Is Function-as-a-Service (FaaS) a Good Fit for
Latency-critical Services

Haoran Qiu', Saurabh Jha', Subho Banerjee’, Archit Patke', Chen Wang?, Hubertus Franke?
Zbigniew Kalbarczyk', Ravishakar lyer?

"University of Illinois, Urbana-Champaign I 2|BM Research

<|ll
-

Paper link: https://www.serverlesscomputing.org/wosc7/papers/p1l
Seventh International Workshop on Serverless Computing (WoSC7) 2021

https://www.serverlesscomputing.org/wosc7/papers/p1

Traditional vs. FaaS — An Example

(n) (n) Develop

|
|
|
|

% (g] Develop | pet store ,

Application | Application .
n_ n_ : owner Register to FaaS Platform

|
|
|
1

Application

Owner Deploy :_ - _Y _______________ :
> : Authentication Function |- |

; |

7 |

Pet Store > ‘ @ \ O Search-Pet Function '

Server _— 9 |\ |

Provision : : o I
Vlrtu.al I\/\achln.e/ End User <| |y Add/Delete-Pet Function |- Database |

Manage Physical Machine l |

!

=

Database

A

Traditional : FaaS FaaS Provider

Latency-critical Services
4
¥
| =

Online Navigation

yahoo/

-
M

Web Mail Service

Seventh International Workshop on Serverless Computing (WoSC7) 2021

i - User timeline
i Y DB
Load 2 ONgo storage

Balancer o Home timeline
storage

MongoDB Social graph
storage

Social Network

o
y

ACCESSTOCITY.

Machine Translation

* Latency-critical services are typically user-facing and operate with strict
service-level objectives (SLOs) on the end-to-end latency, especially the tail
latency (e.g., 99th percentile of the requests returned to users < 100ms).

* Question: Is FaaS a good fit for latency-critical services?

&c\)w/er latency!] [Higher utilization, Higher profit!
OPN©,
O™ @

) Customers FaaS Provider (IR

Resource Granularity in Workload Consolidation Policies

* We tune the memory limit of each container as FaaS platform allocates other type of
resources proportionally to memory limits

* Resource granularities are discrete points on a spectrum

Coarse-grained (CQ)

Resource Allocation Resource Allocation
(Common in Faas) Memory Limit Spectrum (Common in PaaS/laaS)
! I
OpenWhisk, OpenFaa$S :
Knative (FaaS) ’ G(?O | pute Engine (laas) Heroku Platform, AWS EKS (PaaS)
Min: mm AWS ECS (CaaS), AWS EC2 (1aasS)
in ste .
Min step size: Min: 512MB
Min step size: 512MB
AWS Lambda, Google Cloud Run, \ %

Goo d Functions (FaaS) Google GKE (CaaS)
Min Min: 512MB
Min s ze: Min step size:

Seventh International Workshop on Serverless Computing (WoSC7) 2021 4

Goal and Key Findings

* What is the trade-off among power consumption, CPU utilization, and end-to-end
latency in the decision-making of choosing a workload consolidation policy?
* Increasing resource granularity (e.g., increasing a container’s allocated memory limit from 128 MB
to 256 MB):
¢ Reduces tail latency by up to 2x,
« Consumes up to 1.75x more powetr,
* Reduces CPU utilization by up to 59% This Talk

* How is the performance variation affected by fine-grained workload consolidation?

* How do different workload consolidation policies affect the breakdown percentages
of different phases in the end-to-end latency?

Seventh International Workshop on Serverless Computing (WoSC7) 2021 5

Goal and Key Findings

* What is the trade-off among power consumption, CPU utilization, and end-to-end
latency in the decision-making of choosing a workload consolidation policy?
* Increasing resource granularity (e.g., increasing a container’s allocated memory limit from 128 MB
to 256 MB):
* Reduces tail latency by up to 2x,
« Consumes up to 1.75x more powetr,
* Reduces CPU utilization by up to 59% This Talk

* How is the performance variation affected by fine-grained workload consolidation?

