalizability across both (1) cloud applications and environments and (2) systems tasks

while still allowing the model to capture the heterogeneity of the various systems in a task

• Risk of homogenization and bias
• Foundation (shared) models are singular points of failure that can radiate harm (e.g., security

risks or biases) to downstream applications/tasks at scale

