X ILLINOIS é=|:{>

(L

IBM Research e =

/

olll

On the Promise and Challenges of Foundation Models
for Cloud Systems Management

Haoran Qiu'!, Weichao Mao', Chen Wang?, Hubertus Franke?
Zbigniew Kalbarczyk!, Tamer Basar!, Ravishankar lyer
TUIUC 2IBM Research

ML for Systems Workshop at NeurlPS 2023

How do we make ML for systems useful?

Data center ma
* Power mar

* Job schedu

Cluster orches

Load

Time

Resource manags
 Resource co

* (Container

“Fou

* Autoscaling

ndation Models”

Networking tasks

 Congestion control

The recipe:
* 1 Agent
* 1 Task

* T Environment
-> Infra + Workload

* 1 Policy/Model

What would it take to bring

this recipe to systems?

Prompting

Finetuning or

] Foundation Model:

A model that someone else might
actually use and deploy

Toward general-purpose ML4Sys models

Important design questions:
* What kind of systems to support? (AAAAAA " pocker |

Swarm

* Must support many systems

* Must train on many systems “ @ /;\ m _/

* What kind of data should the model use? J‘Z A aeacre A
* Existing ML4Sys model training/testing data spr’(>TORM §g katka
* Monitoring data and system logs Stream Processing Systems)

 What should the model do?

* Solve a generic enough task (e.g., fundamentally lots of systems tasks are scheduling)
* Delicate trade-off between generality and specialization

* How should the model be used/deployed?

 Zero-shot? Prompted? Few-shot? Fine-tuning? Or all of these?

What do we actually want to learn?

What objectives can we use to learn general “

common sense” policies from
diverse data sources that apply to many systems management scenarios?

3 | X % oo

:z I S E %g | M W

‘;" E § ’W\W‘M’MMTime 35—“'” WM %
Sender 1 Frequency

o-@m [2N . sky @)

Vertical Scaling ‘: Tt% VM #1 VM #2 c

Sonder 2 :--‘__\

om_ @@ T S [DOIO0)-

New Environments

‘ or Applications
4
. 4 ©

New(?) Systems
Management Tasks

Jol

o c | e o oYY

H ”l |||T|me z_g' \“‘ WMTlme §og

207

Load »t Y
balancer 23

How does unsupervised learning usually work?

ﬁ? Mask LM Mask LM \
-~ > *

Le)(n) [ltem)™) (]
BERT

s || By | [B[B[&0 | [Ed]

— T e B e B gy

@ Tok1 | .. (TOKNW[[SEP]][Tok1] (TOKMW

Masked Sentence A Masked Sentence B

*
Unlabeled Sentence A and B Pair

BERT: Masked token prediction

| Output Tokens |
'y)

Decoder Block

Decoder Block

I B S

(Token/Position Embedding)

I l l l

. Feed Forward Neural Network).
q Masked Self-Attention -

| Input Tokens

LLMs: Next token prediction

MLP

Head
Transformer Encoder l
itz - 60) D)6) 0)8) 6) @$
[E[]1 embedd ng [L1near Projection of Flattened Patches

ViT: Masked patch prediction

Training on completion of incompletion data (easily obtained), “Fill in the blanks”

This is great because it does not require strong supervision (e.g., labels or classes)

and therefore can use all available data!

oY

Learning general policies from diverse data

ol
S

sky ©)

New Environments
or Applications

New(¢) Systems
Management Tasks

/Current Work: FLASH \

* Embedding-based meta-learning
. Adaptatlon from embeddmg palrmg

i —
ication l V ' 7

Per ‘'ormance

ﬁ)ngoing Work

 Generic pre-training with fill-in
blanks in state-decision trajectories

* Adaptation across tasks
ogm

- oo EJ N2

_

Generalization to entirely new(?) tasks

()

Next ?2?2¢ Prediction

\ J/

What objectives can we use to learn general “common sense” policies from

diverse data sources that apply to many systems management scenarios?