* Shared resource contention leads to tail-latency increase of up to 32.6x, 28.9x%, and 4.4x for CPU,
memory, and LLC sensitive workloads

* With state-of-the-art resource partitioning, tail-latency increase becomes 8.3x, 21.5%, and 2.3x

* How do different workload consolidation policies affect the breakdown percentages
of different phases in the end-to-end latency?

Seventh International Workshop on Serverless Computing (WoSC7) 2021 6

Goal and Key Findings

* What is the trade-off among power consumption, CPU utilization, and end-to-end
latency in the decision-making of choosing a workload consolidation policy?
* Increasing resource granularity (e.g., increasing a container’s allocated memory limit from 128 MB
to 256 MB):
¢ Reduces tail latency by up to 2x,
« Consumes up to 1.75x more powetr,
* Reduces CPU utilization by up to 59% This Talk

* How is the performance variation affected by fine-grained workload consolidation?

* How do different workload consolidation policies affect the breakdown percentages
of different phases in the end-to-end latency?
* Increasing the horizontal concurrency (i.e., number of containers) from 2 to 12 on a single server
via decreasing resource granularity:
* Reduces tail wait time by 49.5x but increases tail init time by 1.3x and increases tail execution
time by 15.6x
* End-to-end latency breakdown varies with concurrency and workloads

Seventh International Workshop on Serverless Computing (WoSC7) 2021 7

Latency-Utilization-Power Trade-off

Preferrable utilization

330007 i —Ak- Rate =2 | i —A— Rate =2
M FG I I
£ 30000 - ! !
> : :
£ 25000] |
3 i |

20000 A 1 1
e} 1 1
o : I
& 15000 - . . .
S : I Customer with LC
2 10000+ Provider Prefers | Services Prefers i
L 1
° . ! SLO latency
S 5000 : : /'

_____________________ Y I U
0 T I“i T : T T T Im T : T T
00 02 04 06 08 1.0 02 04 06 08 10
CPU Utilization CPU Utilization
Higher utilization, Lower power
Lower latency , :
consumption, Higher latency
208,
) Customers Faas Provider (IR

Seventh International Workshop on Serverless Computing (WoSC7) 2021

Latency-Utilization-Power Trade-off

/| Preferrable utilization

35000 -

Rate = 2

~A- Rate =2 | —k—
—— Rate =3

—¢-- Rate =3 |

FG

N (OF)

Ul o

o o

o o

o o
1 1

20000 A

15000 - Customer with LC

Provider Prefers :
Services Prefers

10000

5000 A '

99% End-to-end Latency (ms)

/, SLO latency

0 T T T 1 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

CPU Utilization CPU Utilization

[Higher utilization, Lower power

Lower latenc J
d consumption, Higher latency

208,
) Customers Faas Provider (IR

Seventh International Workshop on Serverless Computing (WoSC7) 2021

Latency-Utilization-Power Trade-off

/| Preferrable utilization

35000 - I] I
_ | —A- Rate =2 | —A— Rate =
g 30000 A FG . —¢- Rate =3 _ | —0— Rate =
NG | - Rate = 4 | >4 Rate =
e 25000 i i
Q 1 1
© l l
— 20000 - 1 I
© 1 1
5 : :
r 15000 A I . 1
= : i Customer with LC |
e 10000 Provider Prefers : Services Prefers :
Ll 1
° - SLO latency
S I Xy ! /'
5000 - XK :
(@) 1 1
____________________ =W______________ __________‘,“___)@Qﬁ__;
0 T T i IﬁI T T T T T I T T
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
CPU Utilization CPU Utilization

Lower latency J

202
() Customers

Seventh International Workshop on Serverless Computing (WoSC7) 2021

Higher utilization, Lower power
consumption, Higher latency

FaaS Provider -

10

Latency-Utilization-Power Trade-off

/| Preferrable utilization

35000 1] |
. | —k- Rate =2 | —A— Rate =2
g 30000 - FG i —¢-- Rate =3 | i —— Rate =3
> :—X- Rate = 4 :+ Rate = 4
§25ooo— + —- Rate =5 1 i —#- Rate =5
G : l
— 20000 - 1 . I
© 1 1
GC) : : :
i 15000 i 1 - '
i) : I Customer with LC
2 10000 - Provider Prefers : I Services Prefers l "
Ll 1
° - SLO latency
S I Xy ! /'
5000 - XX
(@)} 1 1
I yYvy ;‘“ﬁlw """""""""" ﬂ'dﬁ“"M'“
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

