
Is Function-as-a-Service (FaaS) a Good Fit for
Latency-critical Services

Haoran Qiu1, Saurabh Jha1, Subho Banerjee1, Archit Patke1, Chen Wang2, Hubertus Franke2

Zbigniew Kalbarczyk1, Ravishakar Iyer1

1 University of Illinois, Urbana-Champaign 2 IBM Research

Paper link: https://www.serverlesscomputing.org/wosc7/papers/p1
Seventh International Workshop on Serverless Computing (WoSC7) 2021

https://www.serverlesscomputing.org/wosc7/papers/p1

Traditional vs. FaaS – An Example

End User

Application
Owner

Pet Store
Application

Pet Store
Server

Virtual Machine /
Physical Machine

Deploy

Provision

Manage

Database

Authentication Function

Search-Pet Function

Add/Delete-Pet FunctionA
PI

 G
at

ew
ay

Database

Application
Owner

Develop

FaaS Provider

Provision & Manage

FaaSTraditional
1

Develop

Register to FaaS Platform

Seventh International Workshop on Serverless Computing (WoSC7) 2021

Latency-critical Services

Social NetworkOnline Navigation

Web Mail Service Machine Translation

2Seventh International Workshop on Serverless Computing (WoSC7) 2021

Latency-critical Services

Social NetworkOnline Navigation

Web Mail Service Machine Translation

• Latency-critical services are typically user-facing and operate with strict
service-level objectives (SLOs) on the end-to-end latency, especially the tail
latency (e.g., 99th percentile of the requests returned to users < 100ms).
• Question: Is FaaS a good fit for latency-critical services?

3Seventh International Workshop on Serverless Computing (WoSC7) 2021

Lower latency!

Customers FaaS Provider

Higher utilization, Higher profit!

Resource Granularity in Workload Consolidation Policies
• We tune the memory limit of each container as FaaS platform allocates other type of

resources proportionally to memory limits
• Resource granularities are discrete points on a spectrum

Fine-grained (FG)
Resource Allocation
(Common in FaaS)

Coarse-grained (CG)
Resource Allocation

(Common in PaaS/IaaS)Memory Limit Spectrum

Heroku Platform, AWS EKS (PaaS)
AWS ECS (CaaS), AWS EC2 (IaaS)
Min: 512MB
Min step size: 512MB

Google Compute Engine (IaaS)
Min: 256MB
Min step size: 256MB

AWS Lambda, Google Cloud Run,
Google Cloud Functions (FaaS)
Min: 128MB
Min step size: 1MB

Google GKE (CaaS)
Min: 512MB
Min step size: 256MB

OpenWhisk, OpenFaaS,
Knative (FaaS)
Min: 4MB
Min step size: 1MB

CG

FG
4Seventh International Workshop on Serverless Computing (WoSC7) 2021

Goal and Key Findings
• What is the trade-off among power consumption, CPU utilization, and end-to-end

latency in the decision-making of choosing a workload consolidation policy?
• Increasing resource granularity (e.g., increasing a container’s allocated memory limit from 128 MB

to 256 MB):
• Reduces tail latency by up to 2x,
• Consumes up to 1.75× more power,
• Reduces CPU utilization by up to 59%

• How is the performance variation affected by fine-grained workload consolidation?
• How do different workload consolidation policies affect the breakdown percentages

of different phases in the end-to-end latency?

5Seventh International Workshop on Serverless Computing (WoSC7) 2021

This Talk

Goal and Key Findings
• What is the trade-off among power consumption, CPU utilization, and end-to-end

latency in the decision-making of choosing a workload consolidation policy?
• Increasing resource granularity (e.g., increasing a container’s allocated memory limit from 128 MB

to 256 MB):
• Reduces tail latency by up to 2x,
• Consumes up to 1.75× more power,
• Reduces CPU utilization by up to 59%

• How is the performance variation affected by fine-grained workload consolidation?
• Shared resource contention leads to tail-latency increase of up to 32.6x, 28.9x, and 4.4x for CPU,

memory, and LLC sensitive workloads
• With state-of-the-art resource partitioning, tail-latency increase becomes 8.3x, 21.5x, and 2.3x

• How do different workload consolidation policies affect the breakdown percentages
of different phases in the end-to-end latency?