4)

Which bit of data can we “fill in” such that the prediction is not too hard and I:> State-Decision
can generalize across different tasks, yet forces learning useful stuff? Trajectories

Given current observations

Network
bandw dth

‘WWM’MMFTme ;E % WM\V M wm

i [Jp 2 » Predict current decision
iy [EelmE)
y Predict next observation
| Systems Tasks

e

W Predict time steps to goal

* Very general objective -> can use any trajectory data

* Captures systems dynamics and “common sense” of what actions
lead to what outcomes

Adapting to diverse application and environments

Major components in ML for Sys:

* Tasks: e.g., resource management, load balancing, etc.

* Environments: Infrastructures or platform (e.g., a 5-node Kubernetes cluster)

 Applications: Workloads (e.g., Kubernetes Deployment)

 Agents: e.g., reinforcement learning (RL) agent

Managed System

Workload / Flow

contributed articles

0

Exploring the opportunities to use ML,
the possible designs, and our experience
with Microsoft Azure.

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Toward
ML-Centric
Cloud
Platforms

i
|
Application 3 Environment — Systems
Infrastructure e—
|

Tasks
T Manages

& model training/validation

Learning-based System
Management Agent

Supervised Learning

Adapting to diverse application and environments

7

.

2

SL Features \ (]

i App+Env 1/

\.

Embedding |

Reinforcement Learning

\(RLBase Learner

IIF N\
'l RL States \

L J

110)
,: App+Env /

1| Embedding |

One data point
in SL base learner

TRji = (St Ap) T)ter
One RL Trajectory from
the i-th <app, env>

. Jol_. Layer{ Embedding]
W L:W L Layer (FCNN)

o U

App+Env
Embedding

(9 RNN E

Application
Performance
Heatmaps

Low-dimensional

Vector Space

Euclidean Distance

Application
Workload
Patterns

Low-dimensional

Vector Space

i
AAANAANAAAAN T A
VNNNNNNNNNNA] |-

Euclidean Distance

Robustness to application/environment variability

FLASH adapts 5.5x faster than transfer learning

* TL: Transfer learning with parameter sharing
* TL+: TL + additional application fingerprints

FLASH saves 68-72% CPU cycles

FLASH reduces CPU and memory utilization
deficit by 4.6x and 6.2x

FLASH reduces SLO violations by 7.1 x

1.00 1.00 -
0.75 1 FIRM 075 - === FIRM
E FLASH E m—= FLASH
@) 0-50- —&— Converged [@) 0.507 4
0.25 - f 0.25 - !
/’
0.00 T T T T 0.00 T —— T T T
0 50 100 150 200 0 50 100 150 200 250 300 350
Reward Retraining Episodes

1.5
— TL+ X FLASH

0
8 N E E E E E
(D]
2
)
(T
o 0.5 1
oz

0.0 -

me \eS fiC\ fick \oNS
Re tram\“%T\CPU o cpJ Ut \\‘\)j\e\ ory Ut \%&) \Jio\aW

1.00 —— 1.00
I FIRM e 0.75 4 FIRM
R FLASH 7 L 050 FLASH

0.25 - 4 0.25 -

/
0.00 T - T T 0.00 . . : . .
0 20 40 60 80 100 0 20 40 60 80 100

SLO Preservation (%) CPU Utilization (%)

10

Summary: A Foundation Model recipe in ML for Sys

Summary
* Meta-learning for fast model adaptation across and environments

* Missing element prediction in state-decision trajectories for generalization across
Next?

* Model size and complexity

* Larger models have larger capability + better generalizability

 Higher training / fine-tuning cost and inference overhead -> detrimental for real-time tasks
* Trade-offs between generalizability and heterogeneity

 Generalizability across both (1) cloud applications and environments and (2) systems tasks
while still allowing the model to capture the heterogeneity of the various systems in a task

* Risk of homogenization and bias

 Foundation (shared) models are singular points of failure that can radiate harm (e.g., security
risks or biases) to downstream applications/tasks at scale

