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Traditional vs. FaaS – An Example

End User

Application
Owner

Pet Store 
Application

Pet Store 
Server

Virtual Machine /
Physical Machine

Deploy

Provision

Manage

Database

Authentication Function

Search-Pet Function

Add/Delete-Pet FunctionA
PI

 G
at

ew
ay

Database

Application
Owner

Develop

FaaS Provider

Provision & Manage

FaaSTraditional
1

Develop

Register to FaaS Platform

Seventh International Workshop on Serverless Computing (WoSC7) 2021



Latency-critical Services
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Latency-critical Services

Social NetworkOnline Navigation

Web Mail Service Machine Translation

• Latency-critical services are typically user-facing and operate with strict 
service-level objectives (SLOs) on the end-to-end latency, especially the tail 
latency (e.g., 99th percentile of the requests returned to users < 100ms).
• Question: Is FaaS a good fit for latency-critical services?
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Resource Granularity in Workload Consolidation Policies
• We tune the memory limit of each container as FaaS platform allocates other type of 

resources proportionally to memory limits
• Resource granularities are discrete points on a spectrum

Fine-grained (FG) 
Resource Allocation
(Common in FaaS)

Coarse-grained (CG) 
Resource Allocation

(Common in PaaS/IaaS)Memory Limit Spectrum

Heroku Platform, AWS EKS (PaaS)
AWS ECS (CaaS), AWS EC2 (IaaS)
Min: 512MB
Min step size: 512MB

Google Compute Engine (IaaS)
Min: 256MB
Min step size: 256MB

AWS Lambda, Google Cloud Run, 
Google Cloud Functions (FaaS)
Min: 128MB
Min step size: 1MB

Google GKE (CaaS)
Min: 512MB
Min step size: 256MB

OpenWhisk, OpenFaaS,
Knative (FaaS)
Min: 4MB
Min step size: 1MB

CG

FG
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Goal and Key Findings
• What is the trade-off among power consumption, CPU utilization, and end-to-end 

latency in the decision-making of choosing a workload consolidation policy?
• Increasing resource granularity (e.g., increasing a container’s allocated memory limit from 128 MB 

to 256 MB):
• Reduces tail latency by up to 2x,
• Consumes up to 1.75× more power,
• Reduces CPU utilization by up to 59%

• How is the performance variation affected by fine-grained workload consolidation?
• How do different workload consolidation policies affect the breakdown percentages 

of different phases in the end-to-end latency?
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Goal and Key Findings
• What is the trade-off among power consumption, CPU utilization, and end-to-end 

latency in the decision-making of choosing a workload consolidation policy?
• Increasing resource granularity (e.g., increasing a container’s allocated memory limit from 128 MB 

to 256 MB):
• Reduces tail latency by up to 2x,
• Consumes up to 1.75× more power,
• Reduces CPU utilization by up to 59%

• How is the performance variation affected by fine-grained workload consolidation?
• Shared resource contention leads to tail-latency increase of up to 32.6x, 28.9x, and 4.4x for CPU, 

memory, and LLC sensitive workloads
• With state-of-the-art resource partitioning, tail-latency increase becomes 8.3x, 21.5x, and 2.3x

• How do different workload consolidation policies affect the breakdown percentages 
of different phases in the end-to-end latency?
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Goal and Key Findings
• What is the trade-off among power consumption, CPU utilization, and end-to-end 

latency in the decision-making of choosing a workload consolidation policy?
• Increasing resource granularity (e.g., increasing a container’s allocated memory limit from 128 MB 

to 256 MB):
• Reduces tail latency by up to 2x,
• Consumes up to 1.75× more power,
• Reduces CPU utilization by up to 59%

• How is the performance variation affected by fine-grained workload consolidation?
• How do different workload consolidation policies affect the breakdown percentages 

of different phases in the end-to-end latency?
• Increasing the horizontal concurrency (i.e., number of containers) from 2 to 12 on a single server 

via decreasing resource granularity:
• Reduces tail wait time by 49.5x but increases tail init time by 1.3x and increases tail execution 

time by 15.6x
• End-to-end latency breakdown varies with concurrency and workloads
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Latency-Utilization-Power Trade-off
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Latency-Utilization-Power Trade-off
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[Implication] An FG policy leads to lower operation costs (up to 1.75× less) and 
better server utilization efficiency (up to 59% higher), while a CG policy offers 
the customers lower end-to end latency (up to 2× less).
The conflicting goals of the two parties raise questions,
• On the pricing model: how to balance the needs of both parties?
• On the provider-customer interface: how should resource and performance 

needs be conveyed?