6Seventh International Workshop on Serverless Computing (WoSC7) 2021

This Talk

Goal and Key Findings
• What is the trade-off among power consumption, CPU utilization, and end-to-end

latency in the decision-making of choosing a workload consolidation policy?
• Increasing resource granularity (e.g., increasing a container’s allocated memory limit from 128 MB

to 256 MB):
• Reduces tail latency by up to 2x,
• Consumes up to 1.75× more power,
• Reduces CPU utilization by up to 59%

• How is the performance variation affected by fine-grained workload consolidation?
• How do different workload consolidation policies affect the breakdown percentages

of different phases in the end-to-end latency?
• Increasing the horizontal concurrency (i.e., number of containers) from 2 to 12 on a single server

via decreasing resource granularity:
• Reduces tail wait time by 49.5x but increases tail init time by 1.3x and increases tail execution

time by 15.6x
• End-to-end latency breakdown varies with concurrency and workloads

7Seventh International Workshop on Serverless Computing (WoSC7) 2021

This Talk

Latency-Utilization-Power Trade-off

8

��� ��� ��� ��� ��� ���
&38�8WLOL]DWLRQ

�

����

�����

�����

�����

�����

�����

�����

��
�
�(
QG
�W
R�
HQ
G�
/D
WH
QF
\�
�P
V�

3URYLGHU�3UHIHUV
�������

5DWH� ��

��� ��� ��� ��� ���
&38�8WLOL]DWLRQ

&XVWRPHU�ZLWK�/&
6HUYLFHV�3UHIHUV�������

5DWH� ��
CGFG

Lower latency Higher utilization, Lower power
consumption, Higher latency

Customers FaaS Provider
Seventh International Workshop on Serverless Computing (WoSC7) 2021