CPU Utilization

Lower latency J

202
() Customers

Seventh International Workshop on Serverless Computing (WoSC7) 2021

CPU Utilization

Higher utilization, Lower power
consumption, Higher latency

FaaS Provider -

11

Latency-Utilization-Power Trade-off

/| Preferrable utilization

35000 | \ & -
_ -k - Rate =2 ! | | =& Rate =2 !
g 30000 A —¢-- Rate =3 i FG *_ —— Rate =3 i
> —é- Rate =4 ! —>é—- Rate =4 !
2 25000 - Rate =5 i i —8- Rate =5 i
o -¥- Rate =6 : ~—¥— Rate =6 :
— 20000 - 1 . I
© 1 1
C 1 1
© 15000 - : : 1 ! J
= : i Customer with LC
e 10000 Provider Prefers : I Services Prefers :
w ' SLO latenc
- e | / y
@ 5000 - XK :
(@)} 1 1
I yYvy ;‘“'ﬁlw """""""""" W“M'“
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.6 0.8 1.0

CPU Utilization

Lower latency J

202
() Customers

Seventh International Workshop on Serverless Computing (WoSC7) 2021

CPU Utilization

Higher utilization, Lower power
consumption, Higher latency

FaaS Provider -

12

Latency-Utilization-Power Trade-off

140 -

=
N
o

Power Consumption (W)

60 1

100 -

(0]
o
1

—A- Rate =2
—¢-- Rate =3
->¢- Rate =4
-k - Rate =5
1 =¥- Rate =6

B Fine-grained
Coarse-grained

6 8 10 12
Horizontal Concurrency

Seventh International Workshop on Serverless Computing (WoSC7) 2021

Invoker [| G [G || G || G4

Invoker || G || Co || G, || Cs

13

[Implication] An FC policy leads to lower operation costs (up to 1.75x less) and
better server utilization efficiency (up to 59% higher), while a CC policy offers
the customers lower end-to end latency (up to 2x less).

The conflicting goals of the two parties raise questions,

* On the pricing model: how to balance the needs of both parties?

* On the provider-customer interface: how should resource and performance
needs be conveyed?

Higher utilization, Lower power
Lower latency , :
6.6 consumption, Higher latency .
O™

) Customers Faas Provider (R

Thank you!

Check out our paper for more details:
https://www.serverlesscomputing.org/woscz/papers/p1

Code available at: https://github.com/James-QiuHaoran/serverless-woscz

https://www.serverlesscomputing.org/wosc7/papers/p1
https://github.com/James-QiuHaoran/serverless-wosc7

Backup Slides

Background: Serverless Function-as-a-Service (FaaS)

* Serverless computing
* Cloud provider allocates and scales compute resources
* Customers are charged for the compute resources used

* Function-as-a-Service (FaaS)
* Customers writes code that only tackles application logic; uploads it to FaaS platform
* No need to configure/manage the provisioning and maintenance of the resources
* E.g., Google Cloud Functions, AWS Lambda, IBM Cloud Functions, Azure Functions

Serverless Computing

)
Serverless DB ... @

Seventh International Workshop on Serverless Computing (WoSC7) 2021 17

Focus of this paper

System Stack Management — Traditional vs. FaaS

* In traditional cloud computing paradigms,
customers configure and pay for the cloud
resources that they requested

* E.g., the number of cores and amount of memory

for a virtual machine

* Customers tend to overprovision compute
resources to meet application end-to-end
performance goals

* Operating system (VM) is the scale of unit

Customer |
Manages

Provider
Manages

\

Traditional

Customer Registered Functions

Runtime

Containers

Container Orchestration

Operating System ——

Virtualization Layer

Hardware Layer

v
Scale of Unit

System Stack Management — Traditional vs. FaaS

* FaaS frees application developers from

FaaS
infrastructure management - — :
* E.g., resource provisioning, scaling Customer | [EECEELCINENEE 1SN
Manages i
Runtime

* Customers are charged by the compute S :
resource usage during the execution time COMENIERS
(no expense for idle times) | Container Orchestration

