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How do we make ML for systems useful?
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The recipe:
* 1 Agent
* 1 Task

* T Environment
-> Infra + Workload

* 1 Policy/Model

What would it take to bring

this recipe to systems?
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A model that someone else might
actually use and deploy



Toward general-purpose ML4Sys models

Important design questions:
* What kind of systems to support? ( AAAAAA " pocker |

Swarm

* Must support many systems

* Must train on many systems “ @ /;\ m \_/

* What kind of data should the model use? J‘Z A aeacre A
* Existing ML4Sys model training/testing data spr’( >TORM §g katka
* Monitoring data and system logs Stream Processing Systems )

 What should the model do?

* Solve a generic enough task (e.g., fundamentally lots of systems tasks are scheduling)
* Delicate trade-off between generality and specialization

* How should the model be used/deployed?

 Zero-shot? Prompted? Few-shot? Fine-tuning? Or all of these?



What do we actually want to learn?

What objectives can we use to learn general “

common sense” policies from
diverse data sources that apply to many systems management scenarios?
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How does unsupervised learning usually work?
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ViT: Masked patch prediction

Training on completion of incompletion data (easily obtained), “Fill in the blanks”

This is great because it does not require strong supervision (e.g., labels or classes)

and therefore can use all available data!
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Learning general policies from diverse data
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Generalization to entirely new(?) tasks

( )
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What objectives can we use to learn general “common sense” policies from

diverse data sources that apply to many systems management scenarios?
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Which bit of data can we “fill in” such that the prediction is not too hard and I:> State-Decision
can generalize across different tasks, yet forces learning useful stuff? Trajectories

Given current observations
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* Very general objective -> can use any trajectory data

* Captures systems dynamics and “common sense” of what actions
lead to what outcomes



Adapting to diverse application and environments

Major components in ML for Sys:

* Tasks: e.g., resource management, load balancing, etc.

* Environments: Infrastructures or platform (e.g., a 5-node Kubernetes cluster)

 Applications: Workloads (e.g., Kubernetes Deployment)

 Agents: e.g., reinforcement learning (RL) agent
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Exploring the opportunities to use ML,
the possible designs, and our experience
with Microsoft Azure.
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Supervised Learning

Adapting to diverse application and environments
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Robustness to application/environment variability

FLASH adapts 5.5x faster than transfer learning

* TL: Transfer learning with parameter sharing
* TL+: TL + additional application fingerprints

FLASH saves 68-72% CPU cycles

FLASH reduces CPU and memory utilization
deficit by 4.6x and 6.2x

FLASH reduces SLO violations by 7.1 x
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Summary: A Foundation Model recipe in ML for Sys

Summary
* Meta-learning for fast model adaptation across and environments

* Missing element prediction in state-decision trajectories for generalization across
Next?

* Model size and complexity

* Larger models have larger capability + better generalizability

 Higher training / fine-tuning cost and inference overhead -> detrimental for real-time tasks
* Trade-offs between generalizability and heterogeneity

 Generalizability across both (1) cloud applications and environments and (2) systems tasks
while still allowing the model to capture the heterogeneity of the various systems in a task

* Risk of homogenization and bias

 Foundation (shared) models are singular points of failure that can radiate harm (e.g., security
risks or biases) to downstream applications/tasks at scale