SLO latency

Preferrable utilization

Latency-Utilization-Power Trade-off

9

��� ��� ��� ��� ��� ���
&38�8WLOL]DWLRQ

�

����

�����

�����

�����

�����

�����

�����

��
�
�(
QG
�W
R�
HQ
G�
/D
WH
QF
\�
�P
V�

3URYLGHU�3UHIHUV
�������

5DWH� ��
5DWH� ��

��� ��� ��� ��� ���
&38�8WLOL]DWLRQ

&XVWRPHU�ZLWK�/&
6HUYLFHV�3UHIHUV�������

5DWH� ��
5DWH� ��CGFG

Lower latency

Customers FaaS Provider

Higher utilization, Lower power
consumption, Higher latency

Seventh International Workshop on Serverless Computing (WoSC7) 2021

SLO latency

Preferrable utilization

Latency-Utilization-Power Trade-off

10

��� ��� ��� ��� ��� ���
&38�8WLOL]DWLRQ

�

����

�����

�����

�����

�����

�����

�����

��
�
�(
QG
�W
R�
HQ
G�
/D
WH
QF
\�
�P
V�

3URYLGHU�3UHIHUV
�������

5DWH� ��
5DWH� ��
5DWH� ��

��� ��� ��� ��� ���
&38�8WLOL]DWLRQ

&XVWRPHU�ZLWK�/&
6HUYLFHV�3UHIHUV�������

5DWH� ��
5DWH� ��
5DWH� ��

CGFG

Lower latency

Customers FaaS Provider

Higher utilization, Lower power
consumption, Higher latency

Seventh International Workshop on Serverless Computing (WoSC7) 2021

SLO latency

Preferrable utilization

Latency-Utilization-Power Trade-off

11

��� ��� ��� ��� ��� ���
&38�8WLOL]DWLRQ

�

����

�����

�����

�����

�����

�����

�����

��
�
�(
QG
�W
R�
HQ
G�
/D
WH
QF
\�
�P
V�

3URYLGHU�3UHIHUV
�������

5DWH� ��
5DWH� ��
5DWH� ��
5DWH� ��

��� ��� ��� ��� ���
&38�8WLOL]DWLRQ

&XVWRPHU�ZLWK�/&
6HUYLFHV�3UHIHUV�������

5DWH� ��
5DWH� ��
5DWH� ��
5DWH� ��

CGFG

Lower latency

Customers FaaS Provider

Higher utilization, Lower power
consumption, Higher latency

Seventh International Workshop on Serverless Computing (WoSC7) 2021

SLO latency

Preferrable utilization

Latency-Utilization-Power Trade-off

12

��� ��� ��� ��� ��� ���
&38�8WLOL]DWLRQ

�

����

�����

�����

�����

�����

�����

�����

��
�
�(
QG
�W
R�
HQ
G�
/D
WH
QF
\�
�P
V�

3URYLGHU�3UHIHUV
�������

5DWH� ��
5DWH� ��
5DWH� ��
5DWH� ��
5DWH� ��

��� ��� ��� ��� ���
&38�8WLOL]DWLRQ

&XVWRPHU�ZLWK�/&
6HUYLFHV�3UHIHUV�������

5DWH� ��
5DWH� ��
5DWH� ��
5DWH� ��
5DWH� ��

CGFG

Lower latency

Customers FaaS Provider

Higher utilization, Lower power
consumption, Higher latency

Seventh International Workshop on Serverless Computing (WoSC7) 2021

SLO latency

Preferrable utilization

Latency-Utilization-Power Trade-off

13

Controller
Invoker

Docker

C1 C2 C3

Worker Node #CG1

C4

Invoker

Docker

C1 C2 C3

Controller

Worker Node #FG

C4

C5 C6 C7 C8

Invoker

Docker

C5 C6 C7

Worker Node #CG2

C8

Seventh International Workshop on Serverless Computing (WoSC7) 2021

Latency-Utilization-Power Trade-off

14

Controller
Invoker

Docker

C1 C2 C3

Worker Node #CG1

C4

Invoker

Docker

C1 C2 C3

Controller

Worker Node #FG

C4

C5 C6 C7 C8

Invoker

Docker

C5 C6 C7

Worker Node #CG2

C8

[Implication] An FG policy leads to lower operation costs (up to 1.75× less) and
better server utilization efficiency (up to 59% higher), while a CG policy offers
the customers lower end-to end latency (up to 2× less).
The conflicting goals of the two parties raise questions,
• On the pricing model: how to balance the needs of both parties?
• On the provider-customer interface: how should resource and performance

needs be conveyed?

Lower latency

Customers FaaS Provider

Higher utilization, Lower power
consumption, Higher latency

Seventh International Workshop on Serverless Computing (WoSC7) 2021

Thank you!
Check out our paper for more details:

https://www.serverlesscomputing.org/wosc7/papers/p1

Code available at: https://github.com/James-QiuHaoran/serverless-wosc7

https://www.serverlesscomputing.org/wosc7/papers/p1
https://github.com/James-QiuHaoran/serverless-wosc7

Backup Slides

Background: Serverless Function-as-a-Service (FaaS)
• Serverless computing

• Cloud provider allocates and scales compute resources
• Customers are charged for the compute resources used

• Function-as-a-Service (FaaS)
• Customers writes code that only tackles application logic; uploads it to FaaS platform
• No need to configure/manage the provisioning and maintenance of the resources
• E.g., Google Cloud Functions, AWS Lambda, IBM Cloud Functions, Azure Functions

FaaS

Serverless Computing

Backend-as-a-Service,
Serverless DB …

Focus of this paper

17Seventh International Workshop on Serverless Computing (WoSC7) 2021

System Stack Management – Traditional vs. FaaS
• In traditional cloud computing paradigms,

customers configure and pay for the cloud
resources that they requested
• E.g., the number of cores and amount of memory

for a virtual machine

• Customers tend to overprovision compute
resources to meet application end-to-end
performance goals
• Operating system (VM) is the scale of unit Hardware Layer

Virtualization Layer

Operating System

Container Orchestration

Containers

Runtime

Provider
Manages

Customer
Manages

Customer Registered Functions

Scale of Unit

18

Traditional

Seventh International Workshop on Serverless Computing (WoSC7) 2021

System Stack Management – Traditional vs. FaaS
• FaaS frees application developers from

infrastructure management
• E.g., resource provisioning, scaling

• Customers are charged by the compute
resource usage during the execution time
(no expense for idle times)
• FaaS provider creates containers for a

function, scales the number of containers,
and co-locates multiple containers on the
same server (i.e., workload consolidation)
• At the cost of higher end-to-end function request

latencies (up to 2x from our evaluation results)