Provider }

* FaaS provider creates containers for a Manages | ORI &)
function, scales the number of containers, Virtualization Layer
and co-locates multiple containers on the Hardware Layer
same server (i.e., workload consolidation))

* At the cost of higher end-to-end function request

A\ 4

latencies (up to 2x from our evaluation results) Scale of Unit

Experimental Setup Overview

* Measurements from the execution of 2 widely used FaaS benchmark suites
» ServerlessBench, FaaS-Profiler

* Benchmarks running on an open-sourced FaaS platform -- OpenWhisk
* Deployed on IBM Cloud with 1 master node and 4 worker nodes

e, Invoker || G GG G | Function Container
Client Node : % Docker
! Invoker Agent
‘ \ API Invoker
— .
©] Gateway -9| Controller Container

Y

|

|

Client Request :
Generator I Data Store E

|

|

Concept Overview

) Container Provisioning

Client Node
API Invoker || G, |1 G || G
‘ @ \——9- Gateway —>| Controller
—_— \l' Docker
Client Request
Generator Data Store @ :
Warm-start Cold-start
[| \ [| \
Request Invoker Request Image/ |
Received Found /[run END Received Code Pull [init [run END

;M

A A
-
1

1
a Wait Time

e Exec Time

oo

(o

@1

}
J

o

\

;

1
¢ Wait Time e

1

Init Time

|
e Exec Time

& Initialization

) Queueing

Seventh International Workshop on Serverless Computing (WoSC7) 2021

21

Latency Variation

g —h— A
S5 50% 42%]
5 8 4~ CG1 —&— FG 7%

= CG2 | |
.. 1500
U _-As
& = 1000 === vw $48%
JE 500 ; _—
o —— FG —— cG 9%
< 0
>
O
o~
2 2000-

-l

T —4— FG —— CG

|_ O T T T T T T T T
2 4 6 8 10 12 14 16

Horizontal Concurrency
]\

1 1
Both on 1 node FG on 1 node
CG scales to 2 nodes

Seventh International Workshop on Serverless Computing (WoSC7) 2021

: Worker Node #FG

: GCHNG NG C,
Invoker —

I Docker

|
|
|
|
|
—> Gl sl
:
|

Invoker || G, | G| G || G

Docker

Invoker || G || G || G || G4

22

Latency Variation

FG on 1 node

Both on 1 node CG scales to 2 nodes

| |

—

—
—
—

2 1500 WM FG (wait) @ FG (exec) N
§1ooo~ 3 5} i ; Z ;
MR ER NN
SIARERRRY
£ = “ 2 72 2 v 2 ¢
E 3000 - mm CG (wait) %77 CG (exec) ; }
> 3 2 2 %2 1 7 7
c 7 ok
g 2000 - % é é 2 2 g 2
= 1000+ ﬁ z % é 7//} 9
. é
e 2 4 6 8 10 .16 14 16
Horizontal Concurrency R
i Wait time | & Exec time T~
Exec time T_ Exectime T_
CG Z —=
Wait time |

Seventh International Workshop on Serverless Computing (WoSC7) 2021

Invoker || G, | G| G || G

Invoker || G || G || G || G4

23

Latency Variation

[Implication] Compared to FC policies, a CG policy scales out containers on a
greater number of servers, resulting in less resource contention and thus up to
67% lower end-to-end latency.

Wait time | & Exectime 1 Docker
Exec time T_ Exec time T_
| 7 <
Wait time |

Seventh International Workshop on Serverless Computing (WoSC7) 2021

Latency-Utilization-Power Trade-off

128/256 R DARTLARNLA 56.8% 44.0% 66.7% 63.7%
128/512 51.2% 49.7% 67.2% 70.5% 85.1% 88.4%
PNl 11.8% 39.0% 67.4% 74.9% 81.0% 78.9% 74.3% 64.6%
PRIl 12.2% 36.8% 69.9% 87.5% 88.6% 73.5% 71.1% 67.0%
160/256 X R Y 54.2% 45.3% 52.9% 55.8%
PR O.9% SIWET 45.2% 48.8% 61.9% 68.4% 76.7% 80.2%
N 6.5% 32.5% 60.7% 69.4% 76.6% 72.9% 63.3% 50.9%
Tl 12.1% 32.0% 66.6% 79.5% 85.4% 70.1% 59.7% 51.3%
192/256 [RICEZ) -8.6% <6.2% ~1.6% EAN AN LN ATRZRLY
TONIPE 6.2% <A 43 9% 45.6% 59.9% 59.0% 72.8% 77.4%
PNl 4.0% 31.8% 55.7% 62.6% 71.1% 64.2% 60.9% 48.3%
TIRIIE 5.3% 29.4% 64.3% 71.8% 80.7% 52.6% 55.9% 47.5%

