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Traditional vs. FaaS — An Example
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* Latency-critical services are typically user-facing and operate with strict
service-level objectives (SLOs) on the end-to-end latency, especially the tail
latency (e.g., 99th percentile of the requests returned to users < 100ms).

* Question: Is FaaS a good fit for latency-critical services?
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Resource Granularity in Workload Consolidation Policies

* We tune the memory limit of each container as FaaS platform allocates other type of
resources proportionally to memory limits

* Resource granularities are discrete points on a spectrum
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Goal and Key Findings

* What is the trade-off among power consumption, CPU utilization, and end-to-end
latency in the decision-making of choosing a workload consolidation policy?
* Increasing resource granularity (e.g., increasing a container’s allocated memory limit from 128 MB
to 256 MB):
¢ Reduces tail latency by up to 2x,
« Consumes up to 1.75x more powetr,
* Reduces CPU utilization by up to 59% This Talk

* How is the performance variation affected by fine-grained workload consolidation?

* How do different workload consolidation policies affect the breakdown percentages
of different phases in the end-to-end latency?
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Goal and Key Findings

* What is the trade-off among power consumption, CPU utilization, and end-to-end
latency in the decision-making of choosing a workload consolidation policy?
* Increasing resource granularity (e.g., increasing a container’s allocated memory limit from 128 MB
to 256 MB):
* Reduces tail latency by up to 2x,
« Consumes up to 1.75x more powetr,
* Reduces CPU utilization by up to 59% This Talk

* How is the performance variation affected by fine-grained workload consolidation?

* Shared resource contention leads to tail-latency increase of up to 32.6x, 28.9x%, and 4.4x for CPU,
memory, and LLC sensitive workloads

* With state-of-the-art resource partitioning, tail-latency increase becomes 8.3x, 21.5%, and 2.3x

* How do different workload consolidation policies affect the breakdown percentages
of different phases in the end-to-end latency?
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Goal and Key Findings

* What is the trade-off among power consumption, CPU utilization, and end-to-end
latency in the decision-making of choosing a workload consolidation policy?
* Increasing resource granularity (e.g., increasing a container’s allocated memory limit from 128 MB
to 256 MB):
¢ Reduces tail latency by up to 2x,
« Consumes up to 1.75x more powetr,
* Reduces CPU utilization by up to 59% This Talk

* How is the performance variation affected by fine-grained workload consolidation?

* How do different workload consolidation policies affect the breakdown percentages
of different phases in the end-to-end latency?
* Increasing the horizontal concurrency (i.e., number of containers) from 2 to 12 on a single server
via decreasing resource granularity:
* Reduces tail wait time by 49.5x but increases tail init time by 1.3x and increases tail execution
time by 15.6x
* End-to-end latency breakdown varies with concurrency and workloads
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Latency-Utilization-Power Trade-off
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Latency-Utilization-Power Trade-off
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Latency-Utilization-Power Trade-off
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Latency-Utilization-Power Trade-off
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Latency-Utilization-Power Trade-off
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Latency-Utilization-Power Trade-off
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[Implication] An FC policy leads to lower operation costs (up to 1.75x less) and
better server utilization efficiency (up to 59% higher), while a CC policy offers
the customers lower end-to end latency (up to 2x less).

The conflicting goals of the two parties raise questions,

* On the pricing model: how to balance the needs of both parties?

* On the provider-customer interface: how should resource and performance
needs be conveyed?
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Thank you!

Check out our paper for more details:
https://www.serverlesscomputing.org/woscz/papers/p1

Code available at: https://github.com/James-QiuHaoran/serverless-woscz
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https://github.com/James-QiuHaoran/serverless-wosc7

Backup Slides



Background: Serverless Function-as-a-Service (FaaS)

* Serverless computing
* Cloud provider allocates and scales compute resources
* Customers are charged for the compute resources used

* Function-as-a-Service (FaaS)
* Customers writes code that only tackles application logic; uploads it to FaaS platform
* No need to configure/manage the provisioning and maintenance of the resources
* E.g., Google Cloud Functions, AWS Lambda, IBM Cloud Functions, Azure Functions

Serverless Computing

)
Serverless DB ... @
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System Stack Management — Traditional vs. FaaS

* In traditional cloud computing paradigms,
customers configure and pay for the cloud
resources that they requested

* E.g., the number of cores and amount of memory

for a virtual machine

* Customers tend to overprovision compute
resources to meet application end-to-end
performance goals

* Operating system (VM) is the scale of unit
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System Stack Management — Traditional vs. FaaS

* FaaS frees application developers from

FaaS
infrastructure management - — :
* E.g., resource provisioning, scaling Customer | [EECEELCINENEE 1SN
Manages i
Runtime

* Customers are charged by the compute S :
resource usage during the execution time COMENIERS
(no expense for idle times) | Container Orchestration

Provider }

* FaaS provider creates containers for a Manages | ORI &)
function, scales the number of containers, Virtualization Layer
and co-locates multiple containers on the Hardware Layer
same server (i.e., workload consolidation) )

* At the cost of higher end-to-end function request
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latencies (up to 2x from our evaluation results) Scale of Unit



Experimental Setup Overview

* Measurements from the execution of 2 widely used FaaS benchmark suites
» ServerlessBench, FaaS-Profiler

* Benchmarks running on an open-sourced FaaS platform -- OpenWhisk
* Deployed on IBM Cloud with 1 master node and 4 worker nodes
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Concept Overview
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Latency Variation
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Latency Variation
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Latency Variation

[Implication] Compared to FC policies, a CG policy scales out containers on a
greater number of servers, resulting in less resource contention and thus up to
67% lower end-to-end latency.
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Latency-Utilization-Power Trade-off
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Performance Interference
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[Implication]

* Performance isolation should be carefully assessed to prevent SLO violations
due to resource sharing.

 However, when thousands of function containers are consolidated on a
single server, state-of-the-art resource partitioning fails to mitigate the
performance interference, still with up to 8.3%, 21.5x%, and 2.3x increase in
end-to-end tail latencies for CPU, memory, and LLC sensitive workloads.




End-to-end Latency Breakdown
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[Implication] The three-phase breakdown of end-to-end latency varies with the
concurrency-to-arrival-rate ratio. Increasing the concurrency from 2 to 12:

* Reduces the tail wait time by 49.5x from 1820 ms

* Increases tail initialization time by 1.3x from 409 ms

* Increases tail execution time by 15.6x from 484 ms
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