Hardware Layer

Virtualization Layer

Operating System

Container Orchestration

Containers

Runtime

Customer Registered Functions

Provider
Manages

Customer
Manages

Scale of Unit

19

FaaS

Seventh International Workshop on Serverless Computing (WoSC7) 2021

Experimental Setup Overview
• Measurements from the execution of 2 widely used FaaS benchmark suites

• ServerlessBench, FaaS-Profiler

• Benchmarks running on an open-sourced FaaS platform -- OpenWhisk
• Deployed on IBM Cloud with 1 master node and 4 worker nodes

API
Gateway Controller

Data Store

Master Node Invoker

Docker

C1 C2 C3

Worker Node #1

Ci Function Container

Worker Node #2

Worker Node #3

Worker Node #4

Invoker Invoker Agent
Container

Client Request
Generator

Client Node

20Seventh International Workshop on Serverless Computing (WoSC7) 2021

Concept Overview

Container Provisioning
& Initialization

Queueing

Request
Received

Invoker
Found

Wait Time Exec Time

/run END

Warm-start

Invoker

Docker

C1 C2 C3

Client Request
Generator

API
Gateway Controller

Data Store

Master Node Worker Node #1
Client Node

…

21

Request
Received

Init Time

/init /run END

Cold-start

Image/
Code Pull

Wait Time Exec Time

Seventh International Workshop on Serverless Computing (WoSC7) 2021

Latency Variation

7.9%

12.5%

48%

67%

42%37%

44%

41%

Both on 1 node FG on 1 node
CG scales to 2 nodes

22

Controller
Invoker

Docker

C1 C2 C3

Worker Node #CG1

C4

Invoker

Docker

C1 C2 C3

Controller

Worker Node #FG

C4

C5 C6 C7 C8

Invoker

Docker

C1 C2 C3

Worker Node #CG2

C4

Seventh International Workshop on Serverless Computing (WoSC7) 2021

Latency Variation

Both on 1 node
FG on 1 node
CG scales to 2 nodes

Wait time ↓ & Exec time ↑

23

CG

FG

Wait time ↓

Exec time ↑ Exec time ↑

Controller
Invoker

Docker

C1 C2 C3

Worker Node #CG1

C4

Invoker

Docker

C1 C2 C3

Controller

Worker Node #FG

C4

C5 C6 C7 C8

Invoker

Docker

C1 C2 C3

Worker Node #CG2

C4

Seventh International Workshop on Serverless Computing (WoSC7) 2021

Latency Variation

Both on 1 node
FG on 1 node
CG scales to 2 nodes

Wait time ↓ & Exec time ↑

24

CG

FG

Wait time ↓

Exec time ↑ Exec time ↑

Controller
Invoker

Docker

C1 C2 C3

Worker Node #CG1

C4

Invoker

Docker

C1 C2 C3

Controller

Worker Node #FG

C4

C5 C6 C7 C8

Invoker

Docker

C1 C2 C3

Worker Node #CG2

C4

[Implication] Compared to FG policies, a CG policy scales out containers on a
greater number of servers, resulting in less resource contention and thus up to
67% lower end-to-end latency.

Seventh International Workshop on Serverless Computing (WoSC7) 2021

Latency-Utilization-Power Trade-off

25Seventh International Workshop on Serverless Computing (WoSC7) 2021

Performance Interference

26Seventh International Workshop on Serverless Computing (WoSC7) 2021

Performance Interference

27

[Implication]
• Performance isolation should be carefully assessed to prevent SLO violations

due to resource sharing.
• However, when thousands of function containers are consolidated on a

single server, state-of-the-art resource partitioning fails to mitigate the
performance interference, still with up to 8.3×, 21.5×, and 2.3× increase in
end-to-end tail latencies for CPU, memory, and LLC sensitive workloads.

Seventh International Workshop on Serverless Computing (WoSC7) 2021

End-to-end Latency Breakdown

28Seventh International Workshop on Serverless Computing (WoSC7) 2021

End-to-end Latency Breakdown

29

[Implication] The three-phase breakdown of end-to-end latency varies with the
concurrency-to-arrival-rate ratio. Increasing the concurrency from 2 to 12:
• Reduces the tail wait time by 49.5× from 1820 ms
• Increases tail initialization time by 1.3× from 409 ms
• Increases tail execution time by 15.6× from 484 ms

Seventh International Workshop on Serverless Computing (WoSC7) 2021