G in Memory Capacity (MB)

FG/C

2 4 6 8 10 12 14 16
Horizontal Concurrency

Seventh International Workshop on Serverless Computing (WoSC7) 2021

(@)
o

(®))
o

1N
o

(FG-CG)/FG Tail Latency in Percentage

N
o

Performance Interference

Base64 (Avg)

Base64 (Tail)

Primes (Avg)

Primes (Tail)
Markdown2HTML (Avg)
Markdown2HTML (Tail)
Sentiment (Avg)
Sentiment (Tail)
Image-Resize (Avg)

Image-Resize (Tail)

CPU Time Contention

166.8% 1497.7% 1712.7%
182.0% 1451.4% 1656.4%
114.9% 184.3% 250.0%
131.8% 272.4% 333.2%
404.5% 1120.0% 1299.8%
410.8% 1174.9% 1383.9%
128.7% 239.0% 349.3%
158.0% 321.7% 427.2%

984.1% 2920.5% 3942.5%

3258.5%

828.2%

2883.3%

C1 C2 C3

B

[N] 1]
1500 3000

Normalized Latency in Percentage

Memory Bandwidth Contention

175.8%
223.8%
108.8%
148.2%
103.7%
125.9%
115.8%
180.4%
134.1%
127.9%

131.3%
200.0%
105.2%
136.6%
100.1%
121.8%
102.9%
112.9%
133.9%
125.7%

M1 M2

261.0%
262.4%
114.1%
153.5%

463.8%

492.1%

122.2%
183.4%
898.6%

521.3%

517.2%

126.2%
167.0%
525.9%
549.6%
135.7%
193.0%

663.9%
671.7%
139.5%
177.8%
806.7%
828.0%

164.2%
204.6%

1743.7% 2400.6%

1241.5% 1273.4% 2151.5%

M3

M4

I
1000 2000

M5

Normalized Latency in Percentage

Seventh International Workshop on Serverless Computing (WoSC7) 2021

101.0%
101.0%
100.7%
100.2%
106.9%
101.3%
100.7%
100.9%
103.1%
103.7%

L1

I
120

LLC Contention

101.0%
103.0%
101.0%
100.3%
136.6%
126.6%
101.4%
101.5%
106.1%
112.4%

L2

103.2%
104.1%
102.2%
101.4%
175.4%

164.2%
103.7%
101.5%
111.6%
114.3%

L3

106.8%
107.0%
104.5%
105.6%
230.6%
229.8%

123.7%
128.8%
121.8%
125.6%

L4

I
180

Normalized Latency in Percentage

[Implication]

* Performance isolation should be carefully assessed to prevent SLO violations
due to resource sharing.

 However, when thousands of function containers are consolidated on a
single server, state-of-the-art resource partitioning fails to mitigate the
performance interference, still with up to 8.3%, 21.5x%, and 2.3x increase in
end-to-end tail latencies for CPU, memory, and LLC sensitive workloads.

End-to-end Latency Breakdown

Bl waitTime B initTime

B execTime »

2.0 4.0 6.0 8.0 10.0 12.0
Horizontal Concurrency

Seventh International Workshop on Serverless Computing (WoSC7) 2021

[Implication] The three-phase breakdown of end-to-end latency varies with the
concurrency-to-arrival-rate ratio. Increasing the concurrency from 2 to 12:

* Reduces the tail wait time by 49.5x from 1820 ms

* Increases tail initialization time by 1.3x from 409 ms

* Increases tail execution time by 15.6x from 484 ms

Seventh International Workshop on Serverless Computing (WoSC7) 2021