Lower latency

Customers FaaS Provider

Higher utilization, Lower power 
consumption, Higher latency
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Thank you!
Check out our paper for more details: 

https://www.serverlesscomputing.org/wosc7/papers/p1

Code available at: https://github.com/James-QiuHaoran/serverless-wosc7

https://www.serverlesscomputing.org/wosc7/papers/p1
https://github.com/James-QiuHaoran/serverless-wosc7
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Background: Serverless Function-as-a-Service (FaaS)
• Serverless computing

• Cloud provider allocates and scales compute resources
• Customers are charged for the compute resources used

• Function-as-a-Service (FaaS)
• Customers writes code that only tackles application logic; uploads it to FaaS platform
• No need to configure/manage the provisioning and maintenance of the resources
• E.g., Google Cloud Functions, AWS Lambda, IBM Cloud Functions, Azure Functions

FaaS

Serverless Computing

Backend-as-a-Service,
Serverless DB …

Focus of this paper
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System Stack Management – Traditional vs. FaaS
• In traditional cloud computing paradigms, 

customers configure and pay for the cloud 
resources that they requested
• E.g., the number of cores and amount of memory 

for a virtual machine

• Customers tend to overprovision compute 
resources to meet application end-to-end 
performance goals
• Operating system (VM) is the scale of unit Hardware Layer

Virtualization Layer

Operating System

Container Orchestration

Containers

Runtime

Provider
Manages

Customer
Manages

Customer Registered Functions

Scale of Unit
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System Stack Management – Traditional vs. FaaS
• FaaS frees application developers from 

infrastructure management
• E.g., resource provisioning, scaling

• Customers are charged by the compute 
resource usage during the execution time 
(no expense for idle times)
• FaaS provider creates containers for a 

function, scales the number of containers, 
and co-locates multiple containers on the 
same server (i.e., workload consolidation)
• At the cost of higher end-to-end function request 

latencies (up to 2x from our evaluation results)
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Experimental Setup Overview
• Measurements from the execution of 2 widely used FaaS benchmark suites

• ServerlessBench, FaaS-Profiler

• Benchmarks running on an open-sourced FaaS platform -- OpenWhisk
• Deployed on IBM Cloud with 1 master node and 4 worker nodes

API 
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Master Node Invoker

Docker

C1 C2 C3
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Ci Function Container

Worker Node #2

Worker Node #3

Worker Node #4

Invoker Invoker Agent
Container

Client Request
Generator

Client Node
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Concept Overview
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Latency Variation

7.9%

12.5%

48%

67%

42%37%

44%

41%

Both on 1 node FG on 1 node
CG scales to 2 nodes
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Latency Variation

Both on 1 node
FG on 1 node
CG scales to 2 nodes

Wait time ↓ & Exec time ↑
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Latency Variation

Both on 1 node
FG on 1 node
CG scales to 2 nodes

Wait time ↓ & Exec time ↑
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[Implication] Compared to FG policies, a CG policy scales out containers on a 
greater number of servers, resulting in less resource contention and thus up to 
67% lower end-to-end latency.
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Latency-Utilization-Power Trade-off
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Performance Interference
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Performance Interference
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[Implication]
• Performance isolation should be carefully assessed to prevent SLO violations 

due to resource sharing.
• However, when thousands of function containers are consolidated on a 

single server, state-of-the-art resource partitioning fails to mitigate the 
performance interference, still with up to 8.3×, 21.5×, and 2.3× increase in 
end-to-end tail latencies for CPU, memory, and LLC sensitive workloads.
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End-to-end Latency Breakdown
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End-to-end Latency Breakdown

29

[Implication] The three-phase breakdown of end-to-end latency varies with the 
concurrency-to-arrival-rate ratio. Increasing the concurrency from 2 to 12:
• Reduces the tail wait time by 49.5× from 1820 ms
• Increases tail initialization time by 1.3× from 409 ms
• Increases tail execution time by 15.6× from 484 ms
